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Chapter 1

1. (a) Conservation of momentum gives P, ;i = Py finar » OF

m v | + mHeV = mHVH,finaI + rnHeVHe,finaI

H,initial He,initial

Solving for v, 4., With v =0, we obtain

He,initial
m, (VH,initiaI - VH,finaI)
My
_ (L.674x1077 kg)[1.1250x10" m/s — (~6.724x10° m/s)]

6.646x107%" kg

v

He,final =

=4527x10°% m/s

(b) Kinetic energy is the only form of energy we need to consider in this elastic
collision. Conservation of energy then gives K, .., = K¢ s OF

2

1
2 IﬂnHVH initial +3 mHeV m VH final +3 IFnHeVHe final

He, initial —

Solving for v, 4. With v =0, we obtain

He,initial

_ m (VH initial VH,finaI)
VHe,finaI -

mHe

_[(1.674x107% kg)[(1.1250%x10" m/s)? — (—6.724x10° m/s)’]
6.646x10 kg

=4.527x10° m/s

2. (a) Let the helium initially move in the x direction. Then conservation of momentum
gives:
px initial — px flnal IﬂnHeVHe,initiaI = mHeVHe,finaI Cos eHe + mOVO,finaI COs 00
Py initiar = Py fina - 0 =My Ve inas SIN Gy + MoV, i SIN Gy

From the second equation,

MV ma SIN6 _ (6.6465x10 kg)(6.636x10° mUS)(Sin84.7%) _ » o 406 e

mO siné, (2.6560x10% kg)[sin(—40.4°)]

Vosfina =

(b) From the first momentum equation,
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MieViefinal COS G + Mo Vo fina COS Oy

mHe
_ (6.6465x107?"kg)(6.636 x10° m/s)(cos 84.7°) + (2.6560x 10 *° kg)(2.551x10° m/s)[cos(—40.4°)]
B 6.6465x107 kg

v —

He,initial —

=8.376x10° m/s

3. (a) Using conservation of momentum for this one-dimensional situation, we have
Pyinitial = Pxfina » OF
MyeVie + MyVy = MpVp + MgV,

Solving for v, with v, =0, we obtain

_ 6 _ 7
v, = MyeVie —MpVp _ (3.016 u)(6.346 x10° m/s) — (2.014 u)(1.531x10" m/s) _779%10° m/s
My 15.003 u

(b) The Kkinetic energies are:

Kt =3 My Ve, +3my Vi =1(3.016 u)(1.6605x107*" kg/u)(6.346x10° m/s)* =1.008x107** J
K =2 mpV2 +1mgvd =4(2.014 u)(1.6605x107%" kg/u)(1.531x10" m/s)?
+4(15.003 u)(1.6605x107*" kg/u)(7.79x10° m/s)* =3.995x107" J

As in Example 1.2, this is also a case in which nuclear energy turns into Kinetic
energy. The gain in kinetic energy is exactly equal to the loss in nuclear energy.

4. Let the two helium atoms move in opposite directions along the x axis with speeds
v, and v,. Conservation of momentum along the x direction ( p, ;i = Pysina ) 91VES

0=myv, —m,v, or v, =V,
The energy released is in the form of the total kinetic energy of the two helium atoms:
K, +K, =92.2 keV

Because v, =V, , it follows that K, = K, =46.1keV, so

3 -19
= 2K, _ 2(46.1x10 eV)(1.602>i;L70 J/eV) 1.49%10° m/s
m, (4.00 u)(1.6605%x10™°" kg/u)

Vv, =V, =1.49x10° m/s
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5. (a) The kinetic energy of the electrons is
K, =imv/ =1(9.11x10"* kg)(1.76x10° m/s) =14.11x107"* J

In passing through a potential difference of AV =V, -V, =+4.15 volts, the potential
energy of the electrons changes by

AU =QgAV =(-1.602x10" C)(+4.15V) =-6.65x107" J

Conservation of energy gives K, +U, = K, +U,, so

K, =K, +(,;-U;) =K, —AU =14.11x10"° J +6.65x107"° ] =20.76 x10*° J

=2.13x10° m/s

2K, \/2(20.76><10‘19 J)
m

V., = =
! 9.11x10"* kg
(b) In this case AV = —4.15 volts, so AU = +6.65 x 10 J and thus

K, =K, —AU =14.11x10"° J-6.65x10*° ] =7.46x10* J

-19
V, = 2K, _ 2(7.46><121 ) =1.28x10° m/s
m 9.11x10™ kg

6. (a) Ax, =VAt, =(0.624)(2.997x10° m/s)(124x107° s)=23.2m
(b) Ax, = VAL, =(0.624)(2.997 x10° m/s)(159x107° s) =29.7 m

7. With T=35°C=308KandP =1.22 atm =1.23x10° Pa,

5
N_P 1.23x10" Pa = 2.89x10% atoms/m®

VKT (1.38x10% JK)(308 K)

so the volume available to each atom is (2.89 x 10°/m*)™ = 3.46 x 10 m®. Fora
spherical atom, the volume would be

17R*=47(0.710x107"° m)* =1.50x10"* m®

The fraction is then
1.50x107%°

YT 4.34x107°
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8.

9.

dN = N(E)dE =

10.

11.

Differentiating N(E) from Equation 1.23, we obtain

d_N:ﬂ 13/2 %E—llze—E/kT_l_El/Z _i Ty
dE 7z (KT) kT

To find the maximum, we set this function equal to zero:

2N 1 1 E
£ - pWpEM| - E |
Jr (KT)*? (2 ij

Solving, we find the maximum occurs at E =+KkT . Note that E = 0 and E = oo also
satisfy the equation, but these solutions give minima rather than maxima.

For this case kT = (280 K)(8.617x107° eV/K) =0.0241eV. We take dE as the width
of the interval (0.0012 eV) and E as its midpoint (0.0306 eV). Then

2N 1
Jr (0.0241eV)¥?

