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Chapter 2

2-1 Explain, in your own words, the distinction between average path loss, shadow fading, and
multipath fading. How are they related to one another?

Average path loss is the decrease of the far-field average power of the transmitted EM wave
over distance at a rate of //(distance)”, where n=2, n=2 being the free-space case, n =4
if we assume a two-ray propagation model, with the received signal composed of a direct
line-of-sight component and an indirect component by perfect reflection from a flat ground
surface.

Shadow fading is the long-term variations in radio signal power about the average power due
to terrain obstructions such as hills or buildings. This type of fading is slowly varying, being
manifested over relatively long distances (many wavelengths), from tens to hundreds of
meters. A good approximation to the effect of shadow fading is to assume that the power
measured in decibels (dB) follows a Gaussian or Normal distribution centered about its
average value, with some standard deviation ranging, typically, from 6 — 10 dB. The power
probability distribution is thus commonly called a log-normal distribution.

Multipath fading is the small-scale variation of the received signal attributed to the
destructive/constructive phase interference of many received signal paths. The signal power
fluctuates substantially on the order of wavelengths. For macrocellular systems, the
amplitude of the received signal due to multipath fading is often modeled as varying
randomly according to a Rayleigh distribution. For microcellular systems, with the existence
of a direct line-of-sight signal, the small-scale variation is better approximated by a Ricean
distribution.

Putting these three phenomena together, the statistically-varying received signal power Pg
may be modeled by the following equation:

P, =a’10° g(d)F,G,G,

where Py is the transmitted signal power, G is the transmitter gain, Gy is the receiver gain
and g(d) is the I/(distance)" relation which models the effect of average path loss. The
average received power is given by P, = g(d)P.G,G, . The terms 10"*° and a® represent
the shadow fading and multipath fading effects respectively. The shadow-fading random
variable x, measured in dB, is Gaussian-distributed with a zero mean. The multipath-fading
random variable «a is either Rayleigh-distributed for macrocellular systems, or
Ricean-distributed for microcellular systems.
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2-2 Using Table 2-1, plot B, , /P, , for Orlando as a function of distance d, in meters, with 0 <
d < 200m. Assume transmitter and receiver antenna gains are both 1.

From (2-5),
FR = g(d)l_)TGTGR
Assume G, =G, =1,
P | B, = g(d)
10log,, (}_)R /PT) =10log,, g(d)
P =Py =1010G,o[d (1 +25)77)

b

Plot of P,, — P, , with respect to Distance for Orlando
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2-3 Determine the shadow-fading parameter o for each of the four measured curves of Figs.
2-4 and 2-5, and compare. Hint: First calculate the average value of each curve and then the
root mean-squared value about these averages.

For each curve, we choose 30 data points to compute the shadow-fading parameter o .

Case (i) 836 MHz; winter values:

-40 | -42 | -39 | -85 | -29 | -22 | -25 | -27 | -24 | -30 | -80 | -32 | -25 | -20 | -15

-20]-25{-201 9| 4,0 |-10/ 0 |-5]|-7|-11]-17]-11| -6 |-12

Average received signal level =-19.7 dB; o =12 dB

Case (ii) 836 MHz; summer values:

-44 | -45 | -46 | -42 | -33 | -28 | -28 | -36 | -26 | -35 | -39 | -40 | -30 | -30 | -24
-25|-28|-28(-12|-14| -4 -10| -8 | 8| -8 |-20]-21]-17 | -13 | -20

Average received signal level =-25.2dB; o =12.6dB

Case (iii) 11.2 GHz; winter values:

-46 | -45 | -37 | -30 | -30 | -29 | -39 | -28 | 42 | -42 | -35 | -30 | -28 | -26 | -28
-34 | -28-15|-23| -2 |-20] 6 | 6 | 4 |-10|-16|-17 | -15] -16 | -20

Average received signal level =-25.9dB; o =12.4dB

Case (iv) 11.2 GHz; summer values:

55 | -57 | -57 | -54 | -48 | -42 | -48 | -50 | -44 | -57 | -57 | -55 | -54 | -44 | -40
-46 | -50 | 45 | -32 | -16 | -15 | -15 | -15 | -17 | -21 | -30 | -34 | -24 | -29 | -38

Average received signal level =-39.6 dB; o =14.8dB

2-4 The average power received at mobiles 100 m from a base station is 1 mW. Log-normal,
shadow, fading is experienced at that distance.

a. What is the probability that the received power at a mobile at that distance from the base
station will exceed 1 mW? Be less than 1 mW?

