Problem 1.1
_The force, F, of the wind bR ¢/SEIHQCK SRR QAUELR by F = Cpp V2 4/2, where ¥ is
Isolutiqq ANy gL ISRD AQNAY AHIISh i U DdRRNIRLS S Ll R B RARIE S BF i
a constant termed the drag coefficient. Determine the dimensions of the drag coefficient.

Solution 1.1

F:CDpvzﬁ
2
or
2F
Cp =—>—, where
pV-A

F=MLT 2, p=ML3V=LT" A=1?
Thus,

(MLT_Z) 07040
Cp = =M T

()Y (2)]

Hence, C}, is dimensionless.
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Problem 1.2

The Mach number is a dimensionless ratio of the velocity of an object in a fluid to the speed
of sound in the fluid. For an airplane flying at velocity V' in air at absolute temperature 7,
the Mach number Ma is,

V

JKRT’

where k is a dimensionless constant and R is the specific gas constant for air. Show that Ma
is dimensionless.

Ma =

Solution 1.2

: . ML
We denote the dimension of temperature by € and use Newton’s second law to get /' = ?

Then

or



Problem 1.3

Verify the dimensions, in both the FLT and the MLT systems, of the following quantities,
which appear in Table B.1 Physical Properties of Water (BG/EE Units).

(a) Volume, (b) acceleration, (¢) mass, (d) moment of inertia (area), and (e) work.

Solution 1.3

a) volume = 2
-1

b) acceleration = time rate of change of velocity = = LT

c) mass=M

or with F = MLT 2

mass = FL'T?

d) moment of inertia(area)=second moment of area = (L2 )(Lz) = L_4

e) work = forcexdistance = FL
or with F = MLT ™

work = MI*T2



Problem 1.4

Verify the dimensions, in both the FLT and the MLT systems, of the following quantities,

which appear in Table B.1 Physical Properties of Water (BG/EE Units).

(a) Angular velocity, (b) energy, (¢) moment of inertia (area), (d) power, and (e) pressure.

Solution 1.4

angular displacement

a) angular velocity = = T=_1

time
b) energy ~ capacity of body to do work
single work = force x distance = energy = FL

or with F/ = MLT ™= energy = (MLT 7 )(L) = M’T
¢) moment of inertia (area) =second moment of area = (L2 )(L2 ) =

d) power = rate of doing work = I;L = FLT_1 - (MLT ) (

force . F

e) pressure = = FL :(MLT_Z)(L_Z)ﬁML_IT_Z

area  [2



Problem 1.5

Verify the dimensions, in both the FLT system and the MLT system, of the following
quantities, which appear in Table B.1 Physical Properties of Water (BG/EE Units).

(a) Frequency, (b) stress, (¢) strain, (d) torque, and (e) work.

Solution 1.5

a) frequency = cycles = T__1
time T
b) stress = force = % = FL?
area [* —
Since F=MLT 2,
-2
stress = ML;F =ML T2
L B
¢) strain = change in length . L . L’ (dimensionless)
length L =

d) torque = force xdistance = FL = (MLT_2 )(L) =ML’T
e) work = force x distance = FL = (MLT_2 )(L) = ML’T



Problem 1.6

If u 1s velocity, x is length, and ¢ is time, what are the dimensions (in the MLT system) of
(a) du/ o1, (b) °u/ 0x0t, and (c) [ (u / or)dx?

Solution 1.6

-1
a)@ﬁ LT . 1
oo T

*u . LT

oxor  (L)T)

(7)
T

- T2

C) j%@xi



Problem 1.7

Verify the dimensions, in both the FLT system and the MLT system, of the following
quantities, which appear in Table B.1 Physical Properties of Water (BG/EE Units).

(a) Acceleration, (b) stress, (¢) moment of a force, (d) volume, and (e) work.

Solution 1.7

a) acceleration = Vel.ocny = iz = LT
time T
b) stress = force = % = FL?
area [~ T
Since F = MLT ™,
-2
stress = % = ML'T?
I3 ML L

¢) moment of a force = force x distance = FL = (MLT_Z)L = MI’T™*
d) volume = (length)3 = Q
e) work = force x distance = FL = (MLT_2 )L = MI’T™*



Problem 1.8
If pis pressure, V' is velocity, and p is fluid density, what are the dimensions (in the MLT
system) of (a) p/p, (b) pVp,and (c) p/ pVZ?

Solution 1.8
p. FL? MLT?L? ML'T
p ML ML ML

- 272

b) pri(ML_lT_z)(LT_I)(ML‘ )iMZL_3T_3

12
C) P_- ML T = Mm°07° (dimensionless)

7 o




Problem 1.9

If P is force and x is length, what are the dimensions (in the FLT system) of (a) dP / dx,
(b) &*P/dx>, and (c) j P dx?

Solution 1.9

) —=—=FL!
dx L ——
d&*P F 4

b == FL
) o I =

o) [Pdx=FL



Problem 1.10
If V' is velocity, ¢ is length, and v is a fluid property (the kinematic viscosity) having

dimensions of I?T~", which of the following combinations are dimensionless: (a) V' /v,
M) Vv, () Vv, and (d) V/(1?

Solution 1.10
a) Vev=(LT™")(L)(LT™")= L*T~ (not dimensionless)

-1
b) g = % = 7" (dimensionless)

c) V2= (LT_I)2 (LzT_l) = ‘173 (not dimensionless)

-1
d) o = % =7 (not dimensionless)




Problem 1.11

The momentum flux is given by the product ri2 V', where 2 is mass flow rate and V' is velocity.
If mass flow rate is given in units of mass per unit time, show that the momentum flux can
be expressed in units of force.

Solution 1.11
2
[mV]:(%j(éj:Mi FT =F
T )\T T2\ ML| =

2
where L = rr comes from Newton’s Second Law.
g. M L




Problem 1.12

An equation for the frictional pressure loss Ap (inches H,O) in a circular duct of inside di-
ameter d(in.) and length L(ft) for air flowing with velocity V' (ft/min) is

I % 1.82

o

where V, is a reference velocity equal to 1000 ft/min. Find the units of the “constant” 0.027.

Solution 1.12

Solving for the constant gives

App
0.027 = R
L V
[ pl2 )(Vo]
The units give
: 1.82
ft
ft min
inl22 )| ft
min
[0.027] = n. H20~in.1'22
' ft




Problem 1.13
The volume rate of flow, O, through a pipe containing a slowly moving liquid is given by
the equation
B 7zR4Ap
0= 8ul
where R is the pipe radius, Ap the pressure drop along the pipe, xis a fluid property called

viscosity (FL*2T ), and / is the length of pipe. What are the dimensions of the constant z /8 ?

Would you classify this equation as a general homogeneous equation? Explain.

Solution 1.13

[L3T—1}i[£:l[L4J[FL_2}

81| FLT|[L]
o2

Y )
The constant is gls dimensionless.

Yes. This is a general homogeneous equation

because it is valid in any consistent units system.



Problem 1.14
Show that each term in the following equation has units of 1b/ft>. Consider u as velocity, y

as length, x as length, p as pressure, and x as absolute viscosity.

2
_o_ du

0= .
ox ,uayz

Solution 1.14

[ap}_ [fﬂ or {6_19}

ox

=
3 |[

and

fit
ﬂazu [lb-sec}{sec} o ﬂaz_u _{E}
oy? fi2 [fﬂ ot | L




Problem 1.15

The pressure difference, Ap, across a partial blockage in an artery (called a stenosis) is ap-
proximated by the equation

2
uv Ay 2
Ap=K,—+K, | —-1 V
P "D u ( 4 j P
where V' is the blood velocity, uis the blood viscosity (FLT), o 1s the blood density

(ML_3), D is the artery diameter, 4, is the area of the unobstructed artery, and 4, is the area

of the stenosis. Determine the dimensions of the constants K, and K,,. Would this equation
be valid in any system of units?

Solution 1.15

1

2
FT L 1 12 FT? 1 (LY
FI?2=[K|—Z—4+[K ] =-1]| | —/—— || =

FL? =[K,](FL?)+[K,](FL?)

2
Ap:Kv%+Ku {%—1} oV

K, and K, are dimensionless because each term in the equation must have the same
dimensions. Yes, The equation would be valid in any consistent system of units.



Problem 1.16
Assume that the speed of sound, ¢, in a fluid depends on an elastic modulus, E,, , with di-
mensions FL 2, and the fluid density, p, in the form ¢ = (EU)“ ( p)b. If this is to be a dimen-

sionally homogeneous equation, what are the values for « and »? Is your result consistent

with the standard formula for the speed of sound? (See the equation ¢ = [—%.)
P

Solution 1.16
Substituting [¢]= LT - [E,]= FL> [p]= FL*T? into the equation provided yields:

2l [(FL‘2 ) } [(FL“‘T2 )b} = perbp2edby2b

Dimensional homogeneity requires that the exponent of each dimension on both sides
of the equal sign be the same.

Fr 0=a+b

L: 1 =-2a-4b

T: =1 =2b
Therefore:

T: -1 =2b=>b=-1/2
F: a=-b=>a=1/12

L 1 =-2a-4b=-2(112) -4(-1/2)= 1V | a=

Yes, this is consistent with the standard formula
for the speed of sound.



Problem 1.17

A formula to estimate the volume rate of flow, Q, flowing over a dam of length, B, is given
by the equation

0 =3.09 BH?

where H is the depth of the water above the top of the dam (called the head). This formula
gives Q in ft*/s when B and H are in feet. Is the constant, 3.09, dimensionless? Would this
equation be valid if units other than feet and seconds were used?

Solution 1.17
3
Q = 3.09 BH?

o7 | i[3.09][L][L];

o7 = [3.09][L]§

Since each term in the equation must have the same dimensions the constant
1
3.09 must have dimensions of L27 ! and is therefore not dimensionless. No.

Since the constant has dimensions its value will change with a change in units.
No.



Problem 1.18

A commercial advertisement shows a pearl falling in a bottle of shampoo. If the diameter D
of the pearl is quite small and the shampoo is sufficiently viscous, the drag D on the pearl is
given by Stokes’s law,

D =3muVD,

where V' is the speed of the pearl and x is the fluid viscosity. Show that the term on the right
side of Stokes’s law has units of force.

Solution 1.18

| D |=[3muV' D] = [%)(é}L V. M{F—Tz}% =F

2
where L = r comes from Newton’s Second Law.
g. ML



Problem 1.20

Express the following quantities in SI units: (a) 10.2 in./min, (b) 4.81 slugs, (¢) 3.02 1b,
(d)73.1 ft/s?, and (e) 0.0234 1b-s/ft>.

Solution 1.20

a) 1022 - (10.2 ‘—‘?'j(z.smxlo—z 3)(““1“) —4.32x103 B oy 3
min min n. 0s S S

b) 4.81slugs =(4.81 slugs)(l 45910 f—gj =70.2kg
slug

c) 3.021b:(3.021b)[4.448%j:13.4N
m
d) 73.1—2:(73.1—2] 3.048x10 T =223—
s s It s
$2
N-s
Ib-s Ib-s m? | N-s
e) 0.0234ft—2—(0.0234ft—2j 4.788><10E =1.12 >

ft?



Problem 1.21
Express the following quantities in BG units: (a) 14.2 km, (b) 8.14 N/ m3, (c) 1.61kg/ m’ ,
(d) 0.0320N-m/s, and (e) 5.67 mm/hr.

Solution 1.21

a) 14.2km = (14.2x103 m)(s.zslﬁj = 4.66x10" ft
m _
b
N N A b
b) 8.14—=(8.14—j 6.366x107° L |=518x107" —
oL NPT W
m3
slugs
3
c) 1~61k—%=(1.61k—%j 1.940x107° 7 |=3.12%1073 s1u3gs
m m ke ft
m3
ft-1b
d) 0.0320N'm=(0.0320N'mj 7376x10" —5_ |=2.36x 102 {10
S S N-m S

S

e) 5.67@=(5.67x10‘32 (3.28&)( 1 hr j:5.17x10—6E
h h 36

r r m 00s S



Problem 1.22

Express the following quantities in SI units: (a) 160 acres, (b) 15 gallons (U.S.), (c) 240 miles,
(d) 79.1 hp, and (e) 60.3 °F.