(0.0306 eV)!2g(0.0306ev)00241eV) () 0012 V) =1.8x 102N

(@) From Eg. 1.33,

AE,, =2$nRAT =£(2.37 moles)(8.315 J/mol - K)(65.2 K) = 3.21x10° J
(b) From Eq. 1.34,

AE,, =InRAT =1(2.37 moles)(8.315 J/mol - K)(65.2 K) = 4.50x10° J

(c) For both cases, the change in the translational part of the kinetic energy is given
by Eq. 1.31:

AE,, =2nRAT =$(2.37 moles)(8.315 J/mol - K)(65.2 K) =1.93x10° J

After the collision, m; moves with speed v; (in the y direction) and m, with speed v,
(at an angle @ with the x axis). Conservation of energy then gives Einitiat = Efinal:

_1 12 1 12 2 _ (12 12
myv, =<mVv;" +5m,v, or Vo=V 43V,

N[~

Conservation of momentum gives:
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px initial — px final * : mlvl = mzvé C0s 0 or V= 3V£ Cos 9

Py.niial = Pygina = 0 =MV —M,V;sin@ or v, =3v,sin@

We first solve for the speeds by eliminating & from these equations. Squaring the two
momentum equations and adding them, we obtain v® +v;*> =9v}?, and combining this
result with the energy equation allows us to solve for the speeds:

v =v/+2 and v, =v//6

By substituting this value of v; into the first momentum equation, we obtain

cos@ =+2/3 or 0 =35.3°

12.  The combined particle, with mass m’=m, + m, = 3m, moves with speed v" at an angle
@ with respect to the x axis. Conservation of momentum then gives:

Py initial = Pyfina - MV, =mV'cosd  or  v=3v'cosd
Py initial = Py finar - MoV, = m'v’'sin @ or 4v=23v'sin@
We can first solve for 8 by dividing these two equations to eliminate the unknown v’:
tan@ =% or 6 =53.1°

Now we can substitute this result into either of the momentum equations to find
v'=5v/9
The kinetic energy lost is the difference between the initial and final kinetic energies:

Kiniga = Kinar = 3MV; +3mv; —3mv2 =imv? +4(2m)(3v)* - $(Bm)(3v)* = £ (4 mv?)

The total initial kinetic energy is +mv? +1(2m)(2v)? =i (4 mv®). The loss in kinetic
energy is then 2 =51% of the initial kinetic energy.

13. (&) Let v, represent the helium atom that moves in the +x direction, and let v,
represent the other helium atom (which might move either in the positive or negative

x direction). Then conservation of momentum ( p, s = Py fina ) 91VES

mv =my, + m,v, or 2V=V,+V,
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where v, may be positive or negative. The initial velocity v is

3 -19
. /2_K _ 2(40.0x10° eV)(1.602 >_<2}0 J/eV) _9.822%10° m/s
m (8.00 u)(1.6605%x 10" kg/u)

The energy available to the two helium atoms after the decay is the initial kinetic
energy of the beryllium atom plus the energy released in its decay:

—1 2.1 2 _ 1 2 1 2
K+92.2keV =5my; +5mv, =2myV; +5m,(2v-Vv,)

where the last substitution is made from the momentum equation. Solving this
quadratic equation for v,, we obtain v, = 2.47x10° m/s or —0.508x10° m/s.

Because we identified m; as the helium moving in the positive x direction, it is
identified with the positive root and thus (because the two heliums are
interchangeable in the equation) the second value represents the velocity of my:

v, = 2.47x10° m/s, v, = -0.508 x10° m/s

(b) Suppose we were to travel in the positive x direction at a speed of v = 9.822x 10°
m/s, which is the original speed of the beryllium from part (a). If we travel at the
same speed as the beryllium, it appears to be at rest, so its initial momentum is zero in
this frame of reference. The two heliums then travel with equal speeds in opposite
directions along the x axis. Because they share the available energy equally, each

helium has a kinetic energy of 46.1 keV and a speed of 2K /m =1.49x10° m/s, as
we found in Problem 4. Let’s represent these velocities in this frame of reference
asv, = +1.49x10° m/s and v} = —1.49x10° m/s. Transforming back to the original
frame, we find

Vv, =V, +v=1.49x10° m/s +9.822x10° m/s = 2.47 x10° m/s
V, =V, +V =-1.49x10° m/s +9.822x10° m/s = —0.508 x10° m/s

14. (a) Let the second helium move in a direction at an angle & with the x axis. (We’ll
assume that the 30° angle for m, is measured above the x axis, while the angle @ for
m, is measured below the x axis. Then conservation of momentum gives:

3

Py initiar = Prfinar - MV =MV, c0s30°+m,v, cos & or 2v —7vl =V, cosd

) . 1 )
Py initial = Py fina - 0=m,y, sin30°-m,v, sin& or Evl =V,sin@

We can eliminate the angle &by squaring and adding the two momentum equations:
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A% +VE = 24[3w, = V2

The kinetic energy given to the two heliums is equal to the original kinetic energy
1 mv? of the beryllium plus the energy released in the decay:

2 2 2 2 2 2
1mv? +92.2keV =imy? +3myvZ =1imv2 +1m, (4v? +Vv2 —24/3w,)

1(m, +m,)vZ —/3Bm,w, +(2myv2 —imv2 —92.2 keV) =0
Solving this quadratic equation gives
v, = 2.405x10° m/s, —0.321x10° m/s

Based on the directions assumed in writing the momentum equations, only the
positive root is meaningful. We can substitute this value for v, into either the

momentum or the energy equations to find v, and so our solution is:
v, = 2.41x10° m/s, v, =1.25x10° m/s

The angle & can be found by substituting these values into either of the momentum

equations, for example
6
0 =sin L —sin~ 2.41><106m/s =74.9°
2V, 2(1.25x10° m/s)

b) The original speed of the beryllium atom is v =+/2K /m =1.203x10° m/s. If we
( ginal sp y v

were to view the experiment from a frame of reference moving at this velocity, the
original beryllium atom would appear to be at rest. In this frame of reference, in

which the initial momentum is zero, the two helium atoms are emitted in opposite
directions with equal speeds. Each helium has a kinetic energy of 46.1 keV and a

speed of v, =v, =1.49x10° m/s. Let ¢ represent the angle that each of the helium
atoms makes with the x axis in this frame of reference. Then the relationship between

the x components of the velocity of m; in this frame of reference and the original
frame of reference is

v, €0s30° =V, CoS¢ +V
and similarly for the y components

. )
v,sin30° =v; sin ¢

We can divide these two equations to get
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15.