0.5

b. The log-normal standard deviation o is 6 dB. An acceptable received signal is 10 mW or

higher. What is the probability that a mobile will have an acceptable signal? Repeat for o

= 10 dB. Repeat both cases for an acceptable received signal of 6 mW. Note: Solutions
here require the integration of the Gaussian function. Most mathematical software
packages contain the means to do this. Most books on probability and statistics have
tables of the error function used for just this purpose. The error function is defined in
chapter 3 of this text. See (3-12).
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Case (i) po=10mW; o=6dB
10log,,10

P(p=z po)—z—z erf ((—=2— Taxt ) =0.0478

Case (i) po=10mW; o=10dB

10log,. 10
P(p=p,)= gm

1

E
Case (iil) p9=6 mW, c=6dB

1 10lo
P(p=p,)= 5—5 erf ( [910) =0.0973

Case (iv) pp=6mW, oc=10dB

P(p=z po)———— f(l?/k)gmo) =0.2182

2-5 a. Fill in the details of the derivation of the two-ray average received power result given by
(2-13a).
Step 1: Derivation of A@=4rmhh. | Ad

With reference to the first diagram on the
right, we can prove by Pythagoras’
Theorem that

d,+d, =\r* +(h, +h,)’ )

With reference to the second diagram on
the right, we have W TTTTTTTTTTTTToTITITTII IO N

P> =d? —(h —h ) @)

d

e S = ——— >
Q.
N
e = >

Substitute (2) into (1), we have

d,+d, =\Jd* =(h, —h)? +(h, +h)’ hy- h,

d, +d, =\d® +4hh, 3)

Assume d* >>4hh,

Ad = (d, +d,) ~d =\d? +4hh —d
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= Jd? +4hh, +(2hh, | d)? -d
=(d+2hh Id)~d =2hh |d 4)

Substitute (4) into A@=270\d /A, we have Ap=4mhh | Ad .

2

1- _d e /b

=(A 2
o (89

Step 2: Derivation of

Assume Ag issmalland d/(d, +d,) =1

2
‘1 Le‘f‘A"’ 2‘(1—cosA(p)2 +jsin Aqafz =|jsinA¢2 =SinAY =(A¥Y (5

d, +d,

Finally, we can obtain (2-13a) by substituting the results in Steps 1 and 2:
2 2 2
P, =PG,G, (Lj | (hh,)

— d e_jA¢ r
d4

d +d,

A
A71d =PTGTGR (mj =PTGTGR

b. Superimpose a 1/d* curve on the measured curves of Figs. 2-7 and 2-8, and compare with
the measured curves.
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Fig. 2-7 Received signal power as function of distance
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2-6 a.
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Fig. 2-8 Effect of base station antenna height on received power

In Fig. 2-7, we can see that for all the measured curves, the rates of decrease of the
received signal power only come close to that of the 1/d* curve when the distance from
the base station antenna is large enough. This is due to the fact that in the derivation of
(2-13a), A@=4mhh | Ad is assumed to be small. For instance, take A@< 0.6 radian ,
signal frequency f, =836MHz (A=0.36m ), h =150m and A =1m , we have
d =2 47r%x150/(0.36%0.6) =8.7km . In Fig. 2-8, all the measured curves have slopes

similar to that of the 1/&* curve, and raising the base station antenna tends to increase the
strength of the received signal.

Do the results of Fig. 2-8 validate (2-13a)? Explain.

Yes. First, all the measured curves in Fig. 2-8 have the received signal powers decrease
with distance at a rate similar to that of the 1/&* curve. Second, as the height of the base
station antenna /4, increases, the received signal power increases. Both observations agree
with (2-13a).

Verify, as indicated in the text, that, for the Rayleigh-distributed random variable « in
(2-15), 0,2 must equal 1/2.