Solution 1.22

2 2
a) 160 acre = (160 acre)[4.356x104 ft—}(9.290x10_2 m—zj =6.47x10° m”
acre ft -

- 3
b) 15 gallons = (15 gallons)| 3.785 liters 103 2 | -56.8x102 m?
gallon liter ) =

¢) 240 mi = (240 mi)[5280 ij(3.048x10_1 fmt] ~3.86x10° m
mi -

ft-Ib
d) 79.1hp=(79.1hp)| 550 —S [1.356Lj=5.90x1041x1—W:5.90x104W
hp ft-Ib —

s 14
S

e) Relationship between units of temperature:

K= °C+273=§(°F—32)+273

3(60.3°F—32)+273=@



Problem 1.23

Water flows from a large drainage pipe at a rate of 1200 gal/min. What is this volume rate
of flow in (a) m3/ s, (b) liters/min, and (c) ft> / s?

Solution 1.23

3

m
3
a) ﬂowrate=(1200g—2_llj 6.309x107° —S— |=7.57x1072 2L
min gal S
min

b) Sincel liter = 1072 m?,

3 3. .
flowrate = (7.57 x1072 —J[IO htersJ( 60s j — 4540 liters

S m3 min min

3 E 3
0) ﬂowrate=[7.57x10—2 m—j 3.531x10 5+ _2678
S m S

S



Problem 1.24

The universal gas constant R, is equal to 49,700 ft> / (52 -°R), or 8310 m?/ (52 K) Show

that these two magnitudes are equal.

Solution 1.24

2 2 2
5/9)K
_ 83;0m (3.281&} ( o) _ 49,700 &
7. K Im 1°R (SeCZ'OR)




Problem 1.25

Dimensionless combinations of quantities (commonly called dimensionless parameters)
play an important role in fluid mechanics. Make up five possible dimensionless parameters
by using combinations of some of the quantities listed in Table B.1 Physical Properties of
Water (BG/EE Units).

Solution 1.25

Some possible examples:

acceleration x time (LT _2)(T) 070
velocity - ( L T—l) B
frequency x time = (T_l)(T) =70
2 1)
(velocity) N (LT ) 0770

length x acceleration (L) ( LT )

forcextime . (F)(T) | (F)(T) . 070440
momentum (MLT) B (Fr2c)(LT™) SrEr

(ML) (r7)(L)
dynamic viscosity ML

density x velocity x length . = 07070




Problem 1.26

An important dimensionless parameter in certain types of fluid flow problems is the Froude
number defined as V/ \gl, whereV is velocity, g is the acceleration of gravity, and /7 is

length. Determine the value of the Froude number for V' =10 ft/s, g = 32.2 ft/ s, and
¢ = 2 ft. Recalculate the Froude number using SI units for}, g, and /. Explain the signifi-
cance of the results of these calculations.

Solution 1.26
In BG units,

10 —
Vo S =1.25

Vel \/[32.2 f;j(z )

S

In SI units:

V= (10 Ej{osms 3) =3.052
S ft S

m
g=9.81 —
$2

0=(2 ft)(0.3048 %) =0.610m

Thus,

” 305 2

ve! \/(9.81 “;‘](0.610 m)

S

()]

The value of a dimensionless parameter is independent of the unit system.



Problem 1.28

A tank contains 500 kg of a liquid whose specific gravity is 2. Determine the volume of the
liquid in the tank.

Solution 1.28
m=pV =S8SGpy oV
Thus,

v=_m _ 300ke o503

(SGpuo) ((2)(999 k%n

m




Problem 1.29

A stick of butter at 35°F measures 1.251n. x1.251n. x4.651n. and weighs 4 ounces. Find its
specific weight.

Solution 1.29

b
4
( OZ)(16OZ] Ib

(1.25in.)’ (4.65in.)(1




Problem 1.30
Clouds can weigh thousands of pounds due to their liquid water content. Often this content

is measured in grams per cubic meter ( g/m3). Assume that a cumulus cloud occupies a

volume of 1 cubic kilometer, and its liquid water content is 0.2 g/m3. (a) What is the volume
of this cloud in cubic miles? (b) How much does the water in the cloud weigh in pounds?

Solution 1.30

3
a) Volume:(lkm)3(M] ~10° m3(3.281f‘[>< Im

3
= 0.240 mi’
Im  5280ft) ———

b) W =yxVolume

2
y:pg:(o.zij ke g g M) INS" 1) g6px103 N
m> JL 1,000 g s2 )l 1kg-m m>

12)(109 m3)(2.248><10_1 Ej —4.4%10° 1b
m N) =———

w =(1.962><10—3



Problem 1.31

A tank of oil has a mass of 25 slugs. (a) Determine its weight in pounds and in Newtons at
the Earth’s surface. (b) What would be its mass (in slugs) and its weight (in pounds) if

located on the moon’s surface where the gravitational attraction is approximately one-sixth
that at the Earth’s surface?

Solution 1.31

a) weight =massxg

2
=(25s1ugs)(32.23j Ho-s™ 1 _ g5 1b
s2 )| 1slug-ft

2
=(25slugs)| ——= || 9.81— =
255l 14'5191‘% 981“;1 IN-s™ | 350N

I'slug s= )l 1kg-m

b) mass = 25slugs (mass does not depend on gravitational attraction)

weight = @ =1341b




Problem 1.32

A certain object weighs 300 N at the Earth’s surface. Determine the mass of the object (in
kilograms) and its weight (in newtons) when located on a planet with an acceleration of

gravity equal to 4.0 ft/ s2.

Solution 1.32
_ weight 300N

& 9817
S

mass

=30.6kg

Forg= 4.0f—;,
S

2
weight=(3O.6kg)(4.0£j(0.30482] IN-S” | 373N
g2 ft )l 1kg-m



Problem 1.33

The density of a certain type of jet fuel is 775 kg/m3. Determine its specific gravity and
specific weight.

Solution 1.33

SG=— P M _(775
PHO@4°C 1000

m3

y=pg= (775 k—%J(QSI%) _7.60 N
m S




Problem 1.34

At 4°C a mixture of automobile antifreeze (50% water and 50% ethylene glycol by volume)

has a density of 1064 kg/m3 . If the water density is 1000 kg/m3, find the density of the
ethylene glycol.

Solution 1.34

(meg +m, j
(pmixture )4°C _ v 4ec My, +m

_ _ eg w

(pwater) o B . - m,,
4°C ( j
\v/ 40C

where m,, is the mass of the pure water in volume #- at 4°C.

Then
0.5V)+ 0.5V +
g _ Peg(0:59) +p,, (0.57) zo‘s(peg Py ]
pwv pW
The problem statement gives
ol
S = Pmixture _ l’lil ~1.064
P 10005
m
+
> 1.064 = 0.5£Mj
pr
1.064 kg \(1.064
> o= 511000 ) 15571)
kg
. =1130-%
Peg 3

DISCUSSION If the mixture were at some temperature 7', then for equal volumes of
mixture and 4°C water,

g (meg +mw)T _ 0.5 (peg * Py )T

(mw )4°C (pw )4°C




Problem 1.35

A hydrometer is used to measure the specific gravity of liquids. For a certain liquid, a
hydrometer reading indicates a specific gravity of 1.15.What is the liquid’s density and
specific weight? Express your answer in SI units.

Solution 1.35

SG=—F
PH,0@4°C
Lis=—F—
1000 =5
m
p=(1.15)[1000 k—%j:usok—%
m m

kg m [ 1N s kN
=pg=|1150 —= || 9.81— =11.3—
V=P8 ( m3}( s2j£1kg-mJ m3



Problem 1.36

An open, rigid-walled, cylindrical tank contains 4 ft°>of water at 40 °F. Over a 24-hour
period of time the water temperature varies from 40 to 90 °F. Make use of the data in
Appendix B to determine how much the volume of water will change. For a tank diameter
of 2 ft, would the corresponding change in water depth be very noticeable? Explain.

Solution 1.36

mass of water =V x p
Amount ot mass is not a function of temperature.
Va0 X Page =M=V gp0 X Pgqye

From Table B.1 Physical Properties of Water (BG/EE Units)

slugs
PH,0@40°F = 1.940 0
t
slugs
t
Therefore,
(415 )(1.940 Sl“fsJ
Yop = 1 " ) _ 4018613
1.931 58
ft

Thus, the increase in volume is: AV =4.0186—-4.000=0.0186 ft>

AV 0.0186 ft?

T 2
Z(2 ft)

This small change in depth would not be very noticeable. No.

For a tank diameter of 2 ft: Ah = ~5.92x107> ft =0.0710 in.

Note: A slightly different value for Ah will be obtained if specific weight of water is used
rather than its density. This is due to the fact that there is some uncertainty in the
fourth significant figure of these two values, and the solution is sensitive to this un-
certainty.



Problem 1.38

A mountain climber’s oxygen tank contains I 1b of oxygen when he begins his trip at sea level
where the acceleration of gravity is 32.174 ft/s*>. What is the weight of the oxygen in the tank
when he reaches the top of Mt. Everest where the acceleration of gravity is 32.082 ft/s>?

Assume that no oxygen has been removed from the tank; it will be used on the descent
portion of the climb.

Solution 1.38
W =mg

Let () , denote sea level and (), . denote the top of Mt. Everest

Thus,
Wy =1Ib=myug
and

Wyie = Mane e

hat si w
However my = my,p so that since m=—,

g
or
12,082
Wyyp =W, SME —11b S —0.99711b



Problem 1.39

The information on a can of pop indicates that the can contains 355 mL. The mass of a full
can of pop is 0.369 kg, while an empty can weighs 0.153 N. Determine the specific weight,
density, and specific gravity of the pop and compare your results with the corresponding
values for water at 20 °C. Express your results in SI units.

Solution 1.39

_ weight of fluid
~ volume of fluid

2
totalweight:massxg=(0.369kg)(9.813j IN-S” | 360N
s2 )| 1kg-m

weight of can=0.153 N

1m’

2

volume 0fﬂuid=(355><10_3 L)[ L}:355X10_6 m’

Therefore,
:3.62N—0_.61533N:9770£3
355%x10"° m m
N
9770 5
3 . .
p=lo—m _ge NS lkem_gqs ke
g 981E m I1N-s m
815 __m
9961%
sG=—F  _ m— 0996
PHo@4'c 10002

m3

For water at 20 °C (see Table B.2 Physical Properties of Water [SI Units])

YHo = 9789%; pio=9982 %8
m - m

SG =0.9982

A comparison of these values for water with those for the pop shows that the specific
weight, density, and specific gravity of the pop are all slightly lower than the corresponding
values for water.



Problem 1.40

The variation in the density of water, p, with temperature, 7 , in the range
20 °C < T <50°C, is given in the following table.

Density (kg/m?) |998.2[997.1]995.7 | 994.1 | 992.2990.2 | 988.1

Temperature (°C) | 20 | 25 | 30 | 35 | 40 | 45 | 50

Use these data to determine an empirical equation of the form p= ¢, + ¢,T + ;T which

can be used to predict the density over the range indicated. Compare the predicted values
with the data given. What is the density of water at 42.1 °C?

Solution 1.40

Fit the data to a second order polynomial using a standard curve-fitting program such as
found in Excel. Thus,

p,=1001-0.0533T —0.0041T2
As shown in the table below, p (predicted) from Eq.(1) is in good agreement with p (given).

T  p-predict p-data
(°C) (kg/m”3) (kg/m”"3)
20 998.3 998.2
25 997.1 997.1
30 995.7 995.7
35 994.1 994.1
40 992.3 992.2
45 990.3 990.2
50 988.1 988.1

kg
m3

AT = 42.1°C: p=1001-0.0533(42.1°C)—0.0041(42.1°C)* =991.5



Problem 1.41

If 1 cup of cream having a density of 1005 kg/m3 is turned into 3 cups of whipped cream,
determine the specific gravity and specific weight of the whipped cream.

Solution 1.41

ke
g
Noting that the mass is the same in liquid and in “whipped” form,

Mass of cream, m = [1005 jx(pr ), were V = volume.

My hipped (1005 k%j chp 1005 ke
Pupio g =SS m _m’_j35ke
whippe
creaI:rI: V3 cups V3 cups 3 1’1’13

Pwhipped 335 L%

SG=—"2m - m- _0.335
PH,0@4°C 10001&3
m

kg m ) 1N s N
Ywhipped = Pwhipped * 8 = (335 _3j(9-81 _zj[ ] =3,290 3

cream cream m S 1 kg -m m



Problem 1.42

With the exception of the 410 bore, the gauge of a shotgun barrel indicates the number of
round lead balls, each having the bore diameter of the barrel, that together weigh 1 Ib. For

example, a shotgun is called a 12-gauge shotgun if a é-lb lead ball fits the bore of the

barrel. Find the diameter of a 12-gauge shotgun in inches and millimeters. Lead has a
specific weight of 0.411 Ib/in®.