16.

17.

@y

V,COS@+V
v, Sing

cot30° =

which can be solved to give ¢ = 53.8°. Using this value of ¢, we can then find
v, =2.41x10° m/s. We can also write the velocity addition equations for m,:

V,C0S6 =-v,cos¢+Vv  and V,sin@ =-v,sing

which describe respectively the x and y components. Solving as we did for m;, we
find v, =1.25x10° m/s and @ =74.9°.

(a) With K =3KkT,
AK =2KAT =2(1.38x107 J/K)(80 K) =1.66x107** J = 0.0104 eV

(b) With U =mgh,
U 1.66x107%J

he" - - ~=2550m
mg (40.0 u)(1.66x10" kg/u)(9.80 m/s?)

We take dE to be the width of this small interval: dE = 0.04kT —0.02kT =0.02KkT ,
and we evaluate the distribution function at an energy equal to the midpoint of the
interval (E = 0.03kT):

dWN _N (il)dE - } (le)m (0.03KT 26T (0,02KT) = 3.79x10°3
T

If we represent the molecule as two atoms considered as point masses m separated by
a distance 2R, the rotational inertia about one of the axes is 1, = mR* + mR? = 2mR?>.

On average, the rotational kinetic energy about any one axis is kT , so
11,0} =1KkT and

-23
kT [kT _ (1.38x10 72;]/K)(300 K) o 461x10 rads
I, V2mR?  \ 2(15.995 u)(L.6605x10% kg/u)(0.0605x10~° m)

Chapter 1 Page 8



Chapter 2

1. Your air speed in still air is (750 km)/(3.14 h) = 238.8 km/h. With the nose of the plane
pointed 22° west of north, you would be traveling at this speed in that direction if there
were no wind. With the wind blowing, you are actually traveling due north at an
effective speed of (750 km)/(4.32 h) = 173.6 km/h. The wind must therefore have a
north-south component of (238.8 km/h)(cos 22°) — 173.6 km/h = 47.8 km/h (toward the
south) and an east-west component of (238.8 km/h)(sin 22°) = 89.5 km/h (toward the
east). The wind speed is thus

v =4/(47.8 km/h)? + (89.5 km/h)? =101 km/h

in a direction that makes an angle of

6 =tan™ 89.5km/h _ 62° east of south
47.8 km/h
2. (@ il =179s
0.53 m/s
(b) %M 545
1.24 m/s + 0.53 m/s
(©) 95m =49s
2.48 m/s—0.53 m/s
2L 1 1
3. At=t +t -2t =— -
up down across c {1—U2 /C2 m}
Assuming u<c,
2 2
12 > ;1+u—2 and ! :1+1u2
1-u“/c c 1—u?/c? 2¢C

3 8 3 -15
U :\/c At _ (3%10° m/s)*(2x10 s) _7%10* mfs
L 11m
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4. (a) u =100 km/h=28m/s «<c

2 2
1-u?/c? ;1_1%:1_1%
2¢ 2 (3x10° m/s)

L=Lyv1-u?/c? = L,(1-4.3x107")

L, — L =(4.3x10")L, = (4.3x107)(4x10° m) =1.7x10° m

=1-4.3x107"

This is less than the wavelength of light.

At At = Aty (1+4.3x107°)

(b) Vi—u?/c? 1-43x10"°

At — Aty = (4.3x107°)At, = (4.3x107°)(40 h)(3600 s/h) =6.2x107*° s
5. With L=1L,, the length contraction formula gives L, = L,v1-u?/c?, so

u=+~/3/4c=2.6x10% m/s

6. The astronaut must travel 600 light-years at a speed close to the speed of light and must
age only 12 years. To an Earth-bound observer, the trip takes about At = 600 years, but
this is a dilated time interval; in the astronaut’s frame of reference, the elapsed time is the

_ 22
proper time interval Aty of 12 years. Thus, with At=At,/ m

2 2
600 years:lzyﬂ or 1_u_:( 12 j

V1-u?/c? ¢ 600
U =+/1—(12/600) c = 0.9998¢
;@ at At, 120005 _ 0

C-utie? (f1-(0.950)2
(b)  d=VAt=0.950(3.00x10° m/s)(384x107° s) =109 m

(€  d, =VAt, =0.950(3.00x10° m/s)(120.0x10° s) =34.2m
0 0
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8. Inthe laboratory reference frame, the lifetime is

at=4 1.15 mm ~0.386x10 " s

~ U 0.993(3.00x10° m/s)

At, = Atv1—u?/ c? = (0.386x10 7™ 5)/1— (0.993)? =4.56x10 s

9. From Equation 2.15, At, = L/(v—u), and from Equation 2.16, At, =L/(c+u).

At=At +At, = L L Aty

V-u c+u _«/1—u2/c2

With Aty =L,/v'+L,/cand L =L,v1-u?/c?, this becomes

1 1 1 (1 l)
+ - Pl VAN
v—-u c+u 1-u“/c\Vv' ¢

Solving for v, we obtain

_V'+u
1+v'u/c?