From (2-4), the instantaneous received signal power P, = a?10% g(d)P.G,G, . Taking
expectation on both sides, we have
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P, = E[R,] = E[a*]E[10°]g(d) P, G, G,
Since the average received power is just P.g(d)G,G, and E[10%]=1, this implies
E[a*]=1. From (2-15),
2 a’ g
Ela‘]= f ?e rda

r

Substitute y =a?*, dy =2ada , we have

Iz

E[O,Z] — fzzz e—y/Zdey :_fyd(e—yIZUE) :_[ye—y/ZU,? +20.r2e—y/20',?]50 :20_2

Therefore, E[a*]=20’ =1 or g’ =1/2

b. Derive (2-17a) from (2-17) and show that x and y are zero-mean random variables, each
with variance og? as defined.

The actual received normalized signal S,(¢) is given by (2-17):
5,0 = Y0, sl (11, +g1]
Expanding (2-17) by trigonometry, we get
Sp(2) = iak[cosg cos w(t —1t,) —sin gsin aXt —t,)]
=

L L
=Y a,c0s¢ cos w(t—1,) = a,sin @sin gt ~t,)
k=1 k=1

=xcosw.(t —t,) —ysin w(t —t,)

L L
where x=> a, cosg and y=> a,sing .
k=1 k=1
Consider the means of x and y.

E[x]= E[i a,cosq] =L [E[a,]E[cos @] E[y]= E[ZL: a,sin@g] =L [Ela,]E[sin @]

k=1 k=1
Since ¢ is uniformly distributed between 0 and 21t E[cos ¢, ] = E[sin ¢] =0. Hence,
E[x]=E[y] =0

Now, consider the variances of x and y.

0% = E[(x -] = E[(> a, cos @ ~0)’]

= E[>_aZ cos’ ¢]+2E[Y_a,a, cos ¢cos ¢l
k=1

i#j
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L 1+cos?2 1¢
=ED af(—(ﬂ)]+0 ==Y E(a}) =0}
k=1 2 2=

o) = E[(y =)’ =E[(Z a,sing -0)’]

= E[> asin’ @1+2E[> a,a,sin gsin ¢
k=1

i¢j
L 1-cos?2 1<
=Y @2 (—22)) 40 =2 Y E(@)) =07
k=1 2 2 k=1

Therefore, both x and y have the same variance o;.

c. Starting with the Rayleigh distribution (2-21) for the received signal envelope a, show the
instantaneous received power P obeys the exponential distribution of (2-23).

From (2-22), P,=ca’l2 = a°=2P,lc

Differentiate (2-22) with respect to P, on both sides, we have ﬂ :i
% ca

From simple probability theory,

da

dP,

Jr (Fr) = 1, (a)

Substitute (2-21) and a® =2P, /¢, we have

1 i 1 pio
fP (Be):_ze” Ok :_Ze » 1 cor
k cO, cOy

From (2-20), co? = p. Put it into the above equation and we can obtain the exponential
distribution of (2-23):

fPR () :le_PR/p
p

2-7 a. Show, following the hints provided in the text, that the Ricean distribution (2-25)
approaches a Gaussian distribution centered about 4 for 4%/207% >1.
(L
From (2-25), f.(a) :%e 2% Io(%)
UR UR
According to the hints, /,(z) — ¢°/~/2mz when z>1. This corresponds to the case
A% 1207% > 1. With this assumption, (2-25) becomes

A+ A4? ad a?—2ad+4* _(a—A)2

O

a G a2 1 Q/; T ) 1 Q/z 202
a)=—e “* [ [ = —e ® =——=—1[]—e %
fi(@) oy V2mad o N2m N4 gN2m\4
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Therefore, it is readily seenthat f, (a) peaks at about A, and, in the vicinity of that value
of the amplitude, is closely Gaussian.

b. \erify that the instantaneous received power distribution in the case of a direct ray is
given by (2-27). Show that, as the K-factor gets smaller (the direct line-of-sight ray
decreases relative to the scattered signal terms), the fading distribution of (2-27)
approaches a Rayleigh distribution.