Solution 1.42

1
weight 12 b

Viall =
4 (0.41 1_”"2)

m.

=0.20276in.>

3
47 R o R- 3_‘v’
4

3(0.20276 in.3)
R=7% —0.3644in.

4r

For a sphere: V=

D =0.729 in.

D=0.729 in.(M}

1mn.

| D =18.5mm |




Problem 1.44

A regulation basketball is initially flat and is then inflated to a pressure of approximately

24 1b/in? absolute. Consider the air temperature to be constant at 70 °F. Find the mass of
air required to inflate the basketball. The basketball’s inside radius is 4.67 in.

Solution 1.44

m:ﬂ:L(iﬂst
RT RT\3

(o (5]

(1716 ft-1b )

(460+70)°R
slug®R

| m=0.000938slug |




Problem 1.45

Nitrogen is compressed to a density of 4 kg/m3 under an absolute pressure of 400 kPa.
Determine the temperature in degrees Celsius.

Solution 1.45

400><10-°’l2
7= _ m —337K

R 1 N-m
p (4 kg] 2068 1 s
1'1'13 kg~K 1J

To =Ty -273=337K-273=64"C




Problem 1.46

The temperature and pressure at the surface of Mars during a Martian spring day were de-
termined to be —50°C and 900 Pa, respectively. (a) Determine the density of the Martian
atmosphere for these conditions if the gas constant for the Martian atmosphere is assumed
to be equivalent to that of carbon dioxide. (b) Compare the answer from part (a) with the

density of the Earth’s atmosphere during a spring day when the temperature is 18°C and
the pressure 101.6 kPa (abs).

Solution 1.46

» 900§2 ke
a) PMars = RT = I 1 Nom m = 002145
g.
) 101.6x10° EZ ke
_ _ m _
b) PEarth = RT - J | N:m - 122?
[286.9 kKj(ﬁ}[(lS Ve +273)K}
g.
0.0214 X8
pMars III3
Thus, = =0.0175=1.75%

PEarth 122 ke

1’1’13



Problem 1.47

A closed tank having a volume of 2 ft* is filled with 0.30 Ib of a gas. A pressure gage attached
to the tank reads 12 psi when the gas temperature is 80 °F. There is some question as to
whether the gas in the tank is oxygen or helium. Which do you think it is? Explain how you
arrived at your answer.

Solution 1.47

Density of gas in tank p = weight 0.301b =4.66x107° slugs

o 3
g xvolume (32.2 %](2 ft3) ft
S

Since p= % with p = (12 + 14.7) psia (atmospheric pressure assumed to be ~ 14.7 psia) and
with 7 = (80 °F+460)°R it follows that

- 2
[26.7 lsz 144 7
in ft® ) 7.12 slugs

R(540)°R R ft’

p= @)

From Table 1.7 Approximate Physical Properties of Some Common Gases at Standard
Atmospheric Pressure (BG Units)

ft-1b

o

ft-1b
slug-°R

R=1.554x10° for oxygen ... and ... R =1.242x10% for helium.

slug-

Thus, from Eq.(1) if the gas is oxygen

7.12  slugs _3 slugs
= =4.58x107" —=
P 554x10° 0 fit?
and for helium
7.12  slugs _4 slugs
= =5.73x10
SR YCITIE fit?

A comparison of these values with the actual density of the gas in the tank indicates that
the gas must be oxygen.



Problem 1.48

Assume that the air volume in a small automobile tire is constant and equal to the volume
between two concentric cylinders 13 cm high with diameters of 33 cm and 52 ¢cm. The air in
the tire is initially at 25°C and 202 kPa. Immediately after air is pumped into the tire, the
temperature is 30°C and the pressure is 303 kPa. What mass of air was added to the tire?
What would be the air pressure after the air has cooled to a temperature of 0 °C?

Solution 1.48

The mass of air added to the tire is the difference of the final mass of @ jh

air my and the initial mass ;. Assuming air is an ideal gas,

h=13cm
g . dy=zr; =33
mf_ml.{Lv) _(ij =X[P_f_&j.
RT ), \RT ), R\T; T,

1

Now

v =(if =1 Jhi= 7| (26em) —(16.5cm)1(13cm)( L m T

100cm
=0.0165m".
N
3 —
I (0.0165m°) T 303k  202kpa |12
L g g Nem |[(273430)K (273425)K || kPa
T kg-K

my —m; =0.0185kg

Now consider the cooling process. The initial state will be 30°C and 303kPa. The final state
will be 0°C and p. Applying the ideal gas law to both states gives

Since Vf =V,

T, 273+0

f

. =p.| == |=(303kPa =|p,=273kPa
Py p,(Ti] ( )(273+30] Py




Problem 1.49

A compressed air tank contains 5 kg of air at a temperature of 80°C . A gage on the tank
reads 300 kPa. Determine the volume of the tank.

Solution 1.49

mass
volume =
Yo
(300+101)><103ﬁ3
p=-t-= = ~396 <2
RT ] 1 Nm m3
286.9 —— || —— |[(80 °C+273)K |
kg-K 1J
volume = Ski =126 m’>
3.96 -2

m3



Problem 1.50

A rigid tank contains air at pressure of 90 psia and a temperature of 60 °F. By how much
will the pressure increase as the temperature is increased to 110 °F?

Solution 1.50
p=pRT

For a rigid closed tank, the air mass and volume are constant so p= constant. Thus, from
the equation above (with R constant)

L&)
A _ 12 1
T (1)

where p; =90 psia, 7} = 60 °F +460 = 520 °R,
and 7, =110 °F+460=570 °R.

From Eq.(1)

T, (570°R
=N =

= 90 psia)=98.7 psia
T, 520°R]( psia) =98.7 psia



Problem 1.51

The density of oxygen contained in a tank is 2.0 kg/m3 when the temperature is 25 °C.
Determine the gage pressure of the gas if the atmospheric pressure is 97 kPa.

Solution 1.51

k J
p=pRT = (2,0 %)(259_8 ﬁj[(zs °C+273) K |=155kPa (abs)
m g

p(gage) =P, — P, =155 kPa—-97 kPa =58 kPa




Problem 1.52

The helium-filled blimp shown in the figure below is used at various athletic events. Deter-

mine the number of pounds of helium within it if its volume is 68,000 ft* and the tempera-
ture and pressure are 80 °F and 14.2 psia, respectively.

Solution 1.52
W = yV where V' = 68000 ft> and y=pg= (%Jg
Thus,

-2 2
. fit
m 22— |-

: ot
((1.242><104 1o j(80+460) °Rj ;

slug -

2
142 1 (144 m'j

sug |16 1_g 655103 12
ft? .52 (slugftj ft>

S2

~9.82x107°

Hence,

3 1—'33(68000 ft3) =668 1b

ft .

W =9.82x10"



Problem 1.53

Develop a computer program for calculating the density of an ideal gas when the gas pres-
sure in Pascals (abs), the temperature in degrees Celsius, and the gas constant in J/kg-K are
specified. Plot the density of helium as a function of temperature from 0 °C to 200 °C and
pressures of 50, 100, 150, and 200 kPa (abs).

Solution 1.53

For an ideal gas

p=pRT

so that
__P

r RT

where p is absolute pressure, R the gas constant, and 7" is absolute temperature. Thus, if the
temperature is in °C then

T=°C+273.15K

A spreadsheet (EXCEL) program for calculating p follows.

This program calculates the density of an ideal gas when the absolute
pressure in Pascal, the temperature in degrees C, and the gas
constant in J/kg-K are specified. To use, replace current values with
desired values of temperature, pressure, and gas constant.

A B C D
Pressure | Temperature Gas constant Destiny
Pa °C J/kgK kg/m?
1.01E+05 15 286.9 1.22
/ -
Formula:
=A10/((B10+273.15)*C10)
| |

Example: Calculate p for p =200 kPa, temperature = 20 °C, and R =287 kL

g-K



This program calculates the density of an ideal gas when the
absolute pressure in Pascal, the temperature in degrees Celsius,
and the gas constant in J/kg-K are specified. To use, replace
current values with desired values of temperature, pressure, and
gas constant.

A B C D
Pressure Temperature Gas constant Destiny

Pa °C J/kgK kg/m?
2.00E+05 20 287 2.38

The density of helium is plotted in the graph below.

Density of Helium
0.40

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

= p = 200 kPa(abs)
kg/m3
- = =150

====100

- = =50




Problem 1.55

For flowing water, what is the magnitude of the velocity gradient needed to produce a shear

N
stress of 1.0 —2?
m

Solution 1.55

r:,u@ where,u=1.12><10_3 NS and 7=1.0 N
dy m2 m2
Thus,
o N
du 7 m2 1
—=—= =893 —
dy iy qpxie? NS s




Problem 1.56

Make use of the data in Appendix B to determine the dynamic viscosity of glycerin at 85 °F.
Express your answer in both SI and BG units.

Solution 1.56

To = %(TF -32)= %(85 °F-32)=29.4°C

From the figure in Appendix B:

,u(glycerin at 85 °F (29.4 °C)) ~0.6 % (ST units)

N-s 2 ft? 2 1b-s ,
m t
1’1’12




Problem 1.57

One type of capillary-tube viscometer 1s shown in the figure be-

low. For this device the liquid to be tested is drawn into the Stregt"’ﬁgmn ¢ Lt
tube to a level above the top etched line. The time is then ob- bridge

tained for the liquid to drain to the bottom etched line. The

kinematic viscosity, v, in m?/s is then obtained from the equa-

tion v= KR*t where K is a constant, R is the radius of the ca-

pillary tube in mm, and ¢ is the drain time in seconds. When Capillary
glycerin at 20 °C is used as a calibration fluid in a particular

viscometer, the drain time is 1430 s. When a liquid having a

density of 970 kg/m3 is tested in the same viscometer the drain

time 15 900 s. What is the dynamic viscosity of this liquid?

Solution 1.57

y= KR
m2
For glycerin @ 20 °C v=1.19x107 == (KR4)(1430 5)
S
2
=8.32x1077 -
S
For unknown liquid with =900 s
2 2
v :{8.32x10_7 m—2](9oo $)=7.49x107* T
S S

2 2
By definition: v=% — 4= (970 ng(7 49x1074 J 0.727 K& (N5
o, m s m-s lkg-m

1= 0727E

m

Etched lines



Problem 1.58

The viscosity of a soft drink was determined by using a

capillary tube viscometer shown in the figure. For this device

the kinematic viscosity, v, is directly proportional to the time, 7, Glass

that it takes for a given amount of liquid to flow through a strepgfening 7

small capillary tube. That is, v = Kz. The following data were

obtained from regular pop and diet pop. The corresponding Etched lines
measured specific gravities are also given. Based on these data,

by what percent is the absolute viscosity, u, of regular pop Capillary

, tub
greater than that of diet pop? e

Regular pop Diet pop
1(s) 377.8 300.3
SG 1.044 1.003

Solution 1.58

% greater = [W} 100 = Uﬁ—l}loo
diet diet

By definition v =%, and p=(SG) py7 0 @4 °c-
» :

Given v=kt:

V) txSG
% greater = [%—IIXIOO = [ﬂ—lixloo = {(377'8 S)(1'044) —l}xIOO

(vp)dl.el (300.3'5)(1.003)
% greater =31.0 %



Problem 1.59

The viscosity of a certain fluid is 5 x 107 poise. Determine its viscosity in both SI and BG
units.

Solution 1.59

. -1 N-
From Appendix E, | poise =10 ! —28
m
ot NS
2 .
Thus, u = (5 x107* poise) M 54107 &
1 poise m?

From Table 1.4 Conversion Factors from SI Units to BG and EE Units (end paper)

2.089x102 125

_ -5 N-s ft= |_ —7 Ib-
,u—(leO 2] 1N~s =10.4x10 "
2
m




Problem 1.60

2
The kinematic viscosity and specific gravity of a liquid are 3.5 x 104 ™ ando7 9, respec-
S
tively. What is the dynamic viscosity of the liquid in SI units?