10. Let ship A represent observer O, and let observer O’ be on Earth. Then v’ =0.831c and u
=-0.743c, and so

vV +u 0.831c+0.743c

Ve———= =0.973c
1+viu/c® 1+(0.831)(0.743)

If now ship B represents observer O, then v’ =—-0.743c and u = -0.831c.

v +u —0.743c-0.831c

V= = =-0.973¢
1+vu/c®  1+(-0.743)(-0.831)

11. Let O’ be the observer on the space station, and let O be the observer on ship B. Then v’
=0.811c and u = —0.665c.

V' +u 0.811c—0.665c

V= = =0.317c
1+viu/c® 1+ (0.811)(~0.665)
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12. (@) With f'= f\/(l—u/c)/(1+u/c) and A =c/ f, we obtain

z':z/““/c or  366nm =122 nm, [LFU/C
1-u/c 1-ul/c

Solving, we get u/c = 0.800 or u = 2.40 x 10® m/s.

(b) 2= 4 224 _ 199 o L9890 _ 467 hm
1+ul/c 1+0.800

13. With f'= f\/(l—u/c)/(1+u/c) and A=c/ f, we obtain

,2 2 2
1—u/c= f =(ij _ (650 nm _1397
l1+ul/c f A 550 nm

Solving, u/c = 0.166 or u = 5. 0 x 10" m/s.

14. According to O, the rest length L, of the hypotenuse is shortened to

L=L,V1-u?/c? = L,\1-(0.92)° =0.392L,

The height of the triangle, which is 0.5L, is not affected by the length contraction. The
base angles of the triangle are then

f=tan' 0L, = tan"(2.55) = 68.6°
1x0.392L,

The apex angle is then 180° — 2(68.6°) = 42.8°.

15. Inthe direction of motion, the radius of the gold nucleus is reduced to
(7.0 fm)+/1— (0.99995)? = 0.070 fm

At this speed the formerly spherical gold nucleus looks like a pancake whose thickness is
only 1% that of the original sphere and thus whose density has been increased by a factor
of 100. The collision of two such compressed, high-energy nuclei is thought to create for
a fraction of a second the conditions of density and temperature that occurred in the very
early universe.
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16.

17.

18.

19.

2
dx’ — dx —udt and dt,:dt—udx/c

J1-u?/c? J1-u?/c?

, _dx' dx-udt dx/dt-u v, -u

“Tdr dt—udx/c® 1-u(dx/d)/c? 1-uv, /c?

With dz’' =dz, we obtain

, dz’ dz _(dz/dt)N1-u?/c®  v,N1-u®/c?

_W:(dt—udx/cz)/\/l—uzlcz 1-uv,/c* - L-uv, /¢

For the light beam, observer O measures vy = 0, vy = c. Observer O' measures

_ v, V1-u®/c?
;:—VX u >=0-u=-u and Vv, =—2————=cvl-u?/c?
1-uv, /c 1-uv,/c

According to O’, the speed of the light beam is

Vv = \/(v;)z +(V})? = \/uz +c’(1-u*/c?) =c

O measures times t, and t, for the beginning and end of the interval, while O" measures
t; and t,. Using Equation 2.23d,

2 2
,_ t—-ux/c and t,:t2 ux/c

J1-u?/c? ’ J1-u?/c?

The same coordinate x appears in both expressions, because the bulb is at rest according
to O (so At is the proper time interval). Subtracting these two equations, we obtain

t,—t, At

—2 1 o A= ——
J1-u?/c? J1-u?/c?

Suppose observer O is moving with the K meson; to this observer, the K meson appears
to be at rest, and so O measures v, = +0.815c and v, = —0.815c for the two 7 mesons.

Observer O “is moving relative to O with a velocity u = —0.453c; in the reference frame
of O observer O and the K meson are moving in the positive x direction with a velocity
of 0.453c. We can use the Lorentz velocity transformation (Equation 2.28a) to find the
velocities of the two 7 mesons according to O*

£t =
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20.

21.

22,

V- v, —u - +0.815¢c — (—0.453c) _ 10.926¢
1-vu/c® 1-(0.815)(—0.453)

v = v, —Uu - —0.815¢c —(—0.453c) _ _0.575¢
1-v,u/c® 1-(-0.815)(—0.453)

Imagine the rod to be the hypotenuse of a right triangle having sides L, along the x axis
and L, in the y direction. According to O the length L, is shortened by the length
contraction, but the length L, is unaffected because it is perpendicular to the direction of

motion. For O, L, =L, tan34°, while for O, L) =L} tan52°where L} = L J1-u®/c*.
Because L, =L, , we have

L, tan34° =L/ tan52° = L \/1-u?/c* tan52°

or

u= c\/l— (tan 34°)? / (tan 52°)* =0.850c

(@) Changing the coordinates in Equation 2.23d to intervals, we have

_ At—uAx/c® 0.528 us—(0.685)(49.5m)/ (300 m/us)

At’ +0.570 us
NJ1-u?/c? 1—-(0.685)°
(b) Changing coordinates to intervals in Equation 2.23a,
A = AX—UAt _ 49.5 m—(0.685x300 m/us)(0.528 u5) __gi0m

J1-u?/c? J1-(0.685)?

The negative sign of Ax" indicates that O’ finds the two events in inverted locations
compared with O; for example, if O finds that event 1 occurs at a smaller x coordinate
than event 2, then O’ finds that event 1 occurs at a larger x’ coordinate than event 2. That
is, O sees event 1 to the left of event 2, while O’ sees event 1 to the right of event 2. Note
than both observers find the time interval to be positive — event 2 occurs after event 1 to
both observers.

From Equation 2.23d written in terms of intervals, for O’ to find At’ = 0, it must be true
that At—(u/c?)Ax=0. Thus
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23.

24,

25.

