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Solutions Chapter 1

SECTION 1.1
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For any x, y ∈ Rn, from the second order expansion (see Appendix A, Proposition A.23) we have

f(y) − f(x) = (y − x)′∇f(x) +
1
2
(y − x)′∇2f(z)(y − x), (1)

where z is some point of the line segment joining x and y. Setting x = 0 in (1) and using the

given property of f , it can be seen that f is coercive. Therefore, there exists x∗ ∈ Rn such that

f(x∗) = infx∈Rn f(x) (see Proposition A.8 in Appendix A). The condition

m||y||2 ≤ y′∇2f(x)y, ∀ x, y ∈ Rn,

is equivalent to strong convexity of f . Strong convexity guarantees that there is a unique global

minimum x∗. By using the given property of f and the expansion (1), we obtain

(y − x)′∇f(x) +
m

2
||y − x||2 ≤ f(y) − f(x) ≤ (y − x)′∇f(x) +

M

2
||y − x||2.

Taking the minimum over y ∈ Rn in the expression above gives

min
y∈Rn

(
(y − x)′∇f(x) +

m

2
||y − x||2

)
≤ f(x∗) − f(x) ≤ min

y∈Rn

(
(y − x)′∇f(x) +

M

2
||y − x||2

)
.

Note that for any a > 0

min
y∈Rn

(
(y − x)′∇f(x) +

a

2
||y − x||2

)
= − 1

2a
||∇f(x)||2,

and the minimum is attained for y = x − ∇f(x)
a . Using this relation for a = m and a = M , we

obtain

− 1
2m

||∇f(x)||2 ≤ f(x∗) − f(x) ≤ − 1
2M

||∇f(x)||2.

The first chain of inequalities follows from here. To show the second relation, use the expansion

(1) at the point x = x∗, and note that ∇f(x∗) = 0, so that

f(y) − f(x∗) =
1
2
(y − x∗)′∇2f(z)(y − x∗).

The rest follows immediately from here and the given property of the function f .
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Since x∗ is a nonsingular strict local minimum, we have that ∇2f(x∗) > 0. The function f is

twice continuously differentiable over �n, so that there exists a scalar δ > 0 such that

∇2f(x) > 0, ∀ x, with ||x − x∗|| ≤ δ.

This means that the function f is strictly convex over the open sphere B(x∗, δ) centered at x∗

with radius δ. Then according to Proposition 1.1.2, x∗ is the only stationary point of f in the

sphere B(x∗, δ).

If f is not twice continuously differentiable, then x∗ need not be an isolated stationary

point. The example function f does not have the second derivative at x = 0. Note that f(x) > 0

for x �= 0, and by definition f(0) = 0. Hence, x∗ = 0 is the unique (singular) global minimum.

The first derivative of f(x) for x �= 0 can be calculated as follows:

f ′(x) = 2x

(√
2 − sin

(
5π

6
−
√

3 ln(x2)
)

+
√

3 cos
(

5π

6
−
√

3 ln(x2)
))

= 2x

(√
2 − 2 cos

π

3
sin

(
5π

6
−
√

3 ln(x2)
)

+ 2 sin
π

3
cos

(
5π

6
−
√

3 ln(x2)
))

= 2x

(√
2 + 2 sin

(
π

3
− 5π

6
+
√

3 ln(x2)
))

= 2x
(√

2 − 2 cos(2
√

3 lnx)
)

.

Solving f ′(x) = 0, gives xk = e
(1−8k)π

8
√

3 and yk = e
−(1+8k)π

8
√

3 for k integer. The second derivative

of f(x), for x �= 0, is given by

f ′′(x) = 2
(√

2 − 2 cos(2
√

3 lnx) + 4
√

3 sin(2
√

3 lnx)
)

.

Thus:
f ′′(xk) = 2

(√
2 − 2 cos

π

4
+ 4

√
3 sin

π

4

)

= 2

(
√

2 − 2
√

2
2

+ 4
√

3
√

2
2

)

= 4
√

6.

Similarly

f ′′(yk) = = 2
(√

2 − 2 cos
(−π

4

)
+ 4

√
3 sin

(−π

4

))

= 2

(
√

2 − 2
√

2
2

− 4
√

3
√

2
2

)

= −4
√

6.