Solution 1.60
H=Vp

p:(SG)(pHZO @4°c)

( 2 2 .
1=135x10* P 079x10° X&| Zg077 K& (INST 50y NS
k J m. m-s lkg-m m?



Problem 1.61

A liquid has a specific weight of 59 1b/ft> and a dynamic viscosity of 2.75 1b-s/ft>. Determine
its kinematic viscosity.

Solution 1.61

By definition: v = ﬁ, and p= Z,
P 4




Problem 1.62

The kinematic viscosity of oxygen at 20°C and a pressure of 150kPa (abs) is 0.104 stokes .
Determine the dynamic viscosity of oxygen at this temperature and pressure.

Solution 1.62

y=£
P
150x10° =
- P _ m _ kg
PoRT 7 VIN =1.97 =%
259.8 T [(20 °C+273)K ] m
kg-K 1]

2

v =0.104 stokes = 0.104 <
S

P 2
cm I m kg
=vp=|0.104 1.97 ==
H=w ( S }[100cm]( m3)
N-s

2
Ke INS ) psx1078
m-s lkg-m m

S

=2.05x107° :




Problem 1.63

Fluids for which the shearing stress, 7, is not linearly related to the rate of shearing strain, y,
are designated as non-Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior. Some experimental data obtained for a particular non-Newtonian fluid
at 80 °F are shown below.

d(b/f?) | 0 | 2.11]7.82|18.5]31.7
ps) [0 |50 100 | 150 |200

Plot these data and fit a second-order polynomial to the data using a suitable graphing pro-

gram. What is the apparent viscosity of this fluid when the rate of shearing strain is 70 s™2
Is this apparent viscosity larger or smaller than that for water at the same temperature?

Solution 1.63

7= 0.000852 + 0.00357

Rate of Shearing 40
shearing stress, &
strain, 1/s 1b/sq ft 2 30
0 0 ¢ 2
50 2.11 o
100 7.82 E 10
150 18.5 &
200 31.7 N
0 50 100 150 200

Rate of shearing strain, 1/s

From the graph 7 = 0.00087?2 +0.0035y where 7 is the shearing stress in ;—2 and y is the rate
t

of shearing strain in s F itting a second-order polynomial to the data yields:

dr

Happarens = = (2)(0.0008) 7 +0.0035

Aty=70s""

2
Happarent =(2)£0.0008 Ib-s j(70 s7)+0.0033 1b_2s:0_116 Ib-s

ft? ft ft?
From Table B.1 Physical Properties of Water (BG/EE Units)

_s5 lb- . . . . .
Hu,0 @80 oF =1.791x10 > f_zs Water is a Newtonian fluid so this value is independent of
’ t

y. Thus, the viscosity of the non-Newtonian fluid when sheared at a rate of 70 s is much
larger than the viscosity of water at 80 °F.



Problem 1.64

Water flows near a flat surface and some measurements of the water velocity, u, parallel to
the surface, at different heights, y, above the surface are obtained. At the surface y=0.
After an analysis of the data, the lab technician reports that the velocity distribution in the
range 0 < y < 0.1 ft is given by the equation

u=0.81+92y+4.1x10°)>
with u in ft/s when y is in ft. (a) Do you think that this equation would be valid in any sys-
tem of units? Explain. (b) Do you think this equation is correct? Explain.

Solution 1.64

(a)
u=0.81+9.2y+4.1x10° )*

(LT = [0.81]+[9.2][L]+[ 4.1x10° | 1]

Each term in the equation must have the same dimensions. Thus, the constant 0.81
must have dimensions of LT_I, 9.2 dimensions of T_l, and 4.1x10° dimensions of

LT, Since the constants in the equation have dimensions their values will change
with a change in units. No.

: : ft .
(b) Equation cannot be correct since at y=0 u=0.81—, a non-zero value which
S

would violate the “no-slip” condition. Not correct.



Problem 1.65

Calculate the Reynolds numbers for the flow of water and for air through a 4-mm-diameter
tube, if the mean velocity is 3m/s and the temperature is 30°C in both cases. Assume the
air is at standard atmospheric pressure.

Solution 1.65
For water at 30 °C (from Table B.2 Physical Properties of Water [SI Units]):

p=995.7 k—g3
m
1=7.975x107 N—ZS
m
(995 7 1@)(3mj(0 004 m) )
7 =5 . |
Re=2VD _ m-J\ S s «INST 15000
“ 7.975x107* =2 tkg-m
m

For air at 30 °C (from the Physical Properties of Air at Standard Atmospheric Pressure
[SI Units]):

p=1.165 k-%
m
11=1.86x107 N—zs
m
(1 165 kg)(smj(o 004 m) )
. : : .
Re_ PVD _ ' s ) _INs 752
H 1.86x107° 2 lkg-m

m2



Problem 1.66

SAE 30 oil at 30°F flows through a 2-in.-diameter pipe with a mean velocity of 5 ft/s.
Determine the value of the Reynolds number.

Solution 1.66

slugs
p=1717
ft>
Ib-s
=8.0x107° —=>
# ft
(1 - slugs][sftj[ 2 ft)
' 3 s\ 12 .52
Re=’0VD= ft ib 12 9 Ilb-s ~ 184
M 80x10—3 TS ISh,lgft

ft



Problem 1.67

For air at standard atmospheric pressure, the values of the constants that appear in the
3/2

Sutherland equation u = 3 are C =1.458x107° kg/(m-s-K”z) and S =110.4 K. Use

these values to predict the viscosity of air at 10 °C and 90 °C and compare with values given
in the table Physical Properties of Air at Standard Atmospheric Pressure (SI Units).

Solution 1.67

(1.458><10—6 k*‘;ij”
m-S-

3
2
S T+110.4 K

_CT
a T+

For T =10 °C > T=10+273.15 K =283.15 K,

-6 kg 3
1.458x1077 ——=—~ (283.15K)2
1= m-s-K
283.15 K +110.4K
2
1 =1765x107 K& g3 ANST 560 g5 Nos
m-s- 1kg-m m?>
5 N-
From the table, £=1.76 x10 > —2S
m

For T'=90 °C =90 °C+273.15=363.15 K,
(1.458x107°)(363.15)

M= ~2.13x107 NS
363.15+110.4 3
From the table, z7=2.14x107 -5

m2



Problem 1.68

Use the values of viscosity of air given in the table of Physical Properties of Air at Standard

Atmospheric Pressure (SI Units) at temperatures of 0, 20, 40, 60, 80, and 100 °C to deter-
732

+S°

mine the constants C and S, which appear in the Sutherland equation ;=

Compare your results with the values given in Problem 1.67.

T3/2 1 S 3/2
(Hint: Rewrite the equation in the form —— = (—j T +E and plot —— versus 7'. From the
U u

slope and intercept of this curve, C and S can be obtained.)

Solution 1.68
3

32 T2 (1 S
Equation u = TS can be written in the form — = (EJT +E (D)
U

Entering the specified temperatures and the corresponding viscosities from the table yields
the 1*t and 3" columns in the following table. The 2" column is a conversion of the temper-
atures to an absolute scale and the 4™ column contains the values of the LHS of Eq. 1 for
these temperatures and viscosities.

r(c) T(K)

N-s 32| g3
&)

e
m-s

0 273.15 1.71x10° 2.640%x108
20 293.15 1.82%x107 2.758%108
40 313.15 1.87x10° 2.963%x108
60 333.15 1.97%x10° 3.087x108
80 353.15 2.07x10° 3.206x108
100 373.15 2.17%x10° 3.322x108

3/2
Plotting —— versus. T yields:
u
3.5x 10¢
3.3x10¢
3.1x108
T3/2
H 29x108
2.7 x 108 hd
2.5x 108

240 273 293 313 333 353 373 400
T (K)



A polynomial of order one, which is a straight line, would be a reasonable fit for the data.
Using Excel to determine the constants for a fit of the data to a straight line given by

y=bx+a
3/2
where x =T, y:T—, b:l, andazﬁ.
Y7, C C
yields: y=6.969x10°x+7.441x10".
Therefore: é =bh=6.969x10°
C=143x10" Lm
(m-s-K )
And %=a=7.441x107
S=107 K

These values for C and S are in good agreement with values given in Problem 1.67.



Problem 1.69

The viscosity of a fluid plays a very important role in determining how a fluid flows. The
value of the viscosity depends not only on the specific fluid but also on the fluid tempera-
ture. Some experiments show that when a liquid, under the action of a constant driving
pressure, is forced with a low velocity, I, through a small horizontal tube, the velocity is
given by the equation V' = % . In this equation K is a constant for a given tube and pres-

sure, and g is the dynamic viscosity. For a particular liquid of interest, the viscosity is given
by Andrade’s equation
B
= DeT

with D=5x10"" Ib- s/ ft> and B = 4000 °R. By what percentage will the velocity increase as
the liquid temperature is increased from 40 °F to 100 °F? Assume all other factors remain
constant.

Solution 1.69

K
V400 = (1)
Hape
K
Vooe = (2)
Hio0°
% increase in V' = {M} x100 = [m—l} x100
V400 V400
and from Eq. (1) and (2)
K
% increase in V' = &—1 xlOO:[M—I}dOO (3)
K Hape
'u40°
From Andrade’s equation
4000
Ly =5 % 1077 o(40 °F+460)
and
4000
/11()00 — 5 % 10_76(100 °F+460)
Thus, from Eq. (3)
4000
=7 6 500
% increase in V' = 5><1()—2000_1 x100=136 %

5%x1077 ¢ 560



Problem 1.70

Use the value of the viscosity of water given in Table B.2 Physical Properties of Water (SI
Units) at temperatures of 0, 20, 40, 60, 80, and 100 °C to determine the constants D and B

which appear in Andrade’s equation x = DeP'T . Calculate the value of the viscosity at 50 °C
and compare with the value given in the table above. (Hint: Rewrite the equation in the

formIn u = (B )% +In D and plot In g versus 1/T. From the slope and intercept of this curve,

B and D can be obtained. If a nonlinear curve-fitting program is available, the constants

can be obtained directly from Andrade’s equation x = De

equation.)

Solution 1.70

Equation u= De

Inpu= (B)%-l— InD

can be written in the form

()

and with data from the table in the problem:

BIT without rewriting the

R 1 N-s
T ( C) T (K) T (K) Yz, [FJ In 1
0 273.15 3.661x107* 1.787x1073 -6.327
20 293.15 3.411x1073 1.002x1073 -6.906
40 313.15 3.193x107? 6.529x107 -7.334
60 333.15 3.002x1073 4.665x10* -7.670
80 353.15 2.832x1073 3.547x107* —7.944
100 373.15 2.680x1073 2.818x107* -8.174

A plot of In u versus 1 1s shown below:

Inu

-7.0

-6.0

20x1073

3.0x 1073

4.0 x 1073 7(Kk)



Although there appears to be a slight curvature to the data in the semi-log plot, it also ap-
pears to be reasonably well approximated by a straight line as would be expected for data

that follows a n exponential law. Using an exponential law (y = ae’™ ) fit in Excel, (which is
the same as fitting a straight-line on a semi-log plot), yields:

D=a=1.767x107° N—;
m

and

B=b=1870x10° K

so that

1870
1=1.767x10"% T

1870
6 29212 4 N-s
At 50 °C (323.15K), £ =1.767x107"¢323.15 =576 x10 —
m

. 4 N-s

From the table in the problem, x# =5.468x10 —

m



Problem 1.71

For a certain liquid ¢ =7.1x 107 lb-s/ft2 at40 °Fand =19 x 107 lb-s/ftzat 150 °F.
Make use of these data to determine the constants D and B, which appear in Andrade’s
equation p = De®'T What would be the viscosity at 80 °F?

Solution 1.71

quDeB/T
_5 Ib-
At T =(40 °F+459.67) = 499.67 °R, £=7.1x10 > %, and
t
at T = (150 °F +459.67) = 609.67 °R, £ =1.9x107 1;’—'25.
t
Take the logarithm of both sides of the equation = DeP'T 1o yield
1
Ingu=B|— |+InD 1
1z (Tj (1)
Substitute above values of xand T into Eq. (1) to give
ln(7.1x10_5):B( ]+lnD )
499.67
1n(1.9><1()_5):B( j+lnD (3)
609.67

and solve Egs. (2) and (3) simultancously for B and D.
Subtract Eq. (3) from Eq. (2) to give

5
| 710 :B( o1 j-) B=3650 K.
1.9x107° 499.67 609.67) ————

Substitute this value of B into Eq. (2) to yield

1n(7.1><10_5)=3650( j+lnD—) D=477x10°8 125,
499.67 %)

AtT =80 °F+459.67 =539.67 °R

3650 b-s
u=477x10"853967 =4.13x107° —>

ft?




