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1. FUNDAMENTAL CONCEPTS 3

1 Fundamental Concepts

1.1 Consider a ket space spanned by the eigenkets {|a')} of a Her-
mitian operator A. There is no degeneracy.

(a) Prove that
[I(A=d)

is a null operator.
(b) What is the significance of

I1

a'’#a

(A—a")

. a' —a

?

c) Illustrate (a) and (b) using A set equal to S, of a spin 1 system.
(c) g q pin ; sy

1.2 A spin % system is known to be in an eigenstate of S # with
eigenvalue //2, where 7 is a unit vector lying in the zz-plane that
makes an angle v with the positive z-axis.

(a) Suppose S, is measured. What is the probability of getting
+h/27

(b) Evaluate the dispersion in S,, that is,

((Sx = (S&))).

(For your own peace of mind check your answers for the special
cases vy =0, /2, and 7.)

1.3 (a) The simplest way to derive the Schwarz inequality goes as
follows. First observe

({a] +2%(B]) - (Je) + AlB)) = 0

for any complex number ); then choose X in such a way that the
preceding inequality reduces to the Schwarz inequility.



(b) Show that the equility sign in the generalized uncertainty re-
lation holds if the state in question satisfies

AAla) = MAB|a)
with A purely imaginary.

(c¢) Explicit calculations using the usual rules of wave mechanics
show that the wave function for a Gaussian wave packet given by

() = (2ma) it exp |1 ()

satisfies the uncertainty relation

S/ = 2.

Prove that the requirement

[N

(z'|Az|a) = (imaginary number)(z'|Ap|a)

is indeed satisfied for such a Gaussian wave packet, in agreement

with (b).

1.4 (a) Let z and p, be the coordinate and linear momentum in
one dimension. Evaluate the classical Poisson bracket

[$7 F(pl')]classical .

(b) Let z and p, be the corresponding quantum-mechanical opera-
tors this time. Evaluate the commutator

(2]

(c¢) Using the result obtained in (b), prove that

exp (Z2) 1), (ale’) = o)



2. QUANTUM DYNAMICS 7

is an eigenstate of the coordinate operator x. What is the corre-
sponding eigenvalue?

1.5 (a) Prove the following:
(i) (Plzla) = iho={p'le),

(i) (Blelay = [dfsitin

where ¢,(p') = (p'|a) and ¢p(p’) = (p'|F) are momentum-space wave
functions.
(b) What is the physical significance of

1=
e (5)

—
—

where z is the position operator and = is some number with the
dimension of momentum? Justify your answer.

2 Quantum Dynamics

2.1 Consider the spin-procession problem discussed in section 2.1
in Jackson. It can also be solved in the Heisenberg picture. Using

the Hamiltonian
eB
H=—(22)s5. =ws.
mc
write the Heisenberg equations of motion for the time-dependent
operators S.(t), S,(¢), and S.(t). Solve them to obtain S, , . as func-
tions of time.

2.2 Let z(¢) be the coordinate operator for a free particle in one
dimension in the Heisenberg picture. Evaluate

[2(), z(0)].



2.3 Consider a particle in three dimensions whose Hamiltonian is

given by
2

H=2 +1v@)

2m
By calculating [7 - p, H]| obtain

%@.@ _ <p_2> —(Z-VV).

m

To identify the preceding relation with the quantum-mechanical
analogue of the virial theorem it is essential that the left-hand side
vanish. Under what condition would this happen?

2.4 (a) Write down the wave function (in coordinate space) for the
state

You may use

I\ 2 1/2
<$/|0> — 7_[_—1/4:[:0—1/2 eXp [_% (x_) ] , (:EO = (i) ) .
To muw

(b) Obtain a simple expression that the probability that the state
is found in the ground state at ¢ = 0. Does this probability change
for t > 07

2.5 Consider a function, known as the correlation function, defined
by

C(t) = (x(t)2(0)),
where z(1) is the position operator in the Heisenberg picture. Eval-

uate the correlation function explicitly for the ground state of a
one-dimensional simple harmonic oscillator.
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2.6 Consider again a one-dimensional simple harmonic oscillator.
Do the following algebraically, that is, without using wave func-
tions.

