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Chapter 2 

1. For a particle Newton’s second law says 
2 2 2

2 2 2
ˆˆ ˆd x d y d z

F ma m i j k
dt dt dt

 
    

 
.   

Take the second derivative of each of the expressions in Equation (2.1): 
2 2 2 2 2 2

2 2 2 2 2 2

d x d x d d y d d z

dt dt dt dt dt

z

t

y

d


  

 
.  Substitution into the previous equation gives 

2 2 2

2 2 2
ˆˆ ˆ .

d x d d
F ma m i j k

y z
F

dt dt dt

 
    




 


 

2. From Equation (2.1) ˆˆ ˆdx dy dz
p m i j k

dt dt dt

 
   

 
.   

In a Galilean transformation 
dx dx dy dy dz dz

v
dt dt dt dt dt dt

  
    .   

Substitution into Equation (2.1) gives ˆˆ ˆdx dy dz
p m v i j k p

dt dt dt

   
     

 
.   

However, because ˆˆ ˆdx dy dz
p m i j k

dt dt dt

   
    

 
 the same form is clearly retained, given 

the velocity transformation
dx dx

v
dt dt


  . 

3. Using the vector triangle shown, the speed of light coming toward the mirror is 
2 2  c v  

and the same on the return trip.  Therefore the total time is 2
2

2 2

2distance

speed
t

c v
 


.  

Notice that sin
v

c
  , so 1sin

v

c
   
  

 
.  
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4. As in Problem 3, 
1 2sin /v v  , so 1 1

1 2

0.350 m/s

1.25
sin ( / ) sin 1

m/
.

s
6 3v v    

    
 

 and 

2 2 2 2

2 1 (1.25 /s) (0.35m  m/s) 1.20 m/sv v v     . 

 

5. When the apparatus is rotated by 90°, the situation is equivalent, except that we have 

effectively interchanged 
1
 and 

2
. Interchanging 

1
 and 

2
 in Equation (2.3) leads to 

Equation (2.4). 

6. Let n = the number of fringes shifted; then 
d

n



 .  Because  d c t t    , we have 

   2

1 2

2

c t t v
n

c 

  
  .  Solving for v and noting that 

1
 + 2  = 22 m, 

 
  9

8

1 2

0.005 589 10  m
3.00 10  m/s 3.47 km/s.

22 m

n
v c




   


 

7. Letting 2

1 1 1   (where /v c  ) the text equation (not currently numbered) for 

1t  becomes  

 

2

1 1
1

2

2 1 2

1 1
t

c c



 


 

 
 

which is identical to 2t when 1 2  so 0t  as required. 

8. Since the Lorentz transformations depend on c (and the fact that c is the same constant 

for all inertial frames), different values of c would necessarily lead two observers to 

different conclusions about the order or positions of two spacetime events, in violation of 

postulate 1. 

 

9. Let an observer in K send a light signal along the + x-axis with speed c.  According to the 

Galilean transformations, an observer in K  measures the speed of the signal to be 

dx dx
v c v

dt dt


    .  Therefore the speed of light cannot be constant under the Galilean 

transformations. 

10. From the Principle of Relativity, we know the correct transformation must be of the form 

(assuming y y and z z ): 

;x ax bt x ax bt      .   

The spherical wave front equations (2.9a) and (2.9b) give us: 

 ;( ) ( )ct ac b t ct ac b t     . 

Solve the second wave front equation for t and substitute into the first: 
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( )( )ac b ac b t
ct

c

  
  
 

 or 2 2 2 2( )( ) .c ac b ac b a c b      

Now v is the speed of the origin of the x -axis.  We can find that speed by setting 0x 

which gives 0 ax bt  , or / /v x t b a  , or equivalently b = av.  Substituting this into 

the equation above for 2c  yields  2 2 2 2 2 2 2 2c a c a v a c v    .  Solving for a: 

2 2
1

1
.

/v

a
c




     

This expression, along with b = av, can be substituted into the original expressions for x 

and x to obtain: 

   ;x x vt x x vt        

which in turn can be solved for t and t  to complete the transformation. 

11. When v c we find 21 1  , so: 

 
21

x ct
x x ct x vt







     


; 

2

/
/

1

t x c
t t x c t







    


; 

21

x ct
x x ct x vt






 
       


; 

2

/
/

1

t x c
t t x c t






 
     


. 

12. (a) First we convert to SI units: 95 km/h = 26.39 m/s, so 

 8 8/ (26.39 m/s) / 3.00 10  m/s 8.8 10v c       

(b)  8 7/ (240m/s) / 3.00 10  m/s 8.0 10v c       

(c)  sound2.3 2.3 330 m/sv v    so 

   8 6/ 2.3 330 m/s / 3.00 10  m/s 2.5 10v c        

(d) Converting to SI units, 27,000 km/h = 7500 m/s, so 

 8 5/ (7500 m/s) / 3.00 10 m/s 2.5 10v c       

(e) (25 cm)/(2 ns) = 81.25 10 m/s so  8 8/ (1.25 10 m/s) / 3.00 10  m/s 0.42v c       

(f)    14 22 81 10 m / 0.35 10 s 2.857 10 m/s      , so 

 8 8/ (2.857 10  m/s) / 3.00 10 m/s 0.95v c       
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13. From the Lorentz transformations 2/t t v x c        .  But 0t  in this case, so 

solving for v we find 2 /v c t x   .  Inserting the values 
2 1 / 2t t t a c     and 

2 1x x x a    , we find 
 2 / 2

/ 2
c a c

v c
a


   .  We conclude that the frame K travels 

at a speed c/2 in the x -direction.  Note that there is no motion in the transverse 

direction. 

14. Try setting  0x x v t      . Thus 0 / 2x v t a va c      . Solving for v we find 

2v c  , which is impossible. There is no such frame K . 

15. For the smaller values of β we use the binomial expansion  
1/2

2 21 1 / 2  


    . 