2 f—
U C°At _ c (300 m/us)(0.138 s —0.124 ws) _10.32¢
AX (23.6 m-10.4 m)

(@) In your frame of reference on the plane, the distance between Los Angeles and Boston

is contracted to (3000 mi)\/l—[(GOO mi/h)/(1000 mi/h)]* = 2400 mi, and you measure the

time for the trip to be (2400 mi)/(600 mi/h) =4 h. So your watch reads 2:00 pm.
(b) According to an observer on the ground, the trip takes (3000 mi)/(600 mi/h) =5 h. So
the airport clock reads 3:00 pm.
(c) The return trip again takes 4 h as measured in your frame of reference and 5 h from
the frame of reference of the ground. When you depart Boston, the airport clock reads
10:00 am but your watch reads 9:00 am, so when you land in Los Angeles, your watch
reads 1:00 pm and the airport clock reads 3:00 pm.

This analysis duplicates the result of the twin paradox: If your twin wearing an
identical watch had remained at the Los Angeles airport, all observers would agree that
you were 2 hours younger than your twin.

(@) On the outward journey at 0.60c, the rate at which signals are received is

/1—u/c /1—0.60
f'=f =(1/year =0.5/year
1+ul/c 1/ year) 1+0.60 y

(b) During the return journey,

l+u/c _ (1 year) 1+0.60
1-ul/c 1-0.60

f'="1 =2/ year

(c) According to Casper, Amelia’s outward journey lasts 16 years (it is 16 years before
he sees her arrive at the planet), during which he receives 8 signals (0.5/year x 16 years).
Her total journey lasts 20 Earth years, so the return journey lasts 4 Earth years, during
which he receives 8 signals (2/year x 4 years). Thus Casper receives 16 signals (8 during
the outward trip and 8 during the return) and concludes that his sister has aged 16 years.

According to Amelia, the distance to the star is shortened to

L=L,v1-v?/c? =(8.0 l-y)y1- (0.80)° =4.8 |-y

and at a speed of 0.80c Amelia’s travel time to the star is (4.8 I-y)/(0.80c) = 6.0y. The
total round-trip time in Amelia’s frame of reference is 12 years, so she is 8 years younger
than her brother when she returns.
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26.

217.

20
15 |
Time
(years)
10
s -} \
Casper’s Amelia’s worldline
worldline
| |
0 5 10

Distance (light-years)

(b) 16 years
(c) 4 years

() To an Earth-bound observer Alice’s round trip takes 20 years each way (20 years x
0.6¢ = 12 light-years) for a total time of 40 years. Bob’s travel time is 15 years each way
(15 years x 0.8c = 12 light-years) for a total travel time of 30 years. With Bob’s 10-year
delay in departing, the two arrive on Earth simultaneously.

(b) To Alice, the distance to the star is contracted to

L=L,v1-Vv®/c? =12 light-years\/1- (0.6)* =9.6 light-years

So in Alice’s frame of reference the trip takes a time of (9.6 light years)/0.6¢ = 16 years
each way. To Bob, the distance to the star is

L =L,v1-Vv*/c® =12 light-years\/1—(0.8)* =7.2 light-years
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and in Bob’s frame the travel time is (7.2 light-years)/0.8c = 9 years each way. Relative
to Alice’s original departure time, Alice has aged 32 years while Bob has aged 10 + 18 =
28 years. So Bob is younger by 4 years.

28. (@) Suppose Agnes travels at speed v. Then in her reference frame the distance to the star
is shortened to L = L,v/1-v?/c?, so the time for her one-way trip is L/v and thus

16 light-yearsy/1-v* / ¢? c? 10
=10y  or >
v

o 1=="
v

Solving, we find v = 0.848c.
(b) According to Bert, Agnes traveled on a journey of 32 light-years at a speed of 0.848c
which corresponds to a time of (32 light-years)/0.848c = 37.7 years.

29. (9
K/'=K, +K} = _me mc? + ————-
1-v?/c? 1-vy/c?

2 2
_ %_ @m)c? +——° _me? =0.512mc?
1-0

J1-(0.750)?
K/ =K/ +K}, = ————=-mc’ + ——-—=-mc

ml(;2 2 m,c? 2
IRV 1-vy Ic?
2 2
(2m)c —(2m)c? ¢ me?=0512mc?

) J1-(~0.585)? J1-(0.294)?

(b)
Ki = Kli + K2i

_ mc*
J1-V2/c? 1/1 v2|/c

(2m)c (2m) ¢+ —mc? =0.458mc?

WW

Ki =Ky + Ky =

—mc +

J1- vlf/c «/1 vzf/c

(2m)c —(2m)c? + ———=——mc’ = 0.458mc?

i (-0.051)° J1- (o 727)?

my 1 (mc? )(v/c) 1(938.3 MeV)(0.835)

p:
Aviic civiic ¢© J1-(0.835)?

30. =1424 MeV/c
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mc? , 9383 MeV

-MNC* = —
J1-v? /¢ J1-(0.835)2

E =K +mc? =767 MeV +938.3 MeV =1705 MeV

K= —-938.3 MeV =767 MeV

31. E=K+mc®=0.923 MeV +0.511 MeV =1.434 MeV

Solving Equation 2.36 for v, we obtain

2\2 2
v=cfi-| M| —¢ fi-| 22MEV g oaac
E 1.434 MeV

32. W=dex=jz—‘t’dx=jdp%=jvdp

v v mv? vooomv
K=|vdp=pv—| pdv=————s—-| ————=10v
-[0 IO Il_VZ/CZ J‘O [l_VZ/CZ
2 2
=—Tm\:/2 = +mc?y/1-v?/c* —mc? :——1_”]\; = —mc?

33. For what range of velocities is K —<mv* <0.01K ? At the upper limit of this range,
where K —imv? =0.01K , we have

2
0.99K = 0.99(L— mczl = 1my?

V1-v?/c?

X
1-x 0.99

2
With x=v?/c?, 0.99( L —1j:%x which gives 11 :(1+ 05 J
1=(1-x)(1+1.0101x +0.2551x") or 0.2551x +0.7550x —0.0101=0

Solving using the quadratic formula, we find x = 0.0133 or -2.97. Only the positive
solution is physically meaningful, so

v =4/0.0133¢c=0.115¢

That is, for speeds smaller than 0.115c, the classical kinetic energy is accurate to within 1%.
For a different approach to that same type of calculation, see Problem 36.