From (2-22), P,=ca’l2 = a’=2P,/c (i)

Take expectation on both sides of (2-22),
p = E[R]=cE[a"]/2

Since
E[a®] = E[(4 +x)? +y*] = 4% +20° =202 (1 +K)

we have
p=coy(l+K) or c¢=plogQ+K) (i)

Put (ii) into (i)

a=2P,0*(1+K)! p

Differentiate (2-22) with respect to P, on both sides, we have j—a :i _________________ (iv)

% ca
From simple probability theory,

Jr (Be) = 1.(a)

da.
dP,
Substitute (iii), (iv) and (2-25) into the above expression,

14K 4

1 O B AL+ K) A?
P)=—e * *%*] [P, 3
Jr, (F) = 0(\/ PR 20_;)

Put K =4°/202 and co; = pl(1+K), we have

£, (= XK T JARAE)
p p

Put K=0, the expression for the instantaneous received power distribution becomes
e

f(P)=e ?
P
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Therefore, it is shown that as the K-factor gets smaller, f, (F;) approaches an
exponential distribution.

2-8 As will be seen throughout the text, simulation is commonly used to determine the
performance, as well as verify analysis, of cellular systems. Most critical here is the
simulation of fading conditions. This problem provides an introduction to the simulation of
Rayleigh fading.

a. Consider a sequence of » random numbers x;, j =1 to n, uniformly distributed from O to 1.
(Pseudo-random number generators are often available in mathematical software
packages.) Let x:(b/n)ijl(xj —-1/2). Show x approximates a Gaussian random

variable of zero average value and variance o® = b*12n. Repeat for another set of n

(independent) uniformly-distributed random numbers, calling the sum obtained in this
case y. Using x and y, generate a Rayleigh-distributed random variable. Comparing with

(2-21), what is the Rayleigh parameter oz in this case? Hint: Consider the derivation of
(2-21) starting with (2-19) and the discussion in the text following.

By the Central Limit Theorem of probability, for large », the random variable x, defined
as the sum of » random variables, becomes approximately Gaussian-distributed. Now we
will derive the mean and variance of x.

Mean: E(x) = (b/n)zlj_zl[E(xj) -1/2]=0

Variance: o? = E[(x —0)] :(b/n)zz;’_zlE[(xj -1/2)%]

b, az . w2V w
= (— =-_  M=L -
_(n) @Eflfzyjdyj n | 3 12n

-1/2

We can generate a Rayleigh-distributed random variable a from x and y by the formula
a=4/x*+y* and in this case the Rayleigh parameter o> =5 /12n.

b. A different method of obtaining the Rayleigh distribution directly from a
uniformly-distributed random variable x is to write the expression

a=,/-20%log, x

Show the variable a is Rayleigh-distributed. How would you now use a sequence of
uniformly-distributed random numbers to generate a Rayleigh distribution?

Rewrite the expression of a, we get
2

x =exp(— 2610'2 )
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As a increases from 0 to o, x decreases from 1 to 0. Since x is bounded by 0 and 1, the
probability density function f (x)=1.

Cl2 Cl2
20°

20

ﬁ,(a):di[l—exp(— =2 exp(—2)
a g

Therefore, a is Rayleigh-distributed. We can obtain Rayleigh-distributed random
numbers a; from a sequence of uniformly-distributed random numbers x; by directly

applying the formula @, =/-20%log, x, .

¢. Choosing various values for n, generate the Rayleigh distribution using the two
methods of a. and b., and compare, both with each other and with a plot of the Rayleigh
distribution. What is the effect on these results of varying n?

Choose o =9. Hence, in method a., the value of the parameter 5 is +/108n . Each plot
is based on the statistics of £ =10,000 data points generated by the approximation
methods. To obtain a plot of the relative frequency density, we first divide the x-axis into
equal intervals each of width w. Then we count the number of data points ¢; in each
interval. The relative frequency density of interval 7 is then given by ¢, /(k xw). From the
plots we find that by increasing the value of n, method a. gives a better approximation to
the Rayleigh distribution.