Problem 1.72

For a parallel plate arrangement of the type shown in the figure below it is found that when
the distance between plates is 2 mm, a shearing stress of 150 Pa develops at the upper plate
when it is pulled at a velocity of 1 m/s. Determine the viscosity of the fluid between the
plates. Express your answer in SI units.

U da
. .,
T =  —
BI // B’
—u> : /
b 7/ |/
y — I //
.
AN
Ay B
)) ( Fixed plate
Solution 1.72
'udy ,Ub
150 N N
U= = m___—0.300 —
v 1E m
5) [ 1



Problem 1.73

Two flat plates are oriented parallel above a fixed lower plate as shown in the figure below.
The top plate, located a distance » above the fixed plate, is pulled along with speed V. The
other thin plate is located a distance ch, where 0 < ¢ < 1, above the fixed plate. This plate
moves with speed V|, which is determined by the viscous shear forces imposed on it by the
fluids on its top and bottom. The fluid on the top is twice as viscous as that on the bottom.
Plot the ratio 7/ /V as a function of ¢ for0 < ¢ <1.

2u

Solution 1.73
For constant speed, ¥}, of the middle plate, the net force on the plate is 0, Hence,

Foop = Fooriom Where F = 74. Thus, the shear stress on the top and bottom of the plate must
be equal.
du
Tiop = Thottom where 7= Iud_y (1)
V-
For the bottom fluid du = ﬂ, while for the top fluid du = ( 1).
dy ¢b dy b-ch

"

Hence, from Eqn. (1), (2#) (V_Vl) = (,U) b

b(1-c)
"
2cV—2cV1=V1—cV1-)7=

2c
c+1
Note: ¢c=0— ﬁ=O, c:laﬂzz, c:1—>ﬁ:1
V 2 VvV 3 V
1.0

0.8

0.6

—

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0




Problem 1.74

Three large plates are separated by thin layers of ethylene glycol and water, as shown in the
figure below. The top plate moves to the right at 2 m/s. At what speed and in what direction
must the bottom plate be moved to hold the center plate stationary?

Copper plate Water (20°C)
o 2mls
0.1cm} ]
X Plastic
0.2cm plate
Steel plate Ethylene glycol (20°C)
Solution 1.74
The center plate is stationary if F/; = F, (see image). Assuming Vi
Newtonian fluids and thin layers, S g
F, e,
2 hy
du V —
F=u — = u— v,
dy center h
plate
SO
Vi Vs
=== 7=
hy hy
or

o) (e e

_ N-s
From the liquid properties table: z,, =1.99x10 2 N— and g, =1.00x10" -3 —-
m? m
1.00x103 2%
m 0.2cm m
1.99x1072 =2 [\ DML S
m

Vy =0.2012, left.
S




Problem 1.75

There are many fluids that exhibit non-Newtonian behavior. For a given fluid, the distinc-
tion between Newtonian and non-Newtonian behavior is usually based on measurements of
shear stress and rate of shearing strain. Assume that the viscosity of blood is to be deter-

) ) . du )
mined by measurements of shear stress, r, and rate of shearing strain, o obtained from a
y

small blood sample tested in a suitable viscometer. Based on the data given below, deter-
mine if the blood is a Newtonian or non-Newtonian fluid. Explain how you arrived at your
answer.

r(N/m?) | 0.04 ‘ 0.06 | 0.12 | 0.18 ‘ 0.30 | 0.52 ‘ 1.12 | 2.10

duldy (s™) | 2.25 ‘ 4.50 | 11.25 | 22.5 ‘ 45.0 | 90.0 ‘ 225 | 450

Solution 1.75

) . . du . )
For a Newtonian fluid the ratio of r to - is a constant. For the data given:
24

T

duldy

(N : s/mz)

0.0178 ‘ 0.0133 ‘ 0.0107 ‘ 0.0080 ‘ 0.0067 ‘ 0.0058 ‘ 0.0050 ‘ 0.0047

The ratio is not a constant but decreases as the rate of shearing strain increases. Thus, this
fluid (blood) is a non-Newtonian fluid.

NOTE: The behavior of many non-Newtonian fluids can be well approximated by a pow-
er-law relationship. If that is true for this fluid, on a log-log plot the relationship between
shear stress and strain rate should be a straight line.

10.0
1.0
7 (N/m2)
0.1
0.0
1 10 100 1,000
du 1
dy’s

It appears that for this sample, the blood indeed is well represented by a power-law.



Problem 1.76

The sled shown in the figure below slides along on a thin horizontal layer of water between
the ice and the runners. The horizontal force that the water puts on the runners is equal to
1.2 Ib when the sled’s speed is 50 ft/s. The total area of both runners in contact with the

water is 0.08 ft>, and the viscosity of the water is 3.5x10™ 1b- s/ ft*. Determine the thick-
ness of the water layer under the runners. Assume a linear velocity distribution in the water
layer.

Solution 1.76
F (force)=71A4

T= ,uﬂ = ,uK where d = thickness of water layer.
dy d
Thus,
F=u—A4
and
> (3.5x10_5 lb'zsj[so ftj(o.os )
d=4_ ft 5 ~11.7x107 ft

F 1.21b



Problem 1.77

A 25-mm-diameter shaft is pulled through a cylindrical bearing as shown in the figure
below. The lubricant that fills the 0.3-mm gap between the shaft and bearing is oil

having a kinematic viscosity of 8.0 x 104 m? / s and a specific gravity of 0.91. Determine the
force P required to pull the shaft at a velocity of 3 m/s. Assume the velocity distribution in
the gap is linear.

‘ Bearing ’ Lubricant
P
Shaft —_—

| 0.5m 1

Solution 1.77

where A = 7D x(shaft length in bearing) = 7D/

(velocity of shaft) ¥

(gap width) )

and 7= pu
so that
P :(ﬂ%](ﬂm) - (vp%](ﬁm)

Since p=vp= v SG (pH0@4oC)

(8 0x107* & j(o 91x10° kgj(3 S)(n)(o.ozs m)(0.5 m)

P=
(0.0003 m)

km IN-s?

P=286— =286 N
S lkg-m —




Problem 1.78

A hydraulic lift in a service station has a 32.50-cm-diameter ram that slides in a 32.52-cm-
diameter cylinder. The annular space is filled with SAE 10 oil at 20°C. The ram is traveling

upward at the rate of 0.10 m/s. Find the frictional force when 3.0 m of the ram is engaged in
the cylinder.

Solution 1.78

Modeling the oil as a Newtonian fluid: 0-10 mis

linear velocity profile aross gap.

~ 2R—>

m
(O.IOJ ]
% = 2 ~1000-. oo
Y (0.01em)| —2 s .
100cm

32.52cm

1=0.123Pa-s at 20 °C

r= (0.1z3ﬁ](10001) - 1z3i2

m? s m

F=td=7(2zRH)= (123%} 27(16.25cm) (3 m)( Im j

m 100 cm

Therfore,



Problem 1.79

A piston having a diameter of 5.48 in. and a length of 9.50 in. slides downward with a veloc-
ity V' through a vertical pipe. The downward motion is resisted by an oil film between the
piston and the pipe wall. The film thickness is 0.002 in., and the cylinder weighs 0.5 1b. Es-
timate V' if the oil viscosity is 0.016 lb-s/ ft%. Assume the velocity distribution in the gap is
linear.

Solution 1.79

e

Constant velocity — Y F,

ertical = 0
W =tA=trnD/l
du (velocity) 14

Linear velocity profile — Newtonian fluid - 7= y—= -
P #ay ™ (film thickness) *' &

Substitution yields:
V
W= u—|(zD/¢
(% Jiwr)
0.002
0.51b)] —— ft
/49 ( )( 12 ) ft

=0.00459 —

V: =
7Dy ﬂ(5'48 ft)(%o ft) 0.016 08 S
12 12 ft?




Problem 1.80

A 10-kg block slides down a smooth inclined surface as shown in the figure below. Deter-
mine the terminal velocity of the block if the 0.1-mm gap between the block and the surface
contains SAE 30 oil at 60 °F. Assume the velocity distribution in the gap is linear, and the

area of the block in contact with the oil is 0.1 m?>.

0.1 mm gap

Solution 1.80

Draw free body diagram to help resolve forces: ¥

Constant velocity — ZFX =0

Wsin@ =14 "

: : . . locit
Linear velocity profile — Newtonian fluid — 7 = ,u@ = U— (Ve 901 y) = ﬂK
dy * (film thickness) * b

where b is film thickness. Substitution yields:

W sin@= mgsin¢9=,u%A

m), . ..
. bmgsing_ 001 m)(0 kg)(9.81 Szj(sm20 ) s
pA (0.381\1'28](0.1 m?) lkg-m
m

V =0.0883 2
S



Problem 1.81

A layer of water flows down an inclined fixed surface with the velocity profile shown in the
figure below. Determine the magnitude and direction of the shearing stress that the water
exerts on the fixed surface forU=2 m/sand 4= 0.1 m.

2
Y

==

uw
U

Solution 1.81

Enforcing the no-slip boundary condition at the solid surface:

du d y ) (2 2yj

Thus, at the fixed surface (y = 0)

(2] .22
Oy =0 h

Thus

2 3 N-s m) 2
o =uU—=1.12x107" — || 2 — |——
=0 =12 ( m? j( S jO.lm

=4.48x1072 iz acting in direction of flow
m




Problem 1.82

Oil (absolute viscosity = 0.00031b- s/ft?, density = 50 Ibm/ft> ) flows in the boundary layer, as
shown in the figure below. The plate is 1 ft wide perpendicular to the paper. Calculate the
shear stress at the plate surface.

/ Edge of boundary layer

fr——
y T [«
0.01 ft F——> u=1500y-5 x 10°% x y3 ft/sec
——
Plate

Solution 1.82

Assuming a newtonian fluid, the shear stress on the plate by the oil is

For the given velocity profile:

u_lSOOy_5x106y3 L du 1500 15x10%)° (@j 1500 L
sec ~ sec-ft’ dy sec  sec-ft’ dy ), sec
Substitution yields:

- (0.0003ib~secj(lsooij _ 0.45&
ft sec S



Problem 1.83
Standard air flows past a flat surface, and velocity measurements near the surface indicate
the following distribution:

y (ft)

u (ft/s) ‘ 0.74 ‘ 1.51 ‘ 3.03 ‘ 6.37 ‘ 10.21 ‘ 14.43 ‘

0.005

0.01 ‘ 0.02 ‘ 0.04 ‘ 0.06 ‘ 0.08 ‘

The coordinate y is measured normal to the surface and u is the velocity parallel to the sur-
face. (a) Assume the velocity distribution is of the formu =C;y+C, y* and use a standard
curve-fitting technique to determine the constants C; and C,.

(b) Make use of the results of part (a) to determine the magnitude of the shearing stress at
the wall (y =0) and at y=0.05 ft.

Solution 1.83

(a) Use nonlinear regression program to obtain coefficients C; and C,. The program pro-
duces least squares estimates of the parameters of a nonlinear model. For the data
given,

C;=153s" and C, =4350 ft’s™!

(b) For a Newtonian fluid:
du d
T=p{——= ,U—(Cly + 3C2J’2) = HC +6uCyy
dy ~dy
At the locations specified:

y=0-—1=uC 2(3.74><10_7 lb—'zsj(m 1) ~572x107 l—bz
ft S ft

-7 Ib-s
ft?

y=0.05ft —>z‘=[3.74x10

S 2 ft2

j{1531+3(4350 - 1 j(o.os ft)z} —6.94x107 12
t7-s



Problem 1.84

A new computer drive is proposed to have a disc, as shown in the figure below. The disc is
to rotate at 10,000 rpm, and the reader head is to be positioned 0.0005 in. above the surface
of the disc. Estimate the shearing force on the reader head as a result of the air between the
disc and the head.

Stationary reader head 0.2-in.dia.