(a)  2 151 / 2 1 3.87 10        

(b)   2 131 / 2 1 3.2 10        

(c)  2 121 / 2 1 3.1 10        

(d)   2 101 / 2 1 3.1 10        

(e)    
1/2 1/2

2 21 1 0.42 1.10 
 

        

(f)    
1/2 1/2

2 21 1 0.95 3.20 
 

      

 

16. There is no motion in the transverse direction, so 3.5y z  m. 

 
2 2

1 1
5 / 3

1 1 0.8



  

 
 

     
5

2m 0.8 0 10 / 3 m
3

x x vt c        

       2 2 95
/ 0 0.8 2 m / 8.9 10  s

3
t t vx c c c         

17. (a)  
 

2 2 22 2 2

8

8

3 m (5 m) (10 m)
3.86 10  s

3.00 10  m/s

x y z
t

c


  

   


 

(b) With 0.8  we find 5 / 3  . Then 5y y   m, 10z z   m,

   8 -85
3m 2.40 10  m/s (3.86 10  s) 10.4 m

3
x x vt          

 
 

        
2

2 8 8 85
/ 3.86 10  s 2.40 10  m/s 3 m / 3.00 10  m/s 51.0 ns

3
t t vx c          

  
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(c) 
     

2 2 2
2 2 2

8

9

10.4 m 5 m 10 m
2.994 10  m/s

51.0 10  s

x y z

t 

     
  

 
 which equals c 

to within rounding errors. 

 

18. At the point of reflection the light has traveled a distance 
1 1L v t c t    . On the return 

trip it travels 
2 2L v t c t    . Then the total time is 1 2 2 2 2 2

2 2 /

1 /

Lc L c
t t t

c v v c
     

 
. 

But  from time dilation we know (with 
0proper time 2 /t L c   ) that 

0

2 2

2 /

1 /

L c
t t

v c
    


.  Comparing these two results for t  we get 0

2 2 2

2

2 /2 /

1 /1

L cL c

v v c

c




which reduces to 2 2 0
0 1 /

L
L L v c


   .  This is Equation (2.21). 

19.  (a) With a contraction of 1%, 2 2

0/ 0.99 1 /L L v c   . Thus 2 21 (0.99) 0.9801.     

Solving for  , we find 0.14  or 0.14 .v c  

(b) The time for the trip in the Earth-based frame is 
6

1

8

5.00 10 m
1.19 10 s

0.14 3.00 10 m/s

d
t

v


    

 
.  With the relativistic factor 1.01 

(corresponding to a 1% shortening of the ship’s length), the elapsed time on the rocket 

ship is 1% less than the Earth-based time, or a difference of 

  1 30.01 1.2 10 s = 1.2 10 s.    

20. The round-trip distance is d = 40 ly. Assume the same constant speed v c for the 

entire round trip. In the rocket’s reference frame the distance is only 21 .d d      Then 

in the rocket’s frame of reference 
2

240ly 1distance
1 .

time 40 y 40

d
v c

y




 
      

Rearranging 21
v

c
    .  Solving for  we find 0.5  , or 0.5 0.71v c c  . 

To find the elapsed time t on Earth, we know 40t   y, so 
2

1
40y 56.6 y.

1
t t


  


 

21. In the muon’s frame 0 2.2 s. μT   In the lab frame the time is longer; see Equation (2.19): 

0T T  .  In the lab the distance traveled is 0 09.5cm vT v T c T     , since v c .  
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Therefore 
 2

0

9.5 cm 1

cT





 , so 

 
 

29.5 cm 1

2

 

.2μs

v

c c





  .  Now all quantities are 

known except β. Solving for β we find 41.4 10    or 41.4 10v c  .  

 

22. Converting the speed to m/s we find 25,000 mi/h = 11,176 m/s.  From tables the distance 

is 8 m3.84 10 . In the earth’s frame of reference the time is the distance divided by 

speed, or 
83.84 10  m

34,359 s
11,176 m/s

d
t

v


   .  In the astronauts’ frame the time elapsed is

2/ 1t t t     .  The time difference is 2 21 1 1t t t t t t          
 

. 

Evaluating numerically 

2

5

8

11,176 m/s
34,359 s 1 1 2.4 10  s.

3.00 10  m/s
t 

 
 

       
  

 

 

23. 0T T  , so we know that 
2 2

1
5 / 3

1 /v c
  


. Solving for v we find 4 /5.v c  

24. 0 /L L  so clearly 2  in this case. Thus 
2 2

1
2

1 /v c



 and solving for v we find 

3
.

2

c
v   

25. The clocks’ rates differ by a factor of 2 21/ 1 /v c   .  Because   is very small we will 

use the binomial theorem approximation 21 / 2   . Then the time difference is 

 1t t t t t t        .  Using 21 / 2   and the fact that the time for the trip 

equals distance divided by speed,  

 
8

2

6
2

375 m/s

3.00 10  m/s8 10  m
/ 2

375 m/s 2
t t 



 
     

 
81.67 10  s 16.7 ns.t    

  

 

26. (a)   2 2 4 2 4 / 1 / 3.58 10 km 1 0.94 1.22 10 km L L L v c          

(b)   Earth’s frame:  
  

7

8

3.58 10  m
/ 0.127 s

0.94 3.00 10  m/s
t L v


  


 

 Golf ball’s frame: 2/ 0.127 s 1 0.94 0.0433 st t       
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27.  Spacetime invariant (see Section 2.9): 2 2 2 2 2 2c t x c t x      . We know 4x   km, 

0t  , and 5x  km. Thus 
   

 

2 22 2
2 10 2

22 8

5000 m 4000 m
1.0 10  s

3.00 10  m/s

x x
t

c


 

    


and 51.0 10t      s. 

28.  (a)  Converting v  = 120 km/h = 33.3 m/s.  Now with c = 100 m/s, we have 

/ 0.333v c    and 
2 2

1 1
1.061

1 1 0.333



  

 
.  We conclude that the moving 

person ages 6.1% slower. 

(b) / (1 m) /(1.061) 0.942 m.L L      

29. Converting v = 300 km/h = 83.3 m/s.  Now with c =100 m/s, we have  / 0.833v c    

and 
2 2

1 1
1.81.

1 1 0.833



  

 
 So the length is 0 / 40 /1.81 22.1L L   

 
m. 

30. Let subscript 1 refer to firing and subscript 2 to striking the target. Therefore we can see 

that 1 1x  m, 2 121x  m, and 1 3t  ns.  

2 1

distance 120 m
3 ns + 3 ns + 408 ns = 411 ns.

speed 0.98
t t

c
       

To find the four primed quantities we can use the Lorentz transformations with the 

known values of 1x , 2x , 1t , and 2t . Note that with 0.8v c , 2 21 / 5 / 3v c    .  