Hence, {xk | k ≥ 0} is a sequence of nonsingular local minima, which evidently converges to x∗,

while {yk | k ≥ 0} is a sequence of nonsingular local maxima converging to x∗.
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(a) Let x∗ be a strict local minimum of f . Then there is δ such that f(x∗) < f(x) for all x in

the closed sphere centered at x∗ with radius δ. Take any local sequence {xk} that minimizes f ,

i.e. ||xk − x∗|| ≤ δ and limk→∞ f(xk) = f(x∗). Then there is a subsequence {xki} and the point

x such that xki → x and ||x − x∗|| ≤ δ. By continuity of f , we have

f(x) = lim
i→∞

f(xki) = f(x∗).

Since x∗ is a strict local minimum, it follows that x = x∗. This is true for any convergent

subsequence of {xk}, therefore {xk} converges to x∗, which means that x∗ is locally stable. Next

we will show that for a continuous function f every locally stable local minimum must be strict.

Assume that this is not true, i.e., there is a local minimum x∗ which is locally stable but is not

strict. Then for any θ > 0 there is a point xθ �= x∗ such that

0 < ||xθ − x∗|| < θ and f(xθ) = f(x∗). (1)

Since x∗ is a stable local minimum, there is a δ > 0 such that xk → x∗ for all {xk} with

lim
k→∞

f(xk) = f(x∗) and ||xk − x∗|| < δ. (2)

For θ = δ in (1), we can find a point x0 �= x∗ for which 0 < ||x0 − x∗|| < δ and f(x0) = f(x∗).

Then, for θ = 1
2 ||x0 − x∗|| in (1), we can find a point x1 such that 0 < ||x1 − x∗|| < 1

2 ||x0 − x∗||
and f(x1) = f(x∗). Then, again, for θ = 1

2 ||x1 − x∗|| in (1), we can find a point x2 such that

0 < ||x2 − x∗|| < 1
2 ||x1 − x∗|| and f(x2) = f(x∗), and so on. In this way, we have constructed

a sequence {xk} of distinct points such that 0 < ||xk − x∗|| < δ, f(xk) = f(x∗) for all k, and

limk→∞ xk = x∗. Now, consider the sequence {yk} defined by

y2m = xm, y2m+1 = x0, ∀ m ≥ 0.

Evidently, the sequence {yk} is contained in the sphere centered at x∗ with the radius δ. Also

we have that f(yk) = f(x∗), but {yk} does not converge to x∗. This contradicts the assumption

that x∗ is locally stable. Hence, x∗ must be strict local minimum.

(b) Since x∗ is a strict local minimum, we can find δ > 0, such that f(x) > f(x∗) for all x �= x∗

with ||x − x∗|| ≤ δ. Then min||x−x∗||=δ f(x) = fδ > f(x∗). Let Gδ = max||x−x∗||≤δ |g(x)|. Now,

we have

f(x) − εGδ ≤ f(x) + εg(x) ≤ f(x) + εGδ, ∀ ε > 0, ∀ x ||x − x∗|| < δ.
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Choose εδ such that

fδ − εδGδ > f(x∗) + εδGδ,

and notice that for all 0 ≤ ε ≤ εδ we have

fδ − εGδ > f(x∗) + εGδ.

Consider the level sets

L(ε) = {x | f(x) + εg(x) ≤ f(x∗) + εGδ, ||x − x∗|| ≤ δ}, 0 ≤ ε ≤ εδ.

Note that

L(ε1) ⊂ L(ε2) ⊂ B(x∗, δ), ∀ 0 ≤ ε1 < ε2 ≤ εδ, (3)

where B(x∗, δ) is the open sphere centered at x∗ with radius δ. The relation (3) means that

the sequence {L(ε)} decreases as ε decreases. Observe that for any ε ≥ 0, the level set L(ε) is

compact. Since x∗ is strictly better than any other point x ∈ B(x∗, δ), and x∗ ∈ L(ε) for all

0 ≤ ε ≤ εδ, we have

∩0≤ε≤εδL(ε) = {x∗}. (4)

According to Weierstrass’ theorem, the continuous function f(x) + εg(x) attains its minimum on

the compact set L(ε) at some point xε ∈ L(ε). From (3) it follows that xε ∈ B(x∗, δ) for any ε in

the range [0, εδ]. Finally, since xε ∈ L(ε), from (4) we see that limε→∞ xε = x∗.