10,000 rpm iy
' %lo.ooos in.
Rotating disc
Solution 1.84
F =shear force on head = 74
Assuming a uniform and linear velocity profile:
T= ,u@ = ,ug =2 uR
dy b b
_7 1b-s
3.74x1077 =2
3 .
r= ft® [ 10000 L&V L min, 27 rad (3 ft)=1.57£
0.0005 min  60s  lrev )\12 ft?
12

2
F:TA:(1.57£)£(£&) —3.43x107% Ib
w2 )4\ 12 -



Problem 1.85
The space between two 6-in.-long concentric cylinders is filled with glycerin

(viscosity = 8.5 x 107 1b- s/ i ). The inner cylinder has a radius of 3 in. and the gap width
between cylinders is 0.1 in. Determine the torque and the power required to rotate the inner
cylinder at 180 rev/min. The outer cylinder is fixed. Assume the velocity distribution in the
gap to be linear.

Solution 1.85

The torque on a sector of the cylinder surface corresponding E:ﬁi‘:

to an included angle of df is: Liquid _ 9 cylinder
dT =dFR; =tdAR; = [ (Rd6)( | R, = tR’(d0

Integrating around the cylinder:

2
-
T=tRY | d6=2rrR} inner
cylinder
For a linear velocity distribution in the gap
_Ro
r—
RO R
R; R/
T:27{,u i ij(zZﬂl—'uw
Ry —R; —R;

a):(ISO reyj[zﬁ radj I min :67[@
min rev 60s S

3 3 1b-s rad
27[(12 j(ftj(SleO f‘[zj(6”SJ top view

(€ ~ cylinder length)
[01 ftj cylinder leng
12

T=09441t-1b

To compute power requied:
ft-1b
S

power =T x o =(0.944 ft~1b)(67z @j 17.8

S



Problem 1.86

A pivot bearing used on the shaft of an electrical
instrument is shown in the figure below. An oil with

a viscosity of zz=0.010 Ib-s/ft fills the 0.001-in.
gap between the rotating shaft and the stationary
base. Determine the frictional torque on the shaft
when it rotates at 5000 rpm.

5000 rpm

_6‘__

0.2 in.

0.001 in 1=0.010 Ib - s/ft?

Solution 1.86

Let dT =torque on area element dA, where d4 =2zrd( = 27mg
sin
Thus,
du or
dT =rdF =rrdA where 1= y— = u—
dy b
so that,
JT = r(,u j(27zrdrj 2muw B
b sind bsind
Hence,
T= de_ 20! [ Pdr=—"E2 R (1)
bsind o 2bsin @
Now,

R=0.1in.,»=0.0011n., u= OOIOII?S 6 =30deg, and

o = 5000 ==Y (mmj(zn radj 54 1ad
min{ 60 s rev S

Thus, from Eq. (1),

0.010 —- || 524 —

( Ib- Sj( rad)
T= f? [(1)21 ftj ~9.53x107 ft-1b

2(0001ﬂj in30°
12




Problem 1.87 Fired
outer

The viscosity of liquids can be measured through the use of a —— _ eylinder
rotating cylinder viscometer of the type illustrated in the figure Ha — :)

below. In this device the outer cylinder is fixed and the inner \

cylinder is rotated with an angular velocity, . The torque T
required to develop » is measured and the viscosity is calculated -
from these two measurements. (a) Develop an equation relating cmgre r ¢
uwo,T, 0, Ry, and R;. Neglect end effects and assume the velocity

R,=5

distribution in the gap is linear. (b) The following torque-angular P —4§
velocity data were obtained with a rotating cylinder viscometer of
the type discussed in part (a).

Torque (ft - 1Ib) ‘ 13.1 ‘ 26.0 ‘ 39.5 ‘ 52.7 ‘ 64.9 ‘ 78.6 ‘

Angular velocity
(rad/s)

1.0 ‘ 2.0 ‘ 3.0 ‘ 4.0 ‘ 5.0 ‘ 6.0 ‘

For this viscometer R, =2.50 in., R; = 2.45 in., and ¢ = 5.00 in. Make use of these data and

a standard curve-fitting program to determine the viscosity of the liquid contained in the
viscometer.

Solution 1.87

(a) Torque, dT, on infinitesimal-size axial strip on the
inner cylinder surface due to shearing stress:

dT = RzdA= Rz(Rd6) (= R?(7d0

2z
Integration yields: T = Rl-zf T I dé = 27le-2€ T
0

For a linear velocity distribution in the gap:

r=u 7 top view
2R;)e3£ i (€ ~ cylinder length)

Ry—R;



(b) For a fixed geometry and a given viscosity, Eq. (1) is of the form
27[R,~3£ U
Ry - R,

1

y=bx where:y=T, x=w, b=

Entering the data provided into Excel: h=13.08 ft-1b-s

2.50-2.45 ftj

13.08 ft-lb-s)(
B)(Ry—R) .
Solving for viscosity: u= ()R ~R;) = 12 =2.45 Ib-s

2R 3 ft>
7R; 27{(2.45 ft] (5.00 ft]
12 12




Problem 1.88

The concentric cylinder viscometer shown in the figure
below has a cylinder height of 10.0 ¢m, a cylinder radius H

—
of 3.0 ¢cm, and a uniform gap between the cylinder and T !
the container (bottom and sides) of 0.10 cm. The pulley |
has a radius of 3.0 cm. Determine the weight required to fi=100em i
produce a constant rotational speed of 30 rpm if the gap \ !
is filled with: (a) water, (b) gasoline, (¢) glycerin. o1 Cm: L 0.10em

Solution 1.88

Resisting torque is due to shear stress acting on cylinder surfaces.
Assuming a linear velocity profile across the narrow gaps, the torque
on the cylinder wall is:

3
T, =(cA)R=| x ™ |(xDH)R= y[ij(thH)R _ 2 oHR”
dyl, h h |
The velocity at the cylinder bottom is a function of radial position. ’
The infinitesimal torque acting on an annular ring of differential '
width is: 7T e
zero velocity
wor 272_ @ velocity profile,
dT, =(z'dA)r:(yTJ(Zﬁrdi’)r:#ﬁdr h=re

R
T2=2”ﬂj gy = FHO pa
h 0 2h

4
Total torque: T=T,;+T, =275H60R3(%]+ﬂ’uw1{4 _ mUoR (2H lj

2 T R 2

Neglecting friction: WR, =T —>W =

”’;‘;f“(%’ 3
| 302, 2w rad 1”?; (3em)* 2 2
]

W:

m2

2
(a) water —W :(1.910m—J(1.12x10_3 &j =| 2.14x107°N
S

. m2 — N 4
(b) gasohne—>W=[1.9lO—](3 101074 —= | =] 5.92x107*N
S m>

S m

2
(¢) glycerine — W = [1.910“1—](1 soﬁj ~[ 287N



Problem 1.89

A 12-in.-diameter circular plate is placed 4 Torque Rotating plate

over a fixed bottom plate with a 0.1-in. - / _
gap between the two plates filled with | | 0-1-in- gap
glycerin as shown in the figure below. L

Determine the torque required to rotate

the circular plate slowly at 2 rpm. Assume that the velocity

distribution in the gap is linear and that the shear stress on the edge of the rotating plate
is negligible.

Solution 1.89

As shown, considering an annular ring of differential width
dT =rrdA = rt2zrdr

R
Integration yields: T = 27Tj r2rdr

0
For the annular strip: 7= ,u%
R 4
Thus, T= 27w I Fdr = 2mio| R
5 3 s | 4 = vero
Using the data specified: F Rt !
- 4
240.0313“’?](2 re_Vj(zzrradj Lmin [6&) du _V _ro
T ft min rev J{ 60s J\ 12 dy 6 ¢
[0.1&)(4) Velocity distribution
12

T=0.0772ft-1b




Problem 1.91
Some measurements on a blood sample at 37 °C (98.6 °F) indicate a shearing stress of

0.52 N/ m?’for a corresponding rate of shearing strain of 200 s~!. Determine the apparent
viscosity of the blood and compare it with the viscosity of water at the same temperature.

Solution 1.91

4 N-s
2

pjond = — = M-~ 26.0x10
200~ m
S

From Table B.2 Physical Properties of Water (SI Units)

N-s
o 4
@30 C IUH20 = 7975 X 10 F

@40°C up o =6.529x107 Ns

m2
4 N-s
Thus, with linear interpolation, uz o (37°C)=6.96 x10 i
m?
and
260x1074 8
Hblood _ m- _
N - i
Mo 696x1074 =2 T



Problem 1.93

A sound wave is observed to travel through a liquid with a speed of 1500 m/s. The specific
gravity of the liquid is 1.5. Determine the bulk modulus for this fluid.

Solution 1.93

/E
c= |=X where p= SGpy pand SG =1.5
p 2

Thus,
Ey = 02/0 = CZSG:OHZO

- (15003j2 (1.5)[9991‘—%}

S m

or

Ey =3.37x10° —



Problem 1.94

A rigid-walled cubical container is completely filled with water at 40 °F and sealed. The wa-
ter is then heated to 100 °F. Determine the pressure that develops in the container when the
water reaches this higher temperature. Assume that the volume of the container remains
constant and the value of the bulk modulus of the water remains constant and equal to
300,000 pst.

Solution 1.94

Since the water mass remains constant,

Paoe¥ = Proge (V +AV)

where V is volume and AV is change in volume if water were unconstrained during heating.

Thus, AV _ Pur _ 1
P1oo°
From the table Physical Properties of Water (BG/EE Units)
\ 1
P =1.940 757 and prgge =1.9275" so that
ft ft
slugs
AV 1.940 o
—= m—l =0.00675
V192750
ft
From the equation E, = —z—lé it follows with dV ~ AV and dp = Ap that the change in pres-
K2

sure required to compress the water back to its original volume is
Ap = —(300000 psi)(—0.00675)

=2.03x10% psi



Problem 1.95

Estimate the increase in pressure (in psi) required to decrease a unit volume of mercury
by 0.1 %.

Solution 1.95

B, =v® A
av " AY
Thus,
Apz._EVAV::_(4J4x106-3%}(—ooon
v in.

Ap ~ 4.14x10° psi



Problem 1.96

A 1m’ volume of water is contained in a rigid container. Estimate the change in the volume
of the water when a piston applies a pressure of 35 MPa.

Solution 1.96

E, -- dap A
AV AY
Thus,
(1 m3)(35><106 N)
A~ TP M-/ __0.0163 m>
Ey 2.15><109i2
m

or decrease in volume ~ 0.0163 m>



Problem 1.97

Determine the speed of sound at 20 °C in (a) air, (b) helium, and (¢) natural gas (methane).
Express your answer in m/s.

Solution 1.97
c=+kRT
With 7 =20°C+273=293K:

(a) For air, ¢ = \/(1.40)(286.9&}(293 K)(l N’mj[l kg'mJ —3438

g 1J L IN-s? s

(b) For helium, ¢ =_|(1.66)[ 20771 |(203)[ 1m0 || Lke-m |5,y m
kg-K 1] IN-s2 s

(c) For natural gas, c = [(1.31)] 5183 |(203 k) 120 || Lkem | _ gy
kg K 7 ) IN-s ;



Problem 1.98

Air is enclosed by a rigid cylinder containing a piston. A pressure gage attached to the cyl-
inder indicates an initial reading of 25 psi. Determine the reading on the gage when the pis-
ton has compressed the air to one-third its original volume. Assume the compression pro-
cess to be isothermal and the local atmospheric pressure to be 14.7 psi.

Solution 1.98

For isothermal compression, P _ constant=2% = £f where i ~ initial state and
Pi Py
f ~final state.
P
Thus, p, = —f D
1
mass Py _ initial volume _

Because the mass of air is constant: p=

volume ~ p; final volume
Therefore,

pr=(3)[(25+14.7) psi(abs) | = 119 psi(abs)
or

pr(gage) =(119-14.7) psi =104 psi(gage)



Problem 1.99

Air is enclosed by a rigid cylinder containing a piston. A pressure gage attached to the cyl-
inder indicates an initial reading of 25 psi. Determine the reading on the gage when the pis-
ton has compressed the air to one-third its original volume. Assume the compression pro-
cess takes place without friction and without heat transfer (isentropic process) and the local
atmospheric pressure to be 14.7 psi.