Relative Frequency Density of the Rayleigh-Distributed Random Variables Generated by Two Different Methods
0.25

—— Method a; n=5

— Method a; n = 20

— — Method b

___ Rayleigh Distribution f,(a)

0.2

0.15|- / \
T .

Density
~
\

0.1f \
/ N\
0.05 - / \\
4 N\

0 2 4 6 8 10 12
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d. Show how you would extend the method of a. to generate the Ricean distribution.
Generate and plot this distribution using the pseudo-random numbers generated in c. for
various values of the Ricean K-factor.

We can extend the method of a. to generate the Ricean distribution by the formula

a =+/(4+x)* +y* , where 4 is a positive constant.

Copyright [72005
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2-9 Consider the average fade duration equation (2-39). Take the case of a vehicle moving at a
speed of 100 km/hr. The system frequency of operation is 1 GHz. Say the ratio p = 1. Show

the average fade duration is 8 msec, as noted in the text. Now let the received signal
amplitude be 0.3 of the rms value. Show the average fade duration is now 1 msec.

. v _100x10° /(60 %60) e-1
Case (i =1, =—= =92.59H. T,=——— =7.4msec.
W p=l J = T a0 Y T gasoxyanr
.. 60'32 -1
Case (ii =03, f,=9259Hz 1, = =1.35msec.
W »p /. 7 0.3%92.59 x/271

2-10 a. Summarize, in your own words, the discussion in the text on time dispersion and
frequency-selective fading.

In a wireless medium, due to reflection, scattering, diffraction and refraction, a signal
usually reaches a destination through multiple paths of various distances. Thus, a
receiver, instead of getting a copy of the signal, often obtains replicas of a signal which
arrive at different times. The superposition of the delayed replicas results in the
broadening of the signal. This is known as time dispersion, which corresponds to a
non-flat frequency response of the channel. For relatively large signal bandwidth, one
encounters frequency-selective fading, with different frequency components of the
signal being handled differently over the channel, leading to signal distortion. For the
case of digital signals, this distortion introduced by frequency-selective fading
manifests itself in intersymbol interference (ISI), with successive digital symbols
overlapping into adjacent symbol intervals.

b. Consider several cases: a delay spread of 0.5 psec, one of 1 psec, and a third one of 6
psec. Determine whether individual multipath rays are resolvable for the two
transmission bandwidths, 1.25 MHz used in 1S-95 and cdma2000, and 5 MHz used in
WCDMA. (See Chapter 10)

For 1S-95 and cdma2000, multipath echoes appearing much greater than
1/(27rx1.25)usec =0.13usec apart will be resolvable. Therefore, multipath rays

should be resolvable for delay spreads of 1usec and 6usec, but probably not for the
delay spread of 0.5usec.

For WCDMA, multipath echoes appearing much greater than 1/(277x5)usec
=0.032usec apart will be resolvable, which is valid for all the three cases of delay
spread.
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2-11 Indicate the condition for flat fading for each of the following data rates:
8 kbps, 40 kbps, 100 kbps, 6 Mbps.
Indicate which, if any, radio environments would result in flat fading for each of these data

rates.
Data Rate Symbol Flat Fading Radio Environment for Flat Fading
Interval Condition
8 kbps 125 psec Tav < 25 psec Most environments
40 kbps 25 psec Tav < 5 Hsec Some urban environments and
most suburban and rural environments
100 kbps 10 psec Tav < 2 SEC Most suburban and rural environments

6 Mbps  0.167 pusec  Tay <0.033 psec  Some indoor picocellular environments

2-12 a. Consider the transversal filter equalizer of Fig. 2-20. A training sequence of K binary
digits is used to determine the 2N + 1 tap gains, as described in the text. Show that,
under a minimum mean-squared performance objective, the optimum choice of tap
gains is given by (2-53).

Under a minimum mean-squared performance objective, we want to choose the tap
K
gains h,, —N <n<N,suchthat ) (s,—5,)° is minimum.

j=1
To obtain the optimum choice of tap gains, we find the solution of

0 & L & .05
— —5.) =) 2(s. —5.)—L =0
al’l Z(SJ SJ) ; (SJ sj)ah[

1 j=1

NP s, |
Since §,= > hr._, and —L=r_,, the above equation becomes
— ah J
n=—-N 1
K
zz(sj _Sj)rj—l O
Jj=1
K K
= zsjrj—l = Zsjrj—l
L =
K K N
= ZS/’G—I :Z Z hnrj—nrj—[ -N<I<N
j=1 j=l n=-N
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b.