(a) Construct a linear combination of |0) and |1) such that (z) is as
large as possible.

(b) Suppose the oscillator is in the state constructed in (a) at ¢t = 0.
What is the state vector for ¢ > 0 in the Schrodinger picture?
Evaluate the expectation value (z) as a function of time for ¢ > 0
using (i) the Schrodinger picture and (ii) the Heisenberg picture.

c) Evaluate ((Az)?) as a function of time using either picture.
g

2.7 A coherent state of a one-dimensional simple harmonic oscil-
lator is defined to be an eigenstate of the (non-Hermitian) annihi-
lation operator a:

alA) = AlA),
where ) is, in general, a complex number.

(a) Prove that
|)\> _ e—|>\|2/2€)\a7|0>

is a normalized coherent state.
(b) Prove the minimum uncertainty relation for such a state.
(c) Write |)) as
A) = Z%f(n)|71>-
Show that the distribution of |f(r)|* with respect to n is of the
Poisson form. Find the most probable value of n, hence of FE.

(d) Show that a coherent state can also be obtained by applying
the translation (finite-displacement) operator ¢='/* (where p is the
momentum operator, and [ is the displacement distance) to the
ground state.
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(e) Show that the coherent state |\) remains coherent under time-
evolution and calculate the time-evolved state |A(¢)). (Hint: di-
rectly apply the time-evolution operator.)

2.8 The quntum mechanical propagator, for a particle with mass
m, moving in a potential is given by:

K(z,y; F) = / dteiEt/h]&’(:z:,y;t,O) =AY
0 n

sin(nrz) sin(nry)

B — B2

2m
where A is a constant.
(a) What is the potential?

(b) Determine the constant A in terms of the parameters describing
the system (such as m, r etc. ).

2.9 Prove the relation 00(z)
T
=4
. ()
where 6(z) is the (unit) step function, and /(z) the Dirac delta
function. (Hint: study the effect on testfunctions.)

2.10 Derive the following expression
mw
Sat = o
: 2sin(wT)
for the classical action for a harmonic oscillator moving from the
point zg at t = 0 to the point zr at t = T.

[(;1:3 + 22%) cos(wT') — xoxT}

2.11 The Lagrangian of the single harmonic oscillator is

1 1
L= —-mi?— —mw?z?

2 2
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(a) Show that

15

h

(xptp|Tats) = exp [ ] G(0,15;0,1,)

where S, is the action along the classical path z, from (z,,¢,) to
(23,13) and G is

G(0,;0,t,) =
m (e i Mm 1
. 2 2 2. 2
NN L O |
where ¢ = 2=ta

(N+1)*
(Hint: Let y(t) = z(t) — z4(t) be the new integration variable,
zq(t) being the solution of the Euler-Lagrange equation.)

(b) Show that (G can be written as

(N+1)

_ T
G = Nh_l}rgo <27Tih€) dy; ...dynexp(—n-on)
Y1
where n = : and n’ is its transpose. Write the symmetric
YN

matrix o.
(¢) Show that

~N/2

dyy . ..dynexp(—nTon E/dN enon — 1
/yl ynexp( ) y NZET

[Hint: Diagonalize ¢ by an orhogonal matrix.]

L \N
(d) Let (2;&) deto = detoly = py. Define j x j matrices o) that con-
sist of the first j rows and j columns of ¢, and whose determinants
are p;. By expanding o},, in minors show the following recursion

formula for the p;:

pini =2 —cwp—pimn j=1,...,N (2.1)
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(e) Let ¢(t) = ep; for t =1, + je and show that (2.1) implies that in
the limit ¢ — 0, ¢(t) satisfies the equation

d*¢ )
az = o)
with initial conditions ¢(t =¢,) =0, d¢(7;jt“) =1.
(f) Show that
mw 1mw
| Tala) = | —F————< —[(«? 2 T) — 2z,
(wololata) 2mihsin(wT) e;r;p{Qh sin(wT)[(xb +2,) cos(wT) =22 xb]}

where 7' =1, — 1,.