Solution 1.99

. . . P
For isentropic compression, ik = constanth—]’C = —;: where i ~ initial state and
P P Py
f ~ final state.
p .
Thus pr= (—f] D;
Pi
mass Py _ initial volume

Because the amount of mass is constant: p= =
volume  p;,  final volume

Therefore,

py=(3)"*[(25+14.7) psi(abs) | = 184.8 psi(abs)
or
pr(gage)=184.8-14.7=170psi(gage)



Problem 1.100

Carbon dioxide at 30 °C and 300 kPa absolute pressure expands isothermally to an abso-
lute pressure of 165 kPa. Determine the final density of the gas.

Solution 1.100

p D Pr

For isothermal compression, &~ = constant=-- = —~ where i ~ initial state and
Pi Py

f ~ final state.
Thus, p, = by P

Pi

300x103

Pi m> kg

Also, p; T TN =524 —=
T188.9  x—— [(30°C+273)K ] m
kg- K 1J

Therefore,

Py =(165kPaJ(5.24 xe ] _ 28 ke

300 kPa md md




Problem 1.101

Natural gas at 70 °F and standard atmospheric pressure of 14.7 psi (abs) is compressed
isentropically to a new absolute pressure of 70 psi. Determine the final density and
temperature of the gas.

Solution 1.101

For isentropic compression, ik = Constant=p—]’€ = —;: where i ~ initial state and
Yo,

P Pr
f ~ final state.
1

\k
Therefore p, = [p—fj Pi
Pi

)

14710 f14410"
Di il’l.2 ftz 3
i ~1.29x10"

R’ (3.099><103 fr-1b j[(70°F+460)°R] fe
slug-°R

1
Also, p; = nggs

1

ia [1.31
Therefore, p, = M ! 1.29%x103 slugs —4.25%1073 slugs
/147 psia fit3 £t

Using the ideal gas model:

-2
(70_“’2] 1447
D n. ft
Tf_ =

PR 42541073 Slugsj 3.099x10% 11D
ft? slug-°R

=765°R =(765-460)°F =305°F




Problem 1.102
A compressed air tank in a service station has a volume of 10 ft°. It contains air at 70°F and
150 psia. How many tubeless tires can it fill to 44.7 psia at 70 °F if each tire has a volume of

1.5 ft® and the compressed air tank is not refilled? The tank air temperature remains
constant at 70 °F because of heat transfer through the tank’s large surface area.

Solution 1.102

Modelling the air as an ideal gas, the mass of air m, that can be put into each tire is found
from:

e (%), ~0%), =57 (57 =Rl )

(15 b (,,in.Y
LS )(44.7-14.7) =5 122

(2]
in. ft = 0.007125slug.

Myire =
1716110 (530°R)
slug-°R

.. : : : : Ib
Air in the tank can be put into the tires until the tank air pressure drops to 44.7— abso-
n.

lute. The mass of air m that can be taken out of the tank and put into the tires is

mpy :(Pv)i _(PV) Di —Pf)

_i(
I/ RT
( ; Ib (. in.}
101 )(150-44.7) =5 12

Y _0.1667slug.

1m.

1716 110 (530°R)
slug- °R

The number of tires that can be filled is

No.= M =234 or No.=23tires
0.007125slug




Problem 1.103

A regulation basketball is initially flat and is then inflated to a pressure of approximately

24 1b/in? absolute. Consider the air temperature to be constant at 70 °F. Find the mass of
air required to inflate the basketball. The basketball’s inside radius is 4.67 in.

Solution 1.103

Modelling air as an ideal gas and looking up the gas constant for air:
m:pv:ﬂzi ﬂﬂ-RE
RT RT\3

(o e (i)

171610 (460+70)°R
slug- °R

m = 0.000938slug.




Problem 1.104

Assume that the air volume in a small automobile tire is constant and equal to the volume
between two concentric cylinders 13 cm high with diameters of 33 cm and 52 ¢cm. The air in
the tire is initially at 25 °C and 202 kPa. Immediately after air is pumped into the tire, the
temperature 1s 30 °C and the pressure is 303 kPa. What mass of air was added to the tire?
What would be the air pressure after the air has cooled to a temperature of 0 °C?

Solution 1.104

The mass of air added to the tire is the difference of the final mass of
air my and the initial mass ;. Assuming air is an ideal gas,

=

pv pv Y| Pr p; h=13cm
me=—nmy = ——| =\ = | =55 -+~ | dy=zr =33cm
RT ), \RT); R\T; T, dy=zr, =52cm
Using specified data:
3
Vzﬂ(r22—rlz)hzﬂ[(%cm)z—(16.5cm)2}(13cm)(loocm] ~0.0165m”.
N
3 o
o (0-0165m) { 303kPa 202kPa } 1000
f—m; = _
l {287.0N~mj (273+30)K  (273+25)K || kPa
kg-K

my —m; =0.0185kg

Now consider the cooling process. The initial state will be 30°C and 303kPa. The final state
will be 0°C and p,. Applying the ideal gas law to both states gives

() (&),

Since V , =V,

273+0 j: p, =273kPa

7 )~ (303 kP (
rr=ri| 7 |=( N 273730

1




Problem 1.105

Develop a computer program for calculating the final gage pressure of gas when the initial
gage pressure, initial and final volumes, atmospheric pressure, and the type of process (iso-
thermal or isentropic) are specified. Use BG units. Check your program against the results
obtained for Problem 1.98.

Solution 1.105
For compression or expansion, % = constant,
Yo,
where n =1 for an isothermal process, and n = specific heat ratio for an isentropic process.
;D
Therefore: % = —f:wherei ~ initial state and f ~ final state, so that
P Py
P n
py= [—fj P (1)
Pi
- : Pr _ Vi
Because the amount of mass is constant: m = pV — p,V, = p V== v
‘ Pi f

Recognizing that the pressure in Eq. 1 must be absolute pressure:

n
v

pfg + Parm = (v_l} (pig + patm) (2)
A

where the subscript g refers to gage pressure. Equation (2) can be written as
n
Vv
pfg = (V_l] (pig + Parm ) ~ Patm (3)
/

A spreadsheet (EXCEL) program for calculating the final gage pressure follows.

This program calculates the final gage pressure of an ideal gas when the
initial gage pressure in psi, the initial volume, the final volume, the
atmospheric pressure in psia, and the type of process (isothermal or
isentropic) is specified. To use, replace current values and let k=1 for
isothermal process or k=specific heat for isentropic process.

A B C D E F
Initial gage Initial Final Atmospheric Fl:ael
pressure volume | volume pressure 88
pressure
Pi(psi) Vi Vs P.cm(psia) k Pe(psia)
25 1 0.3333 14.7 1 104.4 | Row 10
Y
Formula:
=((B10/C10)AE10)*(A10+D10)-D10
1 1 1

Data from Problem 1.98 are included in the above table, giving a final gage
pressure of 104.4 psi.



Problem 1.106

Often the assumption is made that the flow of a certain fluid can be considered as incom-
pressible flow if the density of the fluid changes by less than 2 %. If air is flowing through a
tube such that the air pressure at one section is 9.0 psi and at a downstream section it is 8.6
psi at the same temperature, do you think that this flow could be considered an incompress-
ible flow? Support your answer with the necessary calculations. Assume standard atmos-
pheric pressure.

Solution 1.106

Modelling the air as an ideal gas undergoing an isothermal process:

p=pRT - Al o, 2P
P P PP

% density change = PP 00
P
8.6+14.7)psi
(1222 )x100=[ 1- 22 |x100 = |1 B0 14 TIpsia | o
o) 12 (9.0+14.7) psia

=1.69%<2%
Yes. This process is well modelled as an incompressible flow.



Problem 1.107

An important dimensionless parameter concerned with very high-speed flow is the Mach
number, defined as V' /c, where V' is the speed of the object such as an airplane or projectile,
and ¢ is the speed of sound in the fluid surrounding the object. For a projectile traveling at
800 mph through air at 50 °F and standard atmospheric pressure, what is the value of the
Mach number?

Solution 1.107

Mach number = K
c

From the table of Physical Properties of Air at Standard Atmospheric Pressure (BG/EE
Units)

ft
Cair@50°F = 1 106?

(800mph)| 5280 - |[ LB
mi /| 3600s

Mach number= o = IL
1106 —
s

(@)}




Problem 1.108

The “power available in the wind” of velocity /' through an area A4 is
| 3
W = 5 pA V ,

where p is the air density (0.075 Ibm/ft®). For an 18-mph wind, find the wind area 4 that will
supply a power of 4 hp.

Solution 1.108

Solving for the area 4 and using appropriate unit conversion factors:

550 ft - lb/sj

. 2(4h
2 ( p)( I hp

A: 3:

V N3 3
P (0'0751%}(181111) 5280ft 1Lhr ,
£t hr Imi  3600s
ft-1b-s> [ 11b,, -32.2 ft
Ib 11b-s?

=3.17

m

A=102ft>




Problem 1.109

Air enters the converging nozzle shown in the figure below at 7; = 70 °F and V; = 50 ft/s.
At the exit of the nozzle, V, is given by

Vy= Wi +2¢, (T, - 1),

where ¢, =187ft-1b/lbm-°F and T, is the air temperature at the exit of the nozzle. Find the
temperature 7, for which 7, =1000 ft/s.

| |
' @

Solution 1.109

Solving for 7, and inserting the values specified: g, gives

2 2
o (10000 (502
Ty =T, -2 —1 =70 °F- > >

2 . .
¢p 2(187 ft-1b j[llbm 32.2ft]

Ibm - °F 11b-s?

T, =-12.8°F




Problem 1.110

This water jet is a blast Usually, liquids can be treated as incompressible fluids. However, in
some applications the compressibility of a liquid can play a key role in the operation of a
device. For example, a water pulse generator using compressed water has been developed
for use in mining operations. It can fracture rock by producing an effect comparable to a
conventional explosive such as gunpowder. The device uses the energy stored in a water-
filled accumulator to generate an ultrahigh-pressure water pulse ejected through a 10-to
25-mm-diameter discharge value. At the ultrahigh pressures used (300 to 400 MPa, or

3000 to 4000 atmospheres), the water is compressed (i.e., the volume reduced) by about
10% to 15%. When a fast-opening valve within the pressure vessel is opened, the water ex-
pands and produces a jet of water that upon impact with the target material produces an
effect similar to the explosive force from conventional explosives. Mining with the water jet
can eliminate various hazards that arise with the use of conventional chemical explosives,
such as those associated with the storage and use of explosives and the generation of toxic
gas by-products that require extensive ventilation. (See Problem 1.110.)

By what percent is the volume of water decreased if its pressure is increased to an equivalent
to 3000 atmospheres (44,100 psi)?

Solution 1.110

__dp Ap
b= may > Ty
v v
AV Ap 44100 psia —14.7 psia
e S — =-0.141
\ E, 3.12x10” psia

Thus, % decrease in volume =14 %




Problem 1.111

During a mountain climbing trip it is observed that the water used to cook a meal boils at
90 °C rather than the standard 100 °C at sea level. At what altitude are the climbers prepar-
ing their meal? See Table of Physical Properties of Water (SI Units) and Table of Properties
of the U.S. Standard Atmosphere (SI Units) for data needed to solve this problem.

Solution 1.111

Water boils when the vapor pressure of the liquid is the same as atmospheric pressure.

N
From the water property table, at 7'=90°C, p, =7.01x 10* — (abs).
m

From standard atmosphere table, p=7.01x 104 iz(abs) — | altitude = 3000 m
m




Problem 1.112

When a fluid flows through a sharp bend, low pressures may develop in localized regions of
the bend. Estimate the minimum absolute pressure (in psi) that can develop without causing
cavitation if the fluid is water at 160 °F.

Solution 1.112

Cavitation may occur when the local pressure equals the vapor pressure. For water at 160 °F
(from Table of Physical Properties of Water [BG/EE Units])

T =160 °F - p, =4.74psi (abs) - minimum pressure = 4.74 psia




Problem 1.113

A partially filled closed tank contains ethyl alcohol at 68 °F. If the air above the alcohol is
evacuated, what is the minimum absolute pressure that develops in the evacuated space?

Solution 1.113

Minimum pressure = vapor pressure = 0.85 psi (abs)



Problem 1.114

Estimate the minimum absolute pressure (in Pascals) that can be developed at the inlet of a
pump to avoid cavitation if the fluid is carbon tetrachloride at 20 °C.

Solution 1.114
Cavitation may occur when the section pressure at the pump inlet equals the vapor pressure

For carbon tetrachloride at 20 °C, p, =13 kPa(abs).