2-13 a.

Show the vector form of (2-53) is given by (2-56), with the solution given by (2-57).

K K
Define R, =>r_r_ and g =>sr_,, ~N<ln<N.Equation (2-53) then takes
j=1 j=1
on the simpler looking form
N

g => hR, -N<I<N
n=-N
In matrix notation,
g_n R—N,—N R—N,—N+1 R—N,N h_y
g—{v+1 _ R—N'+1,—N Roygwa = R—N. 4N h—z.v+1 or g=Rh
En RN,—N RN,—N+1 e RN,N hy

Multiply R to both sides, we have
R’g =R 'R)h or h=R'g

Work out a simple example of the transversal filter equalizer: Say the equalizer has
three taps to be found using the minimum mean-squared performance objective.
Choose a set of K = 10 arbitrarily-chosen binary digits as the training sequence and
then let some of these digits be received in “error”, i.e. some are converted to the
opposite polarity. Find the “best” set of taps in this case. Try to choose the training
sequence so that there are equal numbers of +1 and -1 digits. Compare the tap
coefficients with those found using the approximation of (2-58).

Choose the training sequence {s;} = {1 1 -1 1 -1 -1 -1 1 1 -1}

And the received sequence  {r;} = {1 1 1 1-1-1-1-1 1 -1}
with the third and eighth bits received in errors.

From equations (2-54), (2-55) and (2-57), we find that

3 10 3 2 . 91 -24 -11)(3 0.1716
g=|6|R={3 10 3| and h:R‘lg:% 24 96 -24| 6 |=| 0.6471
-1 2 3 10 -11 -24 91 )\ -1 -0.3284

By using the approximation of (2-58), the tap coefficients

. . 3 0.3

hox =—8 =—1[6 |=| 0.6

PP 10 10
-1 -0.1

The approximated coefficients obtained by (2-58) are very close to the exact
coefficients obtained by (2-57). The mean-squared difference given by the
approximated tap coefficients is just 0.0763 higher than the optimum value.
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b. Repeat this example for a different set of transmitted digits and errors in reception.

{s;}y ={1-1-11-11-1-11 1}
{rj} ={1-11111-1-1 1 1} (thirdand fifth bits received in errors)

3 10 1 -2 (99 -2 21(3) (03718
g=|6| R=l1 10 1 h=gag|12 9 -12] 6 |=| 0.6410
2 1 10 21 -12 99 )(1) (-0.0385
3) (03
hypr = 16 |=
oex =15 16 || 06
1) (o1

c. Choose a larger example of a transversal filter equalizer and repeat a. and b.,
comparing with the results obtained there.

In the following two examples, we use transversal filter equalizers of 11 taps (N = 5)
adapted with 30-bit training sequences (K = 30). Since the matrix manipulation is
cumbersome, a computer program was written to solve the optimum tap coefficients h.

Example 1

{st={1+1-121-12-172-211-1211-21-1-1-111-11 1-11-1-1-1

11-1}

{r}=1+ 12-11211111-211-121-1-1-1211-111-11-1-1-1

11-1} (fifth to seventh bits received in error)
-1 3 -1 2 7 0 1 -2 9 -6 -7 14 0.0080
-2 13 -1 -2 7 0 1 -2 9 -6 -7 -0.0472
5 2 13 -1 -2 7 0 1 -2 9 -6 -0.0598
-8 7 2 -13 -1 -2 7 0 1 -2 9 -0.1492
-7 o 7 -2 -13 -1 -2 7 0 1 -2 -0.2215

g={24| R=f{ 1 0 7 -2 -1 30 -1 -2 7 0 1| h=| 0.7994
-7 2 1 0 7 -2 -130 -1 -2 7 0 -0.1814
-4 9 21 0 7 -2 -1 3 -1 -2 7 -0.0115
5 6 9 -2 1 0 7 -2 -1 30 -1 -2 -0.0245
-2 -7 6 9 -2 1 0 7 -2 -1 30 -1 -0.0222
-3 14 -7 6 9 -2 1 0 7 -2 -1 30 -0.1230