2.12 Show the composition property
/d$1[(f($2,t2; l’l,tl)[(f(l’l,tl; l’o,to) = [(f(l’z,tg; l’o,to)

where Ky(z1,t1;20,10) is the free propagator (Sakurai 2.5.16), by
explicitly performing the integral (¢.e. do not use completeness).

2.13 (a) Verify the relation

the
(I, IT;] = (7) ik Br

_,

whereH—m—:ﬁ—%and the relation
A7 dl 1 (dZ 5 = dF
— = — EF+—|—xB-Bx—]|.
T [ +2c(d . xdt)]

(b) Verify the continuity equation

dp ,7
E—I-V =0
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with ; given by

2.14 An electron moves in the presence of a uniform magnetic field
in the z-direction (B = Bz).

(a) Evaluate
[HI? Hl/]v

where A A
€Ay e
I, = p, — , HyEpy——y.
c c

(b) By comparing the Hamiltonian and the commutation relation
obtained in (a) with those of the one-dimensional oscillator problem
show how we can immediately write the energy eigenvalues as

s hik? N leB|h ( N 1)

n — n ~ 1

. 2m mc 2

where %k is the continuous eigenvalue of the p, operator and n is a
nonnegative integer including zero.

2.15 Consider a particle of mass m and charge ¢ in an impenetrable
cylinder with radius R and height a. Along the axis of the cylin-
der runs a thin, impenetrable solenoid carrying a magnetic flux .
Calculate the ground state energy and wavefunction.

2.16 A particle in one dimension (—occ < z < o) is subjected to a
constant force derivable from

V=X, (A>0).
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(a) Is the energy spectrum continuous or discrete? Write down an
approximate expression for the energy eigenfunction specified by

E.

(b) Discuss briefly what changes are needed if V' is replaced be

V= Az|.

3 Theory of Angular Momentum

3.1 Consider a sequence of Euler rotations represented by

D(1/2)(a7577) — exp <—i030é) exp —10903 exp (—Z’UB’Y)
2 2 2
( e—i(0+)/2 (o % —eie=N/2gip 8 )

2
e /2gin % e @t/2 cog %

Because of the group properties of rotations, we expect that this
sequence of operations is equivalent to a single rotation about some
axis by an angle ¢. Find ¢.

3.2 An angular-momentum eigenstate |j,m = mmax = J) is rotated

by an infinitesimal an%le ¢ about the y-axis. Without using the
. . 7) . . .

explicit form of the d;;; function, obtain an expression for the

probability for the new rotated state to be found in the original
state up to terms of order &°.

3.3 The wave function of a patricle subjected to a spherically
symmetrical potential V(r) is given by

P(7) = (z +y+32)f(r).
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(a) Is 1 an eigenfunction of L? If so, what is the /-value? If
not, what are the possible values of | we may obtain when L? is
measured?

(b) What are the probabilities for the particle to be found in various
m; states?

(c) Suppose it is known somehow that ¢ () is an energy eigenfunc-
tion with eigenvalue F. Indicate how we may find V(r).

3.4 Consider a particle with an intrinsic angular momentum (or
spin) of one unit of 4. (One example of such a particle is the p-
meson). Quantum-mechanically, such a particle is described by a
ketvector |g) or in 7 representation a wave function

o' (%) = (;ilo)

where |7,7) correspond to a particle at ¥ with spin in the ::th di-
rection.

(a) Show explicitly that infinitesimal rotations of o'(7) are obtained
by acting with the operator

u;zl—i%-(l_j—l— 5) (3.1)

where L = Bp x V. Determine S !
(b) Show that L and S commute.
(c) Show that S is a vector operator.