 

 

 
 

 

2

1 1 1

2

2 2 2

1 1 1

2 2 2

/ 0.56 ns

/ 147 ns

0.47 m

37.3 m

t t vx c

t t vx c

x x vt

x x vt









   

  

  

 







  

31. Start from the formula for velocity addition, Equation (2.23a):  
21 /

x
x

x

u v
u

vu c

 



. 

(a)   
2

0.62 0.84 1.46
0.96

1 (0.62 )(0.84 ) / 1.52
x

c c c
u c

c c c


  


 

(b) 
2

0.62 0.84 0.22
0.46

1 ( 0.62 )(0.84 ) / 0.48
x

c c c
u c

c c c

 
  

 
 

32. Velocity addition, Equation (2.24): 
21 /

x
x

x

u v
u

vu c


 


 with 0.8v c  and 0.8 .xu c    

2

0.8 ( 0.8 ) 1.6
0.976

1 ( 0.8 )(0.8 ) / 1.64
x

c c c
u c

c c c

 
   

 
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33. Conversion: 110 km/h = 30.556 m/s and 140 km/h = 38.889 m/s. Let 30.556xu   m/s 

and 38.889v   m/s. Our premise is that 100c  m/s. Then by velocity addition, 

 

    
22

30.556 m/s 38.889 m/s
62.1 m/s.

1 / 1 38.889 m/s 30.556 m/s / 100 m/s

x
x

x

u v
u

vu c

 
   

  
 By symmetry 

each observer sees the other one traveling at the same speed. 

  

34. From Example 2.5 we have 
1 /

1 /

c nv c
u

n v nc

 
   

.  For light traveling in opposite directions 

1 / 1 /

1 / 1 /

c nv c nv c
u

n v nc v nc

  
     

. Because /v c is very small, use the binomial expansion: 

     
11 /

1 / 1 / 1 / 1 / 1 / /
1 /

nv c
nv c v nc nv c v nc nv c v nc

v nc


        


, where we 

have dropped terms of order 2 2/ .v c  Similarly 
1 /

1 / / .
1 /

nv c
nv c v nc

v nc


  


 Thus 

       22
1 / / 1 / / 1 1/ 2 1 1/ .

c v
u nv c v nc nv c v nc n v n

n n
              Evaluating 

numerically we find 
2

1
2(5 m/s) 1 4.35 m/s.

1.33
u

 
    

 
 

35. Clearly the speed of B is just 0.60c . To find the speed of C use 0.60xu c and 

0.60v c  :   
2 2

0.60 ( 0.60 )
0.88 .

1 / 1 ( 0.60 )(0.60 ) /

x
x

x

u v c c
u c

vu c c c c

  
   

  
 

36. We can ignore the 400 km, which is small compared with the Earth-to-moon distance  
83.84 10 m. The rotation rate is 1 22  rad 100 s 2 10       rad/s. Then the speed 

across the moon’s surface is   2 8 112 10  rad/s 3.84 10  m 2.41 10  m/s.v R        

37. Classical:  54205 m
1.43 10  s

0.98
t

c

   .  Then 
 

0

1/2

ln 2
exp 14.6 

t
N N

t

 
  

 
  

or about 15 muons.   

Relativistic: 
5

61.43 10  s
/ 2.86 10  s

5
t t 




      so 

 
0

1/ 2

ln 2
exp 2710 muons.

t
N N

t

 
  

 
 Because of the exponential nature of the decay 

curve, a factor of five (shorter) in time results in many more muons surviving. 

  

38. The circumference of the fixed point’s rotational path is E2 cos(39 )R  , where ER 
 

Earth’s radius = 6378 km. Thus the circumference of the path is 31,143 km. The 
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rotational speed of that point is  31,143 km / 24 h 1298 km/h 360. m s 5 /v    . The 

observatory clock runs slow by a factor of 2 13

2

1
1 / 2 1 7.22 10

1
 



     


.  In 

41.2 h the observatory clock is slow by   13 1141.2 h 7.22 10 2.9746 10     h = 107 ns. 

In 48.6 h it is slow by   13 1148.6 h 7.22 10 3.5089 10     h = 126 ns. The Eastward-

moving clock has a ground speed of 31,143 km/41.2 h = 755.9 km/h = 210.0 m/s and thus 

has a net speed of 210.0 m/s + 360.5 m/s = 570.5 m/s. For this clock 

2 12

2

1
1 / 2 1 1.81 10

1
 



     


 and in 41.2 hours it runs slow by 

  12 1141.2 h 1.81 10 7.4572 10      h = 268 ns. The Westward-moving clock has a 

ground speed of 31,143 km/48.6 h = 640.8 km/h = 178.0 m/s and thus has a net speed of 

360.5 m/s − 178.0 m/s = 182.5 m/s. For this clock 

2 13

2

1
1 / 2 1 1.85 10

1
 



     


 and in 48.6 hours it runs slow by 

  13 1248.6 h 1.85 10 8.991 10     h = 32 ns. So our prediction is that the Eastward-

moving clock is off by 107 ns – 269 ns 162  ns, while the Westward-moving clock is 

off by 126 ns − 32 ns = 94 ns. These results are correct for special relativity but do not 

reconcile with those in the table in the text, because general relativistic effects are of the 

same order of magnitude. 

 

39. The derivations of Equations (2.31) and (2.32) in the beginning of Section 2.10 will 

suffice. Mary receives signals at a rate f   for  
1t and a rate f  for 2t . Frank receives 

signals at a rate f   for 1t  and a rate f  for 2t . 

40. 1 2

2L L L L L
T t t

v c v c v
       ;  Frank sends signals at rate f,  so Mary receives 

 2  /f T f L v  signals. 

1 2

2L
T t t

v
     ; Mary sends signals at rate f , so Frank receives 2 /fT f L v    signals. 

41. 2 2 2 2 2 2s x y z c t    ;  Using the Lorentz transformation 

   

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 22 2

( ) ( / )

1 / 1 /

s vt y z c t v c

v c y z c t v c

y

x x

x z c

x

st

 

 

        

       



 



      
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42. For a timelike interval 2 0s  so 2 2 2x c t   . We will prove by contradiction. Suppose 

that there is a frame K is which the two events were simultaneous, so that 0t  . Then 

by the spacetime invariant 22 2 2 2 2 2x c t c tx x         .  But because 2 2 2x c t   , 

this implies 2 0x   which is impossible because x is real. 