=(-0.0333 -0.0667 0.1667 -0.2667 -0.2333 0.8000
-0.2333 -0.1333 0.1667 -0.0667 -0.1000)"

happrox
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Example 2

{st={r-1-112-121-12-2111-1-121-21-1-1111-1-11-11-1

-1 1 1}
r}={1+-r-112-121-17-2-12-12-2-12-121-11-1-1111-1-11-11
-1-1 1 1} (ninth to eleventh bits received in error)
13 3 3 2 1 -2 11 0 -3 0 -5 12 0.1146
-4 33 3 2 1 -2 11 0 -3 0 -5 0.0548
-1 2 33 3 2 1 -2 11 0 -3 O 0.0016
-4 1 2 33 3 2 1 -2 11 0 -3 -0.2065
-9 2 1 2 33 -3 2 1 -2 11 O -0.2417
g={24|R=j11 -2 1 2 -3 30 -3 2 1 -2 11|h=| 0.7024
-9 o 117 2 1 2 -3 30 -3 2 1 -2 -0.2417
-4 3 0 11 -2 1 2 -3 30 3 2 1 -0.2065
-1 o 3 0 11 2 1 2 -3 30 -3 2 0.0016
-4 5 0 3 0 11 2 1 2 -3 30 -3 0.0548
13 12 5 0 -3 0 11 -2 1 2 -3 30 0.1146

=(0.4333 -0.1333 -0.0333 -0.1333 -0.3000 0.8000
-0.3000 -0.1333 -0.0333 -0.1333 0.4333)"

happrox

A comparison of the four examples of traversal filter equalizers is summarized in the
table below.

K 2N+1 Avg. distance between Optimum ms diff.  Increase in ms

optimum and approx. 4,’s 1 § s -5 ) diff. with
% h(j)—hap”rw(j)‘ K= '/_ ‘/ approx. f
2N +1J=N (sj - training seq.)
1. 10 3 0.1346 0.5137 0.0763
2. 10 3 0.0838 0.4937 0.0243
3. 30 11 0.0772 0.2128 0.0917
4. 30 1 0.1313 0.1397 0.4456

In general, the approximated tap coefficients are very close to the exact optimum
coefficients obtained by (2-57). Larger traversal filter equalizers with more tap
coefficients and adapted by longer training sequences usually give better estimated
sequences, i.e. resulting in a smaller mean square difference between the transmitted
and the estimated signal sequences.
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2-14 a. Plot the improvement in performance obtained with the use of dual selection diversity
as the ratio of local-mean power to the threshold varies. Use at least the following cases:
(1) the local-mean power 20 times the threshold; (2) local-mean power 10 times the
threshold; (3) local-mean power equal to the threshold; (4) local-mean power 0.1 of the
threshold. Note: Performance may be defined as outage rate or the probability that at
least one of the channels has an instantaneous power greater than the threshold.

Outage Rate vs. Ratio of Local-Mean Power to the Threshold for Dual Selection Diversity
1
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b. Repeat a. for four- and eight-fold diversity and compare all three orders of diversity.

Outage Rate vs. Ratio of Local-Mean Power to the Threshold for N-Fold Selection Diversity
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In general, the higher the order of diversity, the better the performance. However, as the
ratio of local-mean power to threshold increases, the improvement becomes less
significant. For a ratio larger than three, there is no much difference between four- and
eight-fold diversities. Besides, if the order of diversity is high enough, it will be hard to
improve the performance further by more diversity branches.

2-15 Show the optimum maximal-ratio combining gain for the ith diversity branch is given by
(2-64). Explain the statement that the SIR is then the sum of the SIRs, summed over the N
diversity branches.