34. Asin Problem 33, let us now find the lower limit on the momentum such that
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35.

36.

37.

(pc)® +(mc?)® — pc < 0.01y/(pc)? + (mc?)?
From the lower limit, we obtain 0.99./(pc)? +(mc?)? = pc, which can be written as
m?c*

(pc)® =—1/(O 997 1 or pc =7.02mc?

With mvc/+/1-v?/c® =7.02mc?, we obtain

2 2
V_2:49_25[1—V—2j or v/c=0.990
C c

Whenever v/c >0.990, the expression E = pc will be accurate to within 1%.

mc?)? 1-v?/c?+v?/c? m?c®v?
& :1(_\/2 /)c2 :(mcz)z( 1-V2/c? j: (M)~ g = (me) + (pey
E =+/(mc?)* + (pc)?
With (1+x)" =1+ nx+n(n—1)x*/2! we have
2 [ . 2\?
;:14_&\/_2_'_% V_2 +
1-v?/c? 2¢ 2 c

and so

2 4 2
K =mc? [%—qz mc2[1+%v—2+gv—4+m—1]=%mv2(1+%\/—2+---j
Vi-v/c c c c

The correction term is 3v?/4c?, which has the value 0.1% when 3v?/4c¢? =0.001, or

=,/0.001(4/3) ¢ =0.0365c

(a) With E = 1351 MeV and pc = 1256 MeV, Equation 2.39 gives

1 «/EZ —(pc)? \/(1351 MeV)? — (1256 MeV)? = 498 MeV/c®
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()  E=4/(pc)®+(mc?)? =/(857 MeV)? + (498 MeV)? =991 MeV

38.
K, —K; = (E;, —mc*)—(E, —mc?*) = E, - E,
2 2
___mc ___mc _ 0.511MeV  0.511MeV — 0.262 MeV
JI-VZIc? J1-vZ/c?  (1-(0.91)° +/1-(0.85)
39. AE =mcAT =(19)(0.40 J/g-K)(100 K) =40

=— - 44x10%k
c?  9x10'™ m?/s? ) g

40. (a) Atsuch low speed, the classical approximation is valid.

2

v
K =imv? =imc’ (—2
c

j =1(0.511MeV)(1.00x10*)* = 2.56x10"° eV

(b) The relativistic expression gives

1

J1-(0.02)?

For this speed, the classical expression < mv? also gives 25.6 eV, so the two calculations

agree to at least three significant figures. (Actually they agree to four significant figures,
but not to five.)

K =mc? (;—q =0.511 MeV[

J1-v?/c?

1} =256¢eV

(c) The relativistic expression gives

K =mc? [;—q =0.511 MGV[;—lJ =24.7 keV

V1-v?/c? \1-(0.3)?
For this speed, the classical expression gives 23.0 keV, which is incorrect by about 7%.

1
1-(0.999

1
d) K=mc?| ——-1
@ i (Vl—vzlc2 j

=0.511 Mev( ——1(=10.9 MeV
)
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41. Because the electrons and the protons have charges of the same magnitude e, after
acceleration through a potential difference of magnitude AV = 12.0 million volts (a
positive difference for the electron, a negative difference for the proton), each loses
potential energy of AU =—-eAV =-12.0 MeV and thus each acquires a kinetic energy of
K = +12.0 MeV. For the electron, E = K + mc? = 12.0 MeV + 0.511 MeV = 12.5 MeV.
The momentum is then

p :L/EZ —(mc?)? =3\/(12.5 MeV)? —(0.511 MeV)? =12.5 MeV/c
C C

The classical formula K = p®/2m gives

p =~/2mK =4/2(0.511 MeV/c?)(12.0 MeV) =3.50 MeV/c

which is far from the correct result (a discrepancy we would expect for such highly
relativistic electrons). For the protons, E = K + mc? = 12.0 MeV + 938.3 MeV= 950.3 MeV,
and the momentum is

D =%\/ E? —(mc?)? = %J(950.3 MeV)? —(938.3 MeV)? =150.5 MeV/c

The classical formula gives

p =~/2mK =/2(938.3 MeV/c?)(12.0 MeV) =150.1 MeV/c

The difference between the classical and relativistic formulas appears only in the fourth
significant figure.

42. The mass of a uranium atom is about (235 u)(1.66 x 107" kg/u) = 3.90 x 10~%* kg, so
1.50 kg contains 1.50 kg/3.90 x 107% kg = 3.84 x 10** atoms. The total energy released
IS

AE = (210 MeV/atom)(3.84 x10* atoms) = 8.06x10%° MeV

and the change in mass is

_AE (8.06x10% MeV)(1.602x10" J/MeV)

Am
c? (2.998x10° MeV)?

~1.44x107 kg

About one gram of matter vanishes for each kilogram that fissions!

43. (a) The change in mass is
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44,

45.

46.

Am=mCH)+m(n)—m(CH)
=2.014102 u +1.008665 u — 3.016049 u =0.006718 u
The corresponding energy change is AE = Amc? = (931.5 MeV/u)(0.006718 u) = 6.26 MeV .