Thus, minimum pressure = 13 kPa (abs)



Problem 1.115

When water at 70 °C flows through a converging section of pipe, the pressure decreases in
the direction of flow. Estimate the minimum absolute pressure that can develop without
causing cavitation. Express your answer in both BG and SI units.

Solution 1.115

Cavitation may occur in the converging section of pipe when the pressure equals the vapor
pressure. From the Table of Physical Properties of Water (SI Units) for water at 70 °C,
p, =31.2 kPa(abs).

Therefore,
minimum pressure = 31.2 kPa (abs)

(312010 N 1.450x107* psi
- . m2 1E
In2

=4.52 psia



Problem 1.116

At what atmospheric pressure will water boil at 35 °C? Express your answer in both SI and
BG units.

Solution 1.116

The vapor pressure of water at 35°C is 5.81 kPa(abs) (from Table of Physical Properties of
Water [SI Units] using linear interpolation).

Thus, if water boils at this temperature the atmospheric pressure must be equal to
5.81kPa(abs) in SI units. In BG units,

=0.842 psi(abs)
m )T N T
mZ

(5 e1x10° N j 1.450x107* psi



Problem 1.118

When a 2-mm-diameter tube is inserted into a liquid in an open tank, the liquid is observed
to rise 10 mm above the free surface of the liquid. The contact angle between the liquid and

the tube is zero, and the specific weight of the liquid is 1.2 x 10* N/ m’. Determine the value
of the surface tension for this liquid.

Solution 1.118

The action of surface tension in a tube inserted into a pool is to draw upward (or depress)
2o0cosf

7R

the liquid in the tube a distance /1 = with respect to the elevation of the surrounding

free surface.

For the specified contact angle, 6 = 0:

-3
1.2x104£3(10x10*3m) 2x10"m
__VhR__ m 2 —~0.060—
2cosd 2cos0 ’ m




Problem 1.119

A soda straw with an inside diameter of 0.125in. is inserted into a pan of water at 60 °F. The
water in the straw rises to a height of 0.150 in. above the water surface in the pan. Determine
the value of 9, the contact angle of the water with the straw (see the figure below).

yR?h

Effect of capillary section in small tubes. («) Rise of column for a liquid that wets the tube, (b) Free-body diagram
for calculating column height. (¢) Depression of column for a nonwetting liquid.

Solution 1.119

Consider the free body diagram of the liquid column inside the tube as shown in the figure.
If the liquid column is in static equilibrium:

+71 ZF :0—>2ﬂRacos6’:yﬂR2h

2
cosd = yrRh _ yRh
2rRoc 20

624 1b {0.0625 ftj(o.lso ft)
1 ft3 12 12

2(5.04><10—3 lbj
ft

@ =cos”

6 =1.16 radians = 66.2°




Problem 1.120

Small droplets of carbon tetrachloride at 68 °F are formed with a spray nozzle. If the aver-
age diameter of the droplets is 200 #zm, what is the difference in pressure between the inside
and outside of the droplets?

Solution 1.120

From the force balance on a half-droplet presented in the chapter:

20
Ap =—
P=R
Looking in the properties table for carbon tetrachloride at 68 °F, o =2.69 x 1072 E
m
Substitution yields:
2(2.69x 1072 Nj
m
Ap = =538Pa

100x10~°m



Problem 1.121

A 12-mm-diameter jet of water discharges vertically into the atmosphere. Due to surface
tension, the pressure inside the jet will be slightly higher than the surrounding atmospheric
pressure. Determine this difference in pressure.

Solution 1.121

Considering the free body diagram of one half of a short
length of jet, 57, equilibrium requires:

p(2RS0) =05 (257) 5
_9
P R
734x102 N
_ m
1( 12 m) p2RSE
211000
_ 12 2 Pa P~EXCESS pressure

Surface tension force = 626¢



Problem 1.122

A method used to determine the surface tension of a liquid is to determine the force neces-
sary to raise a wire ring through the air-liquid interface, as shown in the figure below. What
is the value of the surface tension if a force of 0.015 N is required to raise a 4-cm-diameter
ring? Consider the ring weightless, as a tensiometer (used to measure the surface tension)
“zeroes” out the ring weight.

Solution 1.122

A free body diagram of the ring and supporting wires

: . . F=0.015N
is shown on the right and gives
F=2nDo
o=t OOBN __5g9,402N
27D ( 4 j m ~—4cm
27| —m | —————
100

2nDo



Problem 1.123

Calculate the pressure difference between the inside and outside of a spherical water droplet

having a diameter of %in. and a temperature of 50°F.

Solution 1.123

A force balance on the outside surface of the drop gives

R
+Y F=0,

pa,mﬂR2 - pi;zR2 +27Ro =0
20
Pi = Pam = ?

For water at 50°F, o =5.09 x 10_3% SO

2(5.09><10—31f1t’><1;f,t j
Di = Patm = = =0.0271 psi
—in.

32



Problem 1.124

Surface tension forces can be strong enough to allow a double-edge steel razor blade to
“float” on water, but a single-edge blade will sink. Assume that the surface tension forces
act at an angle @ relative to the water surface as shown in the figure below. (a) The mass of
the double-edge blade is 0.64 x 1073 kg, and the total length of its sides is 206 mm. Deter-
mine the value of 8 required to maintain equilibrium between the blade weight and the re-

sultant surface tension force. (b) The mass of the single-edge blade is 2.6 x 1073 kg, and the
total length of its sides is 154 mm. Explain why this blade sinks. Support your answer with
the necessary calculations.

Surface tension

Solution 1.124

T T
(a) water = o =7.34 x 1072 N
m ‘le

w
szertical:TSine_Wzo l
sing =L _1"¢
oL

(0.64 kg)(9.81:;j

- i}(o.z% m)

0 =sin”!

(7.34><10

6 =0.415 radians = 24.5°

(b) For the single-edge blade
W = iyaqe % g =(2.61x107 kg)(9.8122j =0.0256 N
S

and
Tsind=(oL)sing = (7.34 x1072 %j(0.154m) siné
= (0.01 13 N)sin0
For static equilibrium:
0.0256 N

sin @ >1, butsind<1—| single-edge blade cannot float

T 0.0113N




Problem 1.125

Explain how sweat soldering of copper pipe works from a fluid mechanics viewpoint.

Solution 1.125

Solder for sweat soldering copper pipe is an alloy with a melting point below that of copper.
The copper parts are typically heated using a gas torch to a temperature below the melting
point of copper but above the melting point of the solder. When the solder is “touched” to
the joint, it melts. To form a good quality joint between a copper pipe and fittings, or be-
tween fittings, capillary action must draw liquid solder into the small gap to between the
two parts to fill the gap and the solder must bond with the copper surface.

From “a fluid mechanics viewpoint,” the flux used for sweat soldering of copper pipe re-
duces the surface tension of the liquefied solder, reducing the contact angle at the solder-
copper interface, thereby producing a stronger capillary action that more effectively draws
the liquid solder into the joint to fill it with solder.

From “a chemical and mechanical viewpoint,” at the elevated temperatures occurring dur-
ing the soldering process, oxides quickly form on the surface of copper and interfere with
the bonding process. Therefore, even after mechanical cleaning of the parts, flux acts as a
reducing agent to remove oxides from the surface of the copper, facilitating a stronger bond
between the solder and the copper.



Problem 1.126

Under the right conditions, it is possible, due to surface tension, to have metal objects float
on water. Consider placing a short length of a small diameter steel (y =490 lb/ ft3) rod on a
surface of water. What is the maximum diameter that the rod can have before it will sink?
Assume that the surface tension forces act vertically upward. Note: A standard paper clip

has a diameter of 0.036 in. Partially, unfold a paper clip and see if you can get it to float on
water. Do the results of this experiment support your analysis?

Solution 1.126

In order for rod to float, (see free body diagram): ot ol
ZT\( 2
2ol W > (Z](D ) et
Thus, for the limiting case
Dl 200 8o
max = /. - T teel € =rod length
Z gysteel stee
so that
1
2
8(5.03><10—3 lfbj
Dy = - Y| =5.11x107 £t = 0.06141in.
72'(490 3j
ft

Since a standard steel paper clip has a diameter of 0.036 in., which is less than 0.0614 in., it
should float. A simple experiment will verify this. Yes.



Problem 1.127

An open, clean glass tube, having a diameter of 3 mm, is inserted vertically into a dish of
mercury at 20 °C. How far will the column of mercury in the tube be depressed?

Solution 1.127

The action of surface tension in a tube inserted into a pool is to draw upward (or depress)
2o0cos b

7R

the liquid in the tube a distance / = with respect to the elevation of the surrounding

free surface.
For the specified information:

2(4.66x10_1Nj005130°
h= m —_3.00x10" m

03l

3

(133x1
m

)(0.0015m)

Thus, column will be depressed 3.00 mm



Problem 1.128

An open, clean glass tube (= 0°C) is inserted vertically into a pan of water. What tube di-
ameter is needed if the water level in the tube is to rise one tube diameter (due to surface
tension)?

Solution 1.128

The action of surface tension in a tube inserted into a pool is to draw upward (or depress)

the liquid in the tube a distance /1 = 20_0}28 0 with respect to the elevation of the surrounding
7
free surface.
For the specified information:
(6]
IR = 2o cos0
7R
o 5:03x107 1o
R =Z oL _8.08x107 fy
64
ft

diameter = 2R =1.80 x 1072 ft



Problem 1.129

Determine the height that water at 60 °F will rise due to capillary action in a clean,

%-in.-diameter tube. What will be the height if the diameter is reduced to 0.01 in.?

Solution 1.129

The action of surface tension in a tube inserted into a pool is to draw upward (or depress)
2o0cos @

the liquid in the tube a distance & = R
Y

with respect to the elevation of the surrounding

free surface.

For the specified information:

2(5.03x101 lflt)j(cos 0°
62.37 10 (0'125 ftj
o)\ 12

Similarly, (for R=0.005in.): #=(0.186 in.)[

h=

~1.55%x1073 ft[lzfin'] =0.186 in.

0.125 m.J:%S .

0.005 1n.




Problem 1.130

Two vertical, parallel, clean glass plates are spaced a distance of 2 mm apart. If the plates
are placed in water, how high will the water rise between the plates due to capillary action?

Solution 1.130

For equilibrium in the vertical direction,
W =yhbt =2(clcosb)

3 20cos@
- ”

h

Thus, (for 6=0)
2(7.34 x10

LN
m

h:

o
=7.49%107> m = 7.49 mm
j(o.oozm) -

Hb‘b‘

03£

3

(9.80><1
m

(€ ~ width of plates)



Problem 1.131

Walking on water Water striders are insects commonly found on ponds, rivers, and lakes
that appear to “walk” on water. A typical length of a water strider is about 0.4 in., and they
can cover 100 body lengths in one second. It has long been recognized that it is surface ten-
sion that keeps the water strider from sinking below the surface. What has been puzzling is
how they propel themselves at such a high speed. They can’t pierce the water surface or
they would sink. A team of mathematicians and engineers from the Massachusetts Institute
of Technology (MIT) applied conventional flow visualization techniques and high-speed
video to examine in detail the movement of the water striders. They found that each stroke
of the insect’s legs creates dimples on the surface with underwater swirling vortices suffi-
cient to propel it forward. It is the rearward motion of the vortices that propels the water
strider forward. To further substantiate their explanation, the MIT team built a working
model of a water strider, called Robostrider, which creates surface ripples and underwater
vortices as it moves across a water surface. Waterborne creatures, such as the water strider,
provide an interesting world dominated by surface tension. (See Problem 1.131.)

(a) The water strider bug shown in the figure below is supported on the surface of a pond
by surface tension acting along the interface between the water and the bug’s legs. Deter-
mine the minimum length of this interface needed to support the bug. Assume the bug
weighs 107* N and the surface tension force acts vertically upwards. (b) Repeat part (a) if
surface tension were to support a person weighing 750N.

Solution 1.131

ol

W ~ weight

o ~ surface tension

¢ ~ length of interface

For equilibrium, W = o/

4
(a)f=K=10—NN=1.36><10_3m(1000ﬂ]=1.36mm
O 734x1072= lm ) ——
m
(b)é:K:LNI\I:I.O2XIO4m(6.34mi!!)
7 734x1072 = T

m