43. As in Problem 42, we know that for a spacelike interval 2 0s  so 2 2 2x c t   . Then in 

a frame K  in which the two events occur in the same place,  0x  and 
2 2 2 2 2 2 2 2x c t x c t c t            .  But because 2 2 2x c t   we have 2 2 0c t  , 

which is impossible because t  is real. 

44. In order for two events to be simultaneous in K , the two events must lie along the x

axis, or along a line parallel to the x axis. The slope of the x axis is /v c  , so 

/ slope = 
c t

v c
x





.  Solving for v, we find 2 /v c t x   . Since the slope of the x axis 

must be less than one, we see that x c t    so 2 2 2 2 0s x c t      is required. 

 
 

45. parts (a) and (b) To find the equation of the line 

 use the Lorentz transformation. With 0t  we  

have  20 /t t vx c    or, rearranging,  

/ct vx c c  . Thus the graph of ct vs. x is a  

straight line with a slope  .  

(c) Now with  t constant, the Lorentz transformation  

gives  2/t t vx c   . Again we solve for ct :   

/ constantct x ct x      .  This line is  

parallel to the 0t   line we found earlier but  

shifted by the constant.  

(d) Here both the x  and ct  axes are shifted 

 from their normal (x, ct) orientation and they  

are not perpendicular.  
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46. The diagram is shown here. Note that there is only one worldline for light, and it bisects 

both the x, ct axes and the ,x ct  axes. The x and ct axes are not perpendicular. This can 

be seen as a result of the Lorentz transformations, since 0x  defines the ct axis and 

0t  defines the x axis. 

  

47. The diagram shows that the events A and B that occur at the same time in K occur at 

different times in K .  

 

48. The Doppler shift gives 
0

1

1


 







.  With numerical values 0 650   nm and 

540  nm, solving this equation for  gives 0.183  . The astronaut’s speed is 

75.50 10v c   m/s. In addition to a red light violation, the astronaut gets a speeding 

ticket. 

49. According to the fixed source (K) the signal and receiver move at speeds c and v, 

respectively, in opposite directions, so their relative speed is c v . The time interval 

between receipt of signals is 0/ ( ) 1/t c v f    . By time dilation 
( )

t
t

c v



 


  


.  

Using 0/c v   and 
2 2

1

1 /v c
 


 we find 

22 2

0 0

11 /

( ) (1 )

c v c
t

f c v f






  

 
and 

0
0

2

(1 )1 1

11

f
f f

t

 



 
   

 
.   
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50. For a fixed source and moving receiver, the length of the wave train is .cT vT  Since n 

waves are emitted during time T, 
cT vT

n



 and the frequency /f c  is

cn
f

cT vT



.  

As in the text 
00n Tf   and 

0 / .T T    Therefore 
2

00
0

1/ 1

1 1

fcf T
f f

cT vT

 

 

 
  

  
.  

51.  0

1 1 0.95
1400kHz 224 kHz

1 1 0.95
f f





 
  

 
 

 

52. The Doppler shift function 
0

1

1
f f






 


 

is the rate at which #1 and #2 receive signals from each other and the rate at which #2 

and #3 receive signals from each other. But for signals between #1 and #3 the rate is 

0

1 1

1 1
f f f

 

 

 
  

 
.   

53. The Doppler shift function 
0

1

1
f f






 


  

is the rate at which #1 and #2 receive signals  

from each other and the rate at which #2 and #3  

receive signals from each other.  As for #1 and  

#3 we will assume that these plumbing vans are  

non-relativistic  v c . Otherwise it would be  

necessary to use the velocity addition law and apply  

the transverse Doppler shift.  From the figure we see 

 that 
0 2 1

1

( )
f

t t t
 

 
.  Now 0 01/f t  and  

0
2 1

2 cos2 vtx
t t

c c


   .  With an angle of 45 , cos(45) 1/ 2  and 

 
0 0

0 0

1

1/ (2 cos ) / 1 2 cos / 1 2 /

f f
f

f v cf v c v c 
   

  
.   

54. The Doppler shift to higher wavelengths is (with 0 589   nm) 
0

1
700 nm 

1


 




 


.  

Solving for   we find 0.171  . Then 
  8

6

2

0.171 3.00 10  m/s
1.75 10  s 

29.4 m/s

v
t

a


   

which is 20.25 days. One problem with this analysis is that we have only computed the 
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time as measured by Earth. We are not prepared to handle the non-inertial frame of the 

spaceship.  

55. Let the instantaneous momentum be in the x-direction and the force be in the y-direction. 

Then dp Fdt mdv   and dv  is also in the y-direction. So we have 
dv

F m ma
dt

   .  

56. The magnitude of the centripetal force is 
2v

ma m
r

  for circular motion. For a charged 

particle F qvB , so 
2v

qvB m
r

 or, rearranging  qBr mv p  .  Therefore 

.
p

r
qB

  

When the speed increases the momentum increases, and thus for a given value of B the 

radius must increase.  

57. 
2 21 /

mv
p mv

v c
 


 and 

dp
F

dt
 .  The momentum is the product of two factors that 

contain the velocity, so we apply the product rule for derivatives: 

 

2 2

2 2 2 2

3

2

2
3

2

2 2
3

2 2

3

1 /

/ 1

1 / 1 /

1 2

2

1

d mv
F m

dt v c

dv dt d
m v

dtv c v c

v dv
ma mv

c dt

v
ma ma

c

v v
ma

c c

ma

 

 





 
  

 

  
   

    

  
     

  

 
   

 

 
   

 



 

58. From the preceding problem 3F ma . We have 1910a  m/s
2
 and 271.67 10m    kg. 

(a) 

    

2 2 2

3 27 19 2 8

1 1
1.00005

1 / 1 0.01

1.00005 1.67 10  kg 10  m/s 1.67 10  N

v c

F



 

  
 

   

 

(b) As in (a) 1.005  and 81.70 10F    N 
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(c) As in (a) 2.294  and 72.02 10F   N 

(d) As in (a) 7.0888  and 65.95 10F   N 

59. p mv  with 
2 2 2

1 1
2.5516

1 / 1 0.92v c
   

 
; 

   

16
25

8

10  kg·m / s
1.42 10  kg

2.5516 0.92 3.00 10  m/s

p
m

v


   


  

60. The initial momentum is

 
 0

2

1
0.5 0.57735

1 0.5
p mv m c mc  



.  