(b)
Am =m(He) + m(n) — m(* He)
=3.016029 u +1.008665 u —4.002603 u = 0.022352 u
AE = Amc? = (931.5 MeV/u)(0.022352 u) = 20.8 MeV
(a)
m c? 139.6 MeV
E=E,+E, =———+m ¢’ =————+938.3MeV =1296.7 MeV
1=V T (1-(0.921)
(b)
mv  1mc’(vic) 1(139.6 MeV)(0.921)
p=p,+p, =—F—=F=—-"7~ == =330.0 MeV/c
PoV1-vie? c1-vie? € (1-(0.921)
(©)

mc? = JE? —(pc)? =4/(1296.7 MeV)? — (330.0 MeV)? =1254 MeV

Before the collision, the total relativistic energy of each electron is

m,c’ 0.511 MeV

E, = =
J1-vZ /2 \[1-(0.99999)’

=114.3 MeV

The total energy in the collision is therefore 2x114.3 MeV = 228.6 MeV. The total
momentum is zero before the collision, because the two particles moves with equal and
opposite velocities and have equal masses. After the collision, the total momentum is
still zero, so we know that the two muons must move with equal speeds and thus have
equal energies. The total energy of each muon is then 114.3 MeV and its Kinetic energy
is

K,=E, - mﬂc2 =114.3 MeV -105.7 MeV =8.6 MeV

The two protons have equal (and opposite) momenta and thus equal energies E, and E,,.

The new particle is created with zero momentum (at rest), so its total energy is equal to
its rest energy Mc? = 9460 MeV. Conservation of energy then gives

E,+E,=Mc* soE, =E, =Mc?/2.
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47.

48.

m,c? _ Mc?
J1-V2/c? 2

E, =

2
- - =0.0394 o) v =0.980c
c Mc 9460 MeV

For particle 1, moving in the positive x direction,

E, = K, +mc® = 282 MeV +140 MeV = 422 MeV
op, = EZ —(Mc?)? = /(422 MeV)? — (140 MeV)? = +398 MeV

For particle 2, moving in the negative x direction,

E, = K, +mc? = 25 MeV +140 MeV =165 MeV
cp, = —/EZ —(Mmc?)? = /(165 MeV)? — (140 MeV)? = —87 MeV

The net final momentum is p, = p, + p, =398 MeV/c-87 MeV/c =311 MeV/c, and the
net final energy is E,; = E, + E, =422 MeV +165 MeV =587 MeV . Because of the

conservation laws, these must be equal to the momentum and the energy of the initial
particle, so that its rest energy is then

mc? = EZ - (cp,)? = /(587 MeV)? — (311 MeV)? = 498 MeV

Solving Equation 2.36 for v, we obtain
mc? ) 498 MeV )’
v=c,|1- =C,[1-| ——— | =0.529¢c
E 587 MeV

(@) In this frame of reference, the total momentum is zero before and after the collision,
and at threshold the four product particles are formed at rest. So the total final energy is
4mc?, and since this must be equal to the total initial energy each initial colliding proton
must have an energy of 2mc?.

(b) With E =mc® /v1-v®/c? , we have for each of the initial protons

2
2mc? =% or V1-v?/c? =
1-v°/c

N |-

so v =0.866¢.
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(c) With the transformation speed u = 0.866¢, we have

yo_Vv-u -0.866¢ —0.866¢ _ 0.9897C

“1-wu/c? 1-(-0.866)(0.866)

The proton energy in this frame is then

mc? mc? )

E'= = =7mc
V1-v?/c? |[1-(0.9897)

oo (mc?)(v/c)

49.
N1-v?/c?

v _ | (pc/mc*)® | (3094 MeV/105.7 MeV)? —0.99042

¢ \1+(pc/mc?)?  \1+(3094 MeV/105.7 MeV)?

at=—Bb 219845 g a5

V1=V e ([1-(0.99942)°
50. (pc)? = E* —(mc?)? = (K + mc?)* —(mc?)? = K? + 2Kmc?
2 2
p2:2Km+K—2 SO p—:m+£2
c 2K 2¢C

51. (@) If the astronaut travels at speed v for a distance d = 200 ly in the reference frame of

Earth, then in the spacecraft reference frame the distance to the star is d+/1—v*/c? and
the time T for the astronaut to reach the star (which must be 10 years in the spacecraft
frame of reference) is

12 7a2
M:T or *ll—VZ/CZ :VI:XE

v d cd

Solving, we find

vV=c : > =C L > =0.99875¢c
1+(Tc/d) 1+(10/200)

(b) According to an observer on Earth, the astronaut travels a total distance of 400 ly at a
speed of 0.99875c, so the total time for the round trip is (400 ly)/0.99875c = 400.5 y.
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2 2
5. t1,:tl—(u/c )X and t,:tz—(u/c)xz

J1-u?/c? ? J1-u?/c?

t' _tf _ t2 _tl _ (U/CZ)(XZ _Xl)
2 1

J1-u?/c? J1-u?/c?

In the O frame of reference, the “cause” can travel to the “effect” with a speed that can be
no greater than c; that is, (x, —x,)/(t,—t)) <c, or (x,—x) <c(t, -t)).
Substituting for (x, —x,) in the second term, we obtain

-t (u/o)(t,-t) 1-ul/c 50

t)—t/ > =(t,~t)————>
i Ji-u?/c? 1-u?/c? N TS
53. Forthered flash, x, =0att, =0,s0 x, =0and t; =0. For the blue flash, which occurs at

X, =3.65kmandt, =8.24 us,

X! = X, —ut, 3.65 km—(0.534c¢)(8.24 us) _ _0.89 km

Ji-u?/c? 1-(0.534)’

t,—(u/c?)x, 8.24 us—(0.534/0.300 km/us)(3.65 km) 2.06 s

J1-u?/c? 1-(0.534)’

G

54. Let O’ be the observer on ship A, traveling at u = 0.65c relative to the space station.
Observer O on the space station measures v, =0, Vg, = 0.50c for ship B. According to
o,
, Vg, —U 0-0.65c
VBX = 7 =
1-vgul/c 1-0

y :vByx/l—uzlcz _ 0.50C/1— (0.65)? _ 0.38¢
¥ 1-vyulc? 1-0

=-0.65c

Vi = /(Vh,)? + (v4,)? =+/(~0.65¢)? +(0.38¢)* =0.75¢

For ship C, O measures v, =—0.50c, Vey = 0.
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55.

56.

