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Note to Instructors

For a few of the more difficult problems, we include notes to the instructor suggesting simplifications,
specializations and hints that the instructor may wish to give the students when assigning those
problems.

Note also that there are some useful exercises within the appendices of the textbook.
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Chapter 2

Ex. 2.1

(i)

The radiated electric field is

~εa ≈ re
eikRD

RD

[
n̂× (n̂× ~Ein)

]
e−iωte−i~q·~r. (1)

Replace e−i~q·~r by 〈e−i~q·~r〉 = f(~q ). The vector (n̂× ~Ein) is perpendicular to both n̂ and to ~Ein and

has length |Ein sin θ|. Hence |n̂× (n̂× ~Ein)|2 = E2
in sin2 θ. Thus

|εa|2 = E2
in

r2
e

R2
D

sin2 θ|f(~q )|2. (2)

The total radiated power passing through a sphere of radius RD is

P = cR2
D

∫
dΩ

(
ε2a
8π
× 2

)
(3)

=
c

4π
r2
eE

2
in

∫
dΩ sin2 θ|f(~q )|2. (4)

Let us normalize the incident electric field to that associated with a single photon in the normal-
ization volume L3

E2
in

4π
=

~ω
L3

=
~ck
L3

(5)

which yields

P = ~c2k
r2
e

L3

∫
dΩ sin2 θ|f(~q )|2. (6)

(ii)

Now compare this to the quantum result using the photon scattering matrix element in Eq. (2.28)

M = ref(~q ) ∧2
k ε̂~kλ · ε̂~k′λ. (7)
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Fermi’s Golden Rule for the transition rate is

Γ =
2π

~
∑
λ′

L3

(2π)3

∫
d3k′ r2

e ∧4
k [ε̂~kλ · ε̂~k′λ]2δ(~ω − ~ck′)|f(~q )|2. (8)

Noting that the two polarization vectors ε̂~k′λ′ and the vector k̂′ are all mutually perpindicular, we

find
∑
λ′ [ε̂~kλ · ε̂~k′λ]2 = 1− [ε̂~kλ · k̂′]

2 = 1− cos2 θ = sin2 θ. The radiated power is

P = ~c2k
r2
e

L3

∫
dΩ sin2 θ|f(~q )|2, (9)

in agreement with the result from the semiclassical calculation.

Ex. 2.2

S(~q) =
1

N
< |W (~q)|2 >=

1

N
<

N∑
i=1

ei~q.~ri
N∑
j=1

e−i~q.~rj > (10)

=
1

N
<

N∑
i=j

ei~q.~ri−i~q.~rj > +
1

N
<

N∑
i 6=j

∫
d3~rd3~r′ei~q.~ri−i~q.~rjδ(~r − ~ri)δ(~r′ − ~rj) > (11)

=
1

N
N +

1

N

∫
d3~rd3~r′ei~q·(~r−~r

′) <

N∑
i 6=j

δ(~r − ~ri)δ(~r′ − ~rj) > (12)

Remembering

<

N∑
i 6=j

δ(~r − ~ri)δ(~r′ − ~rj) >= n(2)(~r′i − ~rj),

then obviously

S(~q) = 1 +
1

N

∫
d3~rd3~r′ei~q·(~r−~r

′)n(2)(~r′ − ~r) = 1 + n

∫
d3~rei~q.~rg(~r)

where we used N/V = n and n(2)(~R) = n2g(~R).
P.S. ” <> ” indicates thermal average in liquid or amorphous materials. It is unnecessary only

for perfect lattices. Generally ” <> ” must be in the formula.