(a) 
0/ 1.01p p   

  

  

1.01
0.57735

1.01 0.57735 0.58312

mv

mc

v c c







 

 

Substituting for and solving for v, 
 

1/ 2

2 2

1 1
0.504 .

.58312
v c

cc



 
   
  

  

 (b) Similarly 
 

1/2

2 2

1 1
0.536

.63509
v c

cc



 
   
  

 

 (c) Similarly 
 

1/2

2 2

1 1
0.756

1.1547
v c

cc



 
   
  

 

61. 6.3 GeV protons have 
36.3 10K   MeV and 0 7238E K E   MeV. Then 

2 2

0
7177 MeV/

E E
p c

c


  .  Converting to SI units 

13
18

8

1.60 10  J
7177 MeV/ 3.83 10  kg·m/s

MeV 3.00 10  m/s

c
p c


   

    
  

 

 From Problem 56 we have 
  

18

19

3.83 10  kg m/s
1.57T

1.60 10  C 15.2 m

p
B

qr





 
  


.   

62. Initially Mary throws her ball with velocity (primes showing the measurements are in 

Mary’s frame):  0.0
x yM Mu u u     After the elastic collision, the signs on the above 

expressions are reversed, so the change in momentum as measured by Mary is 

0 0 0

2 2 2 2 2 2

0 0 0

2

1 / 1 / 1 /
M

mu mu mu
p

u c u c u c


   

  
.   
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Now for Frank’s ball, we know 0
xFu  and 0yFu u . The velocity transformations give 

for Frank’s ball as measured by Mary: 2 2

0 1 /
x yF Fu v u u v c     .   

To find  for Frank’s ball, note that      
22

2 2 2 2

0 1 /
x yF Fu u v u v c     . Then 

    2 2 2 2 2 2 2 2 2 2 2 2

0 0

1 1 1

1 / 1 / 1 / / 1 / 1 /Fu c v c u v c c u c v c
   

     
. Using 

mp u  along with the reversal of velocities in an elastic collision, we find 

 

    

2 2 2 2 2 2

0 0 0

2 2

0 0

2 2 2 2 2 2

0 0

1 / 1 / 2 1 /

2 1 / 2
      

1 / 1 / 1 /

Fp m u v c mu v c mu v c

mu v c mu

u c v c u c

          

  
 

  

 

 Finally 

 
0 0

2 2

0

2 2
0

1 /
F M

mu mu
p p p

u c

 
       


as required. 

63. To prove by contradiction, suppose that 21

2
K mv . Then 

 2 2 2 2

0

1
1

2
K E E mc mc mc mv         .  This implies 2 21 / 2v c   , or 

2 21 / 2v c   , which is clearly false.  

64. The source of the energy is the internal energy associated with the change of state, 

commonly called that latent heat of fusion fL . Let m be the mass equivalent of 2 grams 

and M  be the mass of ice required.  
2 2

fL ME
m

c c
    Rearranging 

  
2

82
8

3

0.002 kg 3.00 10  m/s
5.39 10  kg

334 10  J/kgf

mc
M

L


   


 

65. In general   21K mc  , so 
2

1
K

mc
   .  For 9 GeV electrons: 

49000 MeV
1 1.76 10

0.511 MeV
       Then from the definition of   we have 

 
9

22 4

1 1
1 1 1 1.6 10

1.76 10




      


.  Thus 

 91 1.6 10 0.9999999984v c c    .  



16  Chapter 2     Special Theory of Relativity  

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a 

publicly accessible website, in whole or in part. 

 

 For 3.1 GeV positrons: 
3100 MeV

1 6068
0.511 MeV

     and 
 

8

2

1
1 1 1.4 10

6068
      .  

 Thus  81 1.4 10 0.999999986v c c    . 

66. Note that the proton’s mass is 938 MeV/c
2
. In general   21K mc  , so 

2
1

K

mc
   . 

Then from the definition of  we have 
2

1
1


  .  For the first section 0.750K 

MeV, and
0.750 MeV

1 1.00080
938 MeV

     with 
 

22

1 1
1 1 0.040

1.00080
 


      .  

Thus v = 0.04c at the end of the first stage. For the other stages the computations are 

similar, and we tabulate the results:  

 

 

 (GeV)

0.400 1.43 0.71

8 9.53 0.994

150 160.9 0.99998

1000 1067 0.9999996

K  

 
 

67. (a) 
  2

2

511 keV/ 0.020
10.22 keV/

1 0.020

c c
p mu c  


; 

 2 2

2

2

511 keV/ ( )
511.102 keV

1 0.02

c c
E mc  


; 

0 511.102 keV 511.00 keV 102 eVK E E      

 The results for (b) and (c) follow with similar computations and are 

 tabulated: 

 

  

 (keV/ )  (keV)  (keV)

0.20 104.3 521.5 10.5

0.90 1055 1172 661

p c E K

 

68. 0 02E E E   so 2  . Then 
2

1 3
1

2



    and 

3

2

c
v  .   
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69. For a constant force, work = change in kinetic energy = 2 / 4,Fd mc  because 

25% 1/ 4 .    
  

 

2
82

17
80 kg 3.00 10  m/s

2.25 10 m = 23.8 ly.
4 4 8 N

mc
d

F


       

70. 
0 0 0 0 02 3E K E E E E E       so 3  .  Then 

2 2

1 1 2 2
1 1 0.943

3 3
 


       .  Thus v  = 0.943c.  

71. (a) 
0 0 0 0 00.1 1.1E K E E E E E      , so 1.1  . Then 

2 2

1 1
1 1 0.417

1.1
 


       and v = 0.417c.  

(b) As in (a) 2  and 3 / 2v c . 

 

 (c) As in (a) 11  and v = 0.996c.   

72. 0
0 0

21

E
K E E E


   


 so 0

0
21

E
K E


 


.  Rearranging 

2

2 0

0

1
E

K E


 
   

 
which 

can be written as 

2

2 0

0

1
E

K E


 
  

 
or 

2

0

0

1
E

K E


 
  

 
. 

73. Using 2E mc along with p mv we see that 2/ /E mc p mv   . Solving for v/c we 

find / /v c pc E   .  