57.

g _ ~080c-085 _ o
1-(~0.50)(0.65)

0

y -_—
ve =0.87c at 6, =180° (negative x direction)

For ship D, O measures v, = (-0.50c)sin 45° =-0.35¢, v,,, = +0.35¢C .

_ 2
, —0.35c—0.65c 0.8lc. V' _ 0.35¢4/1-(0.65) _0.9%¢

o T C035)065) o ™ T 1-(“0.35)(0.65)

v, =4/(-0.81c)’ +(0.22¢)> =0.84c at @, =tan™ 0.22¢ _,pco
~0.81c
2

@) t'= t—(u/c®)x _152 us—(0.563/300 m/us)(524m) _ o c\o s

N 1-(0.563)°
() x = XZUt 524 m—(0563x300 M/us)(152 ) _ a5

J1-u?/c? 1-(0.563)?
(@) O" measures V' = (v—u)/(1-uv/c?),and according to O" the energy is

mc” mc?

E

N Y
and the momentum is

, mv’ m(v—u)/(1-uv/c?)

p - 12 2 - 2
Vi-viret i [w-uyia-wie) ] e
m?c* —mz[(v—u)/(l—uv/cz)}2 ~
1-[(v-ua-wic)] 1

m?c*

) £~ (pc)’ =

The quantity E'> —(p'c)? is equal to m?c* in every frame of reference, no matter what its

relative speed u. In other words, every observer measures the same value for the rest
energy or mass.

(a) O’ measures v, =—u, Vv, =vy1-u*/c’.
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V= \/(v;)z +(v))? =Ju? + v —utv? /¢

2 2

gr___me _ mc
J1-v?/c?  J1-u?/c? —v2/c? +udv?/c
,oomv muR v A e
V1-v2/c?  J1-u?/ct—vi/c? +udv?/ct
N 1 A ok (TR BV T VA Ko IR
(b) E“—(p'c)" = =m°c
1-u?/c?=v?/c?+udv?/ct
58.
_ 40
Time
(years)
- 30

/ Amelia’s return

/ worldline
-+ 20

20

Bernice’s
worldline
— 10
Casper’s Amelia’s outbound
worldline ‘/worldline
|
| |
20 .10 0
Distance

(light-years)

(b) 40 years

(c) During Amelia’s outbound journey, her worldline and Bernice’s overlap. This part of
her journey takes 8 years, as measured in the clocks in Bernice’s frame of reference.

(d) Let O = Casper and O’ = Bernice. Then u = 0.60c and v, = -0.60c.
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59.

60.

61.

o VU ~0.60c-0.60C __ aor
1-vu/c® 1-(-0.60)(0.60)

(e) On his 4" birthday.

(f) On his 16" birthday.

(a) Before the first acceleration, E = E = mc®. After the acceleration, the energy is

mc? 0.511 MeV

J1-vi /2 \[1-(0.99)?

El
The change in energy is AE =E, —E, =3.6 MeV —0.5 MeV =3.1MeV, so the first stage
adds 3.1 MeV to the energy of the electron.

_ me®  0511MeV
v (1-(0.999)

() E =11.4 MeV

The change in energy is AE =E, —E, =11.4 MeV -3.6 MeV =7.8 MeV, so the second

stage adds about 2.5 times as much energy as the first stage, even though the second stage
increases the velocity by only 0.9%.

2
Ko MC ez = OSLMEV (511 MeV = 0.367 MeV per particle

J1-vi/¢? ~ J1-(0.813)?
E,..., = (0.367 MeV/particle)(2.14x10" particles/s)(3600 s) = 2.82x10" MeV =45.2 ]

Copper has a density of p = 8.92 g/cm® and a specific heat capacity of cp = 0.385 J/g-K.
The mass M of the copper isM = pV = (8.92 g/cm*)(2.54 cm)® =146 g. Assuming all of
the Kinetic energy carried by the particles in the beam acts to produce a change in
temperature of the copper ( E,,,,, = Mc,AT ), the temperature increase is

beam

AT = Erean _ 45.2 =0.80K=0.80C°

Mc, (146 9)(0.385J/g-K)

p

@ _my, _ (0.511MeV/c?)(0.960c)

b= NS J1-(0.960)2

=1.752 MeV/c
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62.

mv,, (0.511 MeV /c?)(0.956¢)
Pir = 2 12 2
J1I-V2 /¢ J1-(0.956)

=1.665 MeV/c

P,; = Py COSE, + P, COSH, = (1.665 MeV/c)(cos9.7°) + p,; cosd, =1.642 MeV/c + p,, coS 6,
Py = Py SING, + Py SiN G, = (1.665 MeV/c)(sin9.7°) + p,, sin g, = 0.281 MeV/c + p, sin 6,

Conservation of momentum gives p . = p, and Py = 0. Thus

p,; C0s 6, =1.752 MeV/c -1.642 MeV/c =0.110 MeV/c
P, Sin, =0-0.281 MeV/c =-0.281 MeV/c

Dividing the second result by the first gives

tang, = O28IMEVIC o5 o 9, ——686°
0.110 MeV/c

With p,, =(0.110 MeV/c) /[cos(—68.6°)] = 0.302 MeV/c, we have
MV,

J1-Vi /c?

p,, =0.302 MeV/c =

and solving, we find v, = 0.508c.

2
(b) go—_mc _ OSUMEV _, a36mMev
JLI-V2/c?  J1-(0.960)*
2
£ mc 0.511 MeV _1.743 MeV

iz - (0.956)

Conservation of energy givesE, =E + E
MeV and

o S0 E, = 2.366 MeV — 1.743 MeV = 0.593

mc’>  0.511MeV

E, =0.593 MeV = _
\/1—v22f /c? \/1—v22f /c?

and solving we find v, = 0.508c, in agreement with part (a).

The initial energy is

. mc®  135MeV
"1V iE \1-(0.98)

E =678 MeV
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