2
From (2-61) SIR=|s[’ 11, = 1S gl f
k=1

N
zgkak
=

According to Schwartz’s inequality for complex numbers,

N . N 2 N 2
> |=( e {310 |
k=1 k=1 k=1

Choose ¢, =a, /|n;| and d, =g, |n,|, we have

N N N

> ae <[ 3ol il [ lel 1 |
k=1 k=1 k=1

ul ul 2 ? U 2 2

I U
PAADIANCARD I ARITA
k=1 k=1 k=l

= SIR =

SIR is maximized when equality is obtained with d, =Kc,, i.e. g, |n,|=Ka,/|n| or

g, =Ka; I|n|", which is the expression in (2-64).

N
Since the SIR in this case is > |a, ' /|#|*, and the SIR on the th diversity branch is just
k=1

given by |a,|* /][, we can state that the resultant SIR is the sum of the SIRs over the N
diversity branches.

2-16 a. Explain how equal-gain combining differs from maximal-ratio combining. In particular,
write an expression for the SIR in the case of equal-gain combining. Hint. How would
this expression compare with (2-61)?

Equal-gain combining differs from maximal-ratio combining in that the gains g; over
all diversity branches are the same, rather than being adjusted according to the SIR on
the respective branch. Hence, in equal-gain combining the diversity channel outputs are
simply added together. The SIR in this case is
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b.

2-17 a.

N 2 ,
SIR = Zak /Z|n,'{|
k=1 k=1

Why would you expect the performance of diversity schemes to be ranked in the order
maximal-ratio combining best, equal-gain next best, selection diversity last?

We can rank the performance of the three diversity schemes by comparing their
respective SIR’s. First, the SIR of the maximal-ratio scheme must excel that of the
equal-gain scheme, based on the fact that the branch gains of the maximal-ratio
schemes are adapted to maximize the SIR. Next, we will show that the SIR of the
equal-gain scheme should in general be larger than that of the selection scheme.
Consider the SIR of the selection scheme. Suppose the signal on the ith branch has the
largest SIR, then

o'y _|a]
= max{%} :;2

Colml

Since the SIR on each branch |a, " /|n|" is usually greater than one, we can write the
following inequality:

SIR

selection

2 2

a; +Zak

k#i

N
2 Zak
sk, =4l < =l

selection 112 112 + 1|2 N 2
IR A A
k
k=1

k#i

=SIR

equal —gain

Therefore, it can be concluded that the performance of maximal-ratio combining is the
best, equal-gain combining is the next best, and selection combining is the last.

Explain the operation of the RAKE receiver in your own words.

A RAKE receiver boosts up the signal reception performance by combining
separately-arriving rays of a signal transmitted over a fading channel. The technique
can only be applied to very wideband wireless systems, such as the CDMA, in which
the delay spread over a fading channel is greater than the symbol period, and as a result
individual components of the multipath signal can be separately distinguished. The
differential delays as well as relative phases and amplitudes of the individual multipath
components need to be estimated accurately, so that the different received rays can be
shifted in time, compensating for the differential delays, and then be combined using
the maximal-ratio scheme. In practice, only a few of the earliest arriving rays, normally
the strongest in power, are used to carry out the RAKE processing.
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b. Two third-generation CDMA systems are discussed in chapter 10. The first, W-CDMA,
uses a chip rate of 3.84 Mcps (million chips per second), with a corresponding chip
duration of 0.26 psec; the second system, cdma2000, uses a chip rate of 1.2288 Mcps,
with a chip duration of 0.81 psec. (This is the same chip rate used by the
second-generation CDMA system 1S-95 discussed in chapters 6 and 8.) Explain the
statements made in chapter 10 that RAKE receivers can be used to provide multipath
time-diversity for paths differing in time by at least those two chip durations,
respectively. Which system potentially provides better RAKE performance?

In CDMA, multipath components separated in time over a chip duration are orthogonal
to each other and hence can be individually received by applying the same
pseudorandom code at different times which correspond to the arrivals of the delayed
signals. The receiving system can rapidly scan through different delay values of the
received rays, searching for the sequence corresponding to the one transmitted. Once a
number of such differentially-delayed received signals are identified, delay
compensation can be carried out and maximal-ratio combining used to recover the
transmitted sequence.

W-CDMA, having a shorter chip duration, should potentially provide a better RAKE
performance.
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