 

74. The speed is the same for protons, electrons, or any particle.  

  2 2 2 21
1 1.01 0.505

2
K mc mv mc 

 
    

 
 so 2

2

1
1 1 0.505

1
 


   


.  

Rearranging and solving for  , we find 0.114  or v = 0.114c.  

 

75. Converting  0.1 ounce = 32.835 10 kg.  

  
2

2 3 8 142.835 10  kg 3.00 10  m/s 2.55 10  JE mc       .  

Eating 10 ounces results in a factor of 100 greater mass-energy increase, or 162.55 10  J. 

This is a small increase compared with your original mass-energy, but it will tend to 

increase your weight; depending on how they are prepared, peanuts generally contain 

about 100 kcal of food energy per ounce. 
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76. The energy needed equals the kinetic energy of the spaceship.   

 

 

  

2 2

2

2
4 8 19

2

1
1 1

1

1
1 10  kg 3.00 10  m/s 4.35 10  J

1 0.3

K mc mc


 
    
  

 
     

 

 

 or 4.35%  of 2110 J. 

77. Up to Equation (2.57) the derivation in the text is complete.  Then using the integration 

by parts formula, xdy xy ydx   and noting that in this case x u and y u , we 

have 2( )ud u u udu     .  Thus 

  

2

0

2

2 2

( )

1 /

u

K m ud u mu m udu

u
mu m du

u c



  



  

 


 


 

 Using integral tables or simple substitution:  

  
 

2 2 2 2

0

2 2 2 2 2

2 2 2 2

2

2

2 2

2 2 ( 1

1 /

1 /

1

)

1 /

/

u

K mu mc u c

mu mc u c mc

mc mc u c
mc

u c

mc mc mc





 

  

   

 
 



 

  

78. Converting 0.11 cal·g 1 ∙  C 1  = 460 J·kg 1 ∙  C 1

Vc  

 (specific heat at constant volume). From thermodynamics the energy E used to change 

 the temperature by T is Vmc T . Thus 

       51000 kg 460 J/(kg C 0.5 C 2.30 10 JE       
   

and 

 

 

5
12

22 8

2.30 10  J
2.56 10  kg

3.00 10  m/s

E
m

c

 
    


.  The source of this energy is the internal 

 energy of the arrangement of atoms and molecules prior to the collision. 
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79.   

 

 

 

2

b

2

2

2 2 He

931.494 MeV
2 1.007276 u 2(1.008665 u) 4.001505 u 28.3 MeV

·u

p nE m m m c

c
c

    

 
       

 

 

80.     

 
 

2

2

2

931.494 MeV
1.008665 u 1.007276 u 0.000549 u 0.782 MeV

·u

n p eE m m m c

c
c

     

 
    

 

 

81.   0 1 TeV 938 MeV 1 TeVE K E     ; 

   
2 22 2

0
1 TeV 938MeV 938 MeV

1.000938 TeV/
E E

p c
c c

 
    

0

0

1.000938 TeV
1067

0.000938 TeV

E E

E



   ;  2 7

2

1
1 1 8.78 10



      

7 71 8.78 10 1 4.39 10        ;  and  0.999999561v c c   

82. (a)    
2 22 2 2

0 40GeV 511 keV 40.0 GeVE p c E      

  0 40.0 GeVK E E    

 

 (b)     
2 22 2 2

0 40 GeV 0.938 GeV 40.011GeVE p c E      

  0 40.011 GeV 0.938 GeV 39.07 GeVK E E      

83. 0 200MeV 106MeV 306 MeVE K E      

 
   

2 22 2

0
306 MeV 106 MeV

287.05 MeV/
E E

p c
c c


    

 
0

2

306 MeV
2.887

106 MeV

1
1 0.938

E

E





  

  

 

 so  0.938v c  
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84. (a) The mass-energy imbalance occurs because the helium-3 3( He) nucleus is more 

tightly bound than the two separate deuterium nuclei 2( H) .   (Masses from Appendix 8.) 

 

 

2 3 2

2

2

[2 ( H)] [ ( He)]

931.494 MeV
2(2.014102 u) (1.008665 u 3.016029 u) 3.

u
 27 MeV

nE m m m c

c
c

   

 
    

 

 

 (b) The initial rest energy is 2

2

931.494 MeV
2 ( H) = 2(2.014102 u) = 3752 MeV.

c
 

u
m

 
 

 
   

Thus the answer in (a) is about 0.09% of the initial rest energy. 

 

85. (a) The mass-energy imbalance occurs because the helium-4 4( He)  is more tightly bound 

than the deuterium 2( H) and tritium nuclei 3( H) . 

 

 

2 3 4 2

2

2

[ ( H)+ ( H)] [ ( He)]

931.494 MeV
(2.014102 u 3.016029 u) (1.008665 u 4.002603 u)

u

17.6 e M V

nE m m m m c

c
c

   

 
     

 



 

 (b) The initial rest energy is  2 3 2 2

2

931.494 MeV
( H)+ ( H) (5.030131 u)

u
m m c c

c

 
         

= 

  4686 MeV.  Thus the answer in (a) is about 0.37% of the initial rest energy. 

 

86. (a) In the inertial frame moving with the negative charges in wire 1, the negative charges 

in wire 2 are stationary, but the positive charges are moving. The density of the positive 

charges in wire 2 is thus greater than the density of negative charges, and there is a net 

attraction between the wires. 

(b) By the same reasoning as in (a), note that the positive charges in wire 2 will be 

stationary and have a normal density, but the negative charges are moving and have an  

increased density, causing a net attraction between the wires. 

 

 (c) There are two facts to be considered. First, (a) and (b) are consistent with the physical 

 result being independent of inertial frame. Second, we know from classical physics that 

 two parallel wires carrying current in the same direction attract each other. That is, the 

 same result is achieved in the “lab” frame. 

87. 

As in the solution to Problem 21 we have 
21dv

c ct





 


 where d is the length of the 

particle track and t the particle’s lifetime in its rest frame. In this problem 118.2 10t     s 
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and d = 24 mm. Solving the above equation we find 0.698  . Then 

0

2 2

1672 MeV
2330 MeV

1 1 0.698

E
E


  

 
 

 
88.   