(d) Show that V x (&) = ;—2(§ﬁ)§ where p is the momentum oper-

ator.

3.5 We are to add angular momenta j; = 1 and j; = 1 to form
j=2,1, and 0 states. Using the ladder operator method express all
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(nine) j,m eigenkets in terms of |j;j2; mim;). Write your answer as

|j:1,m:1>:%H,O)—\%m,—l—),..., (3.2)

where + and 0 stand for m;,; = 1,0, respectively.

3.6 (a) Construct a spherical tensor of rank 1 out of two different
vectors U = (U,,U,,U.) and V = (V,,V,,V.). Explicitly write Till{o i
terms of U,,. and V,, ..

(b) Construct a spherical tensor of rank 2 out of two different
vectors [/ and V. Write down explicitly TfQ)’iLO in terms of U,, .

and V,, ..

3.7 (a) Evaluate
J :
> 1o (B)*m
m=—j

1

for any j (integer or half-integer); then check your answer for j = ;.

(b) Prove, for any j,
1 :
> md, (B)° = 3G + 1) sin B+ m” + L(3cos® B - 1).
m=—j

[Hint: This can be proved in many ways. You may, for instance,
examine the rotational properties of .J? using the spherical (irre-
ducible) tensor language.]

3.8 (a) Write zy, zz, and (2? — y*) as components of a spherical
(irreducible) tensor of rank 2.
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(b) The expectation value

Q = €<Oz,j,m :]|(322 - T2)|Oz,j,m :.7>

is known as the quadrupole moment. Evaluate
€<Oé,j, m/|($2 - y2)|a7j7m = ]>7

(where m’ = j,7—1,7—2,... )in terms of () and appropriate Clebsch-
Gordan coefficients.

4 Symmetry in Quantum Mechanics

4.1 (a) Assuming that the Hamiltonian is invariant under time
reversal, prove that the wave function for a spinless nondegenerate
system at any given instant of time can always be chosen to be
real.

(b) The wave function for a plane-wave state at ¢ = 0 is given by
a complex function e7%/*, Why does this not violate time-reversal
invariance?

4.2 Let ¢(j') be the momentum-space wave function for state |a),
that is, ¢(p') = (J'|a).Is the momentum-space wave function for the
time-reversed state O|a) given by &(p', ¢(—p'), ¢*(§), or ¢*(—p')?
Justify your answer.

4.3 Read section 4.3 in Sakurai to refresh your knowledge of the
quantum mechanics of periodic potentials. You know that the en-
ergybands in solids are described by the so called Bloch functions
Y, i fullfilling,

Vni(z + a) = e, ()
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where « is the lattice constant, n labels the band, and the lattice
momentum k is restricted to the Brillouin zone [—7/a, 7 /a].
Prove that any Bloch function can be written as,

Ynp(x) = qun(:li — Ri)eikR‘
R;

where the sum is over all lattice vectors R;. (In this simble one di-
mensional problem R; = ia, but the construction generalizes easily
to three dimensions.).

The functions ¢, are called Wannier functions, and are impor-
tant in the tight-binding description of solids. Show that the Wan-
nier functions are corresponding to different sites and/or different
bands are orthogonal, i.c. prove

/dwqﬁ;(ﬂf — Ri)pn(r — Rj) ~ 6i0pmn

Hint: Expand the ¢,s in Bloch functions and use their orthonor-
mality properties.

4.4 Suppose a spinless particle is bound to a fixed center by a
potential V(7) so assymetrical that no energy level is degenerate.
Using the time-reversal invariance prove

—

(L) =0

for any energy eigenstate. (This is known as quenching of orbital
angular momemtum.) If the wave function of such a nondegenerate
eigenstate is expanded as

;ZFzmw)W(e,@,

what kind of phase restrictions do we obtain on £, (r)?

4.5 The Hamiltonian for a spin 1 system is given by

H = AS?+ B(5.-5)).