 

 

 

1/2
2

2

3

2

2 2 2 2

2 2 2

3

3/22 2 2 2

1

2

2

/
1 1

1 /

1 1

1 / 1 /

dp d d v
F mv mv

dt dt dt c

dv mv v dv
m

dt c dt

dv v dv v c
m m

dt c dt v c

dv dv dv
m m m

dt v c dt dt v c



 


 

 

  
     

   

 
   

 

   
      

   

 
     

   

89.  (a) The number n received by Frank at f  is half the number sent by Mary at that rate, or 

/fL v . The detected time of turnaround is 

   

 11/

11 / 1

LLn fL v L L
t

v v cvf



   


    





.   

(b) Similarly, the number n received by Mary at f  is 

 11

2 1

f LT L
n f f

v v



 

 
   


.  Her turnaround time is / 2 /T L v  . 

(c) For Frank, the time t2 for the remainder of the trip is t2 = T − t1 = L/v − L/c. 

 

Number of signals =  2

1
/ /

1

fL
f t f L v L c

v



 


   


. 

Total number received = 
2fL fL fL

v v v  
  . 

Mary’s age = 
Total number received 2L

f v
 .  

(d) For Mary, 2 1 /t T t L v     . 

Number of signals =  2

1
1

1

L fL
f t f

v v




 


    


. 

Total number received =  
2

1 1
fL fL

v v
     . 
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Frank’s age = 
Total number received 2L

f v
 . 

 

90. In the fixed frame, the distance is Δx = 8 ly and the elapsed time is Δt = 10 y, so the 

interval is 2 2 2 2 2 2 264 ly  100 ly  = 36 lys x c t       . In the moving frame, Mary’s 

clock is at rest, so 0x  , and the time interval is 6 y.t   Thus the interval is 

2 2 2 2 2 2 20 ly  36 ly  = 36 ly .s x c t          The results are the same, as they should 

be, because the spacetime interval is the same for all inertial frames. 

91. (a) From Table 2.1  
  

 
152y 4.3 ly

number 1 1 0.8 55.9 56
0.8

fL

v c




       

(b) 1

4.3 ly 4.3 ly
9.68 y

0.8

L L
t

v c c c
     ;  2

1number 1 167.7 168
fL

f t
v

      

(c) Frank: 2

2 1 168
f L

f t
v

      so the total is 168 + 168 = 336. 

    Mary: number 2 / 559f L v   

(d) Frank: 2 / 10.75y Mary : 2 / 6.45yT L v T L v     

(e) From part (c), 559 weeks = 10.75 years and 336 weeks = 6.46 years, which agrees 

with part (d). 

92.  Notice that the radar is shifted twice, once upon receipt by the speeding car and again 

upon reemission (reflection) of the beam. For this double shift, the received frequency f is  

 
0

1 1 1

1 1 1

f

f

  

  

  
 

  
 

 For speeds much less than c, a Taylor series approximation gives an excellent result: 

   
1

0

1
1 1 1 2 .

1

f

f


  




     


 

 Converting 80 mph to 35.8 m/s gives β = 1.19 × 10
−7

, so the received frequency is 

 approximately 

  0 1 2 10.4999975 GHzf f    , which is 2.5 kHz less than the original frequency.  

93.  For this transformation v = 0.8c (so γ = 5/3), 0xu   and 0.8 .yu c   Applying the 

transformations,  
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2

0 0.8
0.8

1 0
1

x
x

x

u v c
u c

vu

c

  
  

 


;   

 
2

0.8
0.48

5
1 01

3

y

y

x

u c
u c

vu

c



  

 
 

 

 

 The speed is 2 2 0.93x yu u u c   , safely under the speed of light. 

94. (a) 
0 0.250K E E E  

 
Thus  0249 249 511keV 127.2K E   MeV 

(b)  250   

2

1
1 0.999992

0.999992v c




  



 

(c)  
   

2 22 2

0
250 511 keV 511 keV

128 MeV/
E E

p c
c c

 
    

95. (a) For the proton:   2

2

1
938 MeV / 0.9 1940 MeV /

1 0.9
p mu c c c  


. 

For the electron:    
2 22 2 2

0 1940 MeV 0.511 MeV 1940 MeVE p c E     . 

0

1940 MeV
3797

0.511 MeV

E

E
     

8 8

2 2

1 1
1 1 1 6.94 10 1 3.97 10

3797




            

 81 3.97 10v c    

(b) For the proton:    0
2

1
1 1 938 MeV 1214 MeV

1 0.9
K E

 
     

 
. 

For the electron:  0

0

1214 MeV 0.511 MeV
2377

0.511 MeV

K E

E


 
   . 

7 8

2 2

1 1
1 1 1 1.77 10 1 8.85 10

2377




            

 81 8.85 10v c    

96. In the frame of the decaying 0K meson, the pi mesons must recoil with equal speeds in 

opposite directions in order to conserve momentum. In that reference frame the available 

kinetic energy is  498MeV 2 140 MeV 218MeV  .  The pi mesons share this equally, 
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so each one has a kinetic energy of 109 MeV in that frame. The speed of each pi meson 

can be found: 

0

0

109 MeV 140 MeV
1.779

140 MeV

K E

E


 
    so 

2

1
1 0.827u c c


   . 

The greatest and least speeds in the lab frame are obtained when the pi mesons are 

released in the forward and backward directions. Then by the velocity addition laws: 

  
max

0.9 0.827
0.990

1 0.9 0.827

c c
v c


 


 

  
min

0.9 0.827
0.285

1 0.9 0.827

c c
v c


 


 

97. (a) The round-trip distance is 0 8.60 lyL  .  Assume the same constant speed v c for 

the entire trip.  In the rocket’s frame, the distance is only 1 2

0 0 1L L L    .   

Mary will age in the rocket’s reference frame a total of 22 y, and in that frame 

2

28.60 ly 1distance
0.39 1

time 22y 22y

L
v c





     .  Therefore, 20.39 1

v

c
    .  

Solving for  we find 
2

2

0.39

1.00 0.39
 


, or 0.36   so Mary’s speed is 0.36v c .  

 (b) To find the elapsed time on Earth, we know that 0 22yT  , so 

0
2

1
22y 23.6 y

1
T T


  


.  Frank will be 53.6 years old when Mary returns at the 

age of 52 y. 

98. With 0.995v c then 0.995  and 10.01  . The distance out to the star is 

0 5.98 lyL  .  In the rocket’s reference frame, the distance is only 

1

0

5.98 ly
0.597 ly

10.0

 

1
L L     .   

(a) The time out to the star in Mary’s frame is 
distance 0.597 ly

0.6 y.
speed 0.995

time
c

    The 

time for the return journey will be the same. When you include the 3 years she spends at 

the star, her total journey will take 4.2 y. 

(b) To find the elapsed time on Earth for the outbound journey, we know that 0 0.6yT  so 

0 (10.01)0.6 y 6.006 y .T T    The return journey will take an equal time. The 3 years 

the spaceship orbits the star will be equivalent for both observers.  Therefore Frank will 

measure a total elapsed time of 15.012 y, which makes him 10.8 years older than her.  
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99.  (a) The Earth to moon distance is 83.84 10  m. The rotation rate is 
1 1  2 rad 0.030 s 1.885 10        rad/s. Then the speed across the moon’s surface is

  1 8 71.885 10  rad/s 3.82 10  m 7.24 10  m/sv R       .   

(b) The required speed can be found using 2c R f R   which requires the frequency 

to be 
 

8

8

3.00 10 m/s
0.124 Hz

2 2 3.84 10 m/s

c
f

R 


  


. 

100.   With the data given, 63.28 10   , which is very small. We will use the binomial 

approximation theorem. From Equation (2.21), we know that 

1 1 2 2

0 . 1 1 / 2L L          . 

(a) The percentage of length contraction would be: 

 
1

0 00

0 0

1 2

2
10

% change 100% 100%

1 100% 1 (1 / 2) 100%

100% 5.37 10
2

L LL L

L L



 









      

            

   

 

(b)  The clocks’ rates differ by a factor 21/ 1   .  The clock on the SR-71 measures 

the proper time and Equation 2.19 tells us that 0T T   so the time difference is 

0 0 0 0( 1)t T T T T T        .  Using 21 / 2   and the fact that the time for 

the trip in the SR-71 equals the distance divided by the speed 

 

2

6 8
2

8

983 m/s

3.2 10  m 3.00 10  m/s
/ 2

983 m/s 2

1.75 10 s 17

 

.5 s n

t t 



 
     

  

 

101.   As the spaceship is approaching the observer, we will make use of Equation (2.32),  

0

1

1
f f






 


 with the prime indicating the Doppler shifted frequency (or wavelength). 

This equation indicates that the Doppler shifted frequency will be larger than the 

frequency measured in a frame where the observer is at rest with respect to the source. 

Since c f , this means the Doppler shifted wavelengths will be lower. As given in the 

problem, we see that the difference in wavelengths for an observer at rest with respect to 

the source is 0 0.5974nm  . We want to find a speed so that the Doppler shifted 

difference is reduced to 0.55nm  . We have  
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1 2
2 1

2 1 1 2

0,1 0,2

0,1 0,2

0,1 0,2
0,1 0,2

0,2 0,1

1 1

1 1 1

1 1

1

1

1

f fc c
c

f f f f

f f
f f

c c
f f

f f

c c

f f

  

 

  

 






  
         

    

     
                                

  

   
          

 

 

0,2 0,1

0

1

1

1

1


 








  
       

  
       

 

 We can complete the algebra to show that 
 

 

22

0

22

0

0.0825
 


 

  
 

  
 so that 

 72.47 10 m/sv   . 

102.  As we know that the quasars are moving away at high speeds, we make use of Equation 

(2.33) and the equation c f . Using a prime to indicate the Doppler shifted frequency 

(or wavelength), Equation (2.33) indicates that frequency is given by 0

1

1
f f






 


,or 

0
1

1

f

f







 

 so 

 

 0

0 0 0

0

/
1 1

/

1
1 1

1

c f
z

c f

f

f

  

 





     
       

   

   
           

 

 Therefore  
2 1

1
1

z





 


.  We can complete the algebra to show that 

 
 

 

 

 

2 2

2 2

1 1 1 1
and thus .

1 1 1 1

z z
v c

z z


    
   

     

  For the values of z given, 0.787v c for 

 1.9z   and 0.944v c  for   4.9z  . 

103.  (a) In the frame of the decaying 0K meson, the pi mesons must recoil with equal 

momenta in opposite directions in order to conserve momentum. In that reference frame 

the available kinetic energy is  498 MeV 2 135 MeV 228 MeV  . 

 



Chapter 2     Special Theory of Relativity   27 

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a 

publicly accessible website, in whole or in part. 

 

 

(b) The pi mesons share this equally, so each one has a kinetic energy of 114 MeV in that 

 frame. The energy of each pi meson is 
0 114 MeV 135 MeV 249 M  eVE K E     .   

  The momentum of each pi meson can be found: 

 
   

2 22 2

0
249 MeV 135 MeV

209.2 MeV/
E E

p c
c c


    

104.  (a) For each second, the energy used is 3.9 × 10
26

 J. The mass used in each second is  

 

 

26
9

22 8

3.9 10  J
4.3 10  kg

3.0 10  m/s

E
m

c


   


 

 (b) The time to use this mass is 

 
30

18 11sun

9

2.0 10  kg
efficiency 0.007 3.3 10  s 1.0 10  y.

/ 4.3 10  kg/s

m
t

m t


        

  
 

 That is 20 times longer than the expected lifetime of the sun. 

105.  a) The planet’s orbital speed is 4

p

2
1.30 10  m/s

r
v

T


   .  If the system’s center of mass 

is at rest, conservation of momentum gives the star’s speed:  

 p p s sm v m v , so 
27

p p 4

s 30

s

1.90 10
1.30 10  m/s = 12.4 m/s

1.99 10

m v
v

m


  


 

 (b) The redshifted wavelength is 5

0

1
550 nm + 2.3 10  nm

1


 




  


 

 Similarly, the blueshifted wavelength is 5

0

1
550 nm  2.3 10  nm

1


 




   


 

 These small differences can be detected using modern spectroscopic tools. 

106.  To a good approximation, the shift is the same in each direction, so the redshift for the 

approaching light is half the difference, or 0.0045 nm. Using this in the equation 

 
0

1

1


 







 leads to a speed parameter β = 6.9 × 10

−6
, or v = βc = 2070 m/s. The speed 

 is equal to the circumference 2πR divided by the period, so the period is  

 
 8

6
2 6.96 10  m2

2.11 10  s = 24.5 days.
2070 m/s

R
T

v

 
     