1.1.13 www

In the solution to the Exercise 1.1.12 we found the numbers δ > 0 and εδ > 0 such that for all

ε ∈ [0, εδ) the function f(x) + εg(x) has a local minimum xε within the sphere B(x∗, δ) = {x |
||x− x∗|| < δ}. The Implicit Function Theorem can be applied to the continuously differentiable

function G(ε, x) = ∇f(x) + ε∇g(x) for which G(0, x∗) = 0. Thus, there are an interval [0, ε0), a

number δ0 and a continuously differentiable function φ : [0, ε0) �→ B(x∗, δ0) such that φ(ε) = x′
ε

and

∇φ(ε) = −∇εG (ε, φ(ε)) (∇xG (ε, φ(ε)))−1
, ∀ ε ∈ [0, ε0).

We may assume that ε0 is small enough so that the first order expansion for φ(ε) at ε = 0 holds,

namely

φ(ε) = φ(0) + ε∇φ(0) + o(ε), ∀ ε ∈ [0, ε0). (1)

It can be seen that ∇xG (0, φ(0)) = ∇xG(0, x∗) = ∇2f(x∗), and ∇εG (0, φ(0)) = ∇g(x∗)′, which

combined with φ(ε) = x′
ε, φ(0) = (x∗)′ and (1) gives the desired relation.
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(a) Given a bounded set A, let r = sup{‖x‖ | x ∈ A} and B = {x | ‖x‖ ≤ r}. Let L =

max{‖∇2f(x)‖ | x ∈ B}, which is finite because a continuous function on a compact set is

bounded. For any x, y ∈ A we have

∇f(x) −∇f(y) =
∫ 1

0

∇2f
(
tx + (1 − t)y

)
(x − y)dt.

Notice that tx + (1 − t)y ∈ B, for all t ∈ [0, 1]. It follows that

‖∇f(x) − f(y)‖ ≤ L‖x − y‖,

as desired.

(b) The key idea is to show that xk stays in the bounded set

A =
{
x | f(x) ≤ f(x0)

}
and to use a stepsize αk that depends on the constant L corresponding to this bounded set. Let

R = max{‖x‖ | x ∈ A},

G = max{‖∇f(x)‖ | x ∈ A},

and

B = {x | ‖x‖ ≤ R + 2G}.

Using condition (i) in the exercise, there exists some constant L such that ‖∇f(x) −∇f(y)‖ ≤
L‖x − y‖, for all x, y ∈ B. Suppose the stepsize αk satisfies

0 < ε ≤ αk ≤ (2 − ε)γk min{1, 1/L},

where

γk =
|∇f(xk)′dk|

‖dk‖2
.

Let βk = αk(γk − Lαk/2), which can be seen to satisfy βk ≥ ε2γk/2 by our choice of αk. We

will, show by induction on k that with such a choice of stepsize, we have xk ∈ A and

f
(
xk+1

)
≤ f(xk) − βk‖dk‖2, (*)

7



Section 1.2

for all k ≥ 0.

To start the induction, we note that x0 ∈ A, by the definition of A. Suppose that xk ∈ A.

By the definition of γk, we have

γk‖dk‖2 =
∣∣∇f(xk)′dk

∣∣ ≤ ∥∥∇f(xk)
∥∥ · ‖dk‖.

Thus, ‖dk‖ ≤
∥∥∇f(xk)

∥∥/γk ≤ G/γk. Hence,

‖xk + αkdk‖ ≤ ‖xk‖ + αkG/γk ≤ R + 2G,

which shows that xk + αkdk ∈ B. In order to prove Eq. (*), we now proceed as in the proof of

Prop. 1.2.3. A difficulty arises because Prop. A.24 assumes that the inequality ‖∇f(x)−∇f(y)‖ ≤
L‖x − y‖ holds for all x, y, whereas in this exercise this inequality holds only for x, y ∈ B. We

thus essentially repeat the proof of Prop. A.24, to obtain

f(xk+1) = f(xk + αkdk)

=
∫ 1

0

αk∇f(xk + ταkdk)′dk dτ

≤ αk∇f(xk)′dk +
∣∣∣∣
∫ 1

0

αk
(
∇f

(
xk + αkτdk

)
−∇f(xk)

)′
dk dτ

∣∣∣∣
≤ αk∇f(xk)′dk + (αk)2‖dk‖2

∫ 1

0

Lτ dτ

= αk∇f(xk)′dk +
L(αk)2

2
‖dk‖2.

(∗∗)

We have used here the inequality

∥∥∇f
(
xk + αkτdk

)
−∇f(xk)

∥∥ ≤ αkLτ‖dk‖,

which holds because of our definition of L and because xk ∈ A ⊂ B, xk +αkdk ∈ B and (because

of the convexity of B) xk + αkτdk ∈ B, for τ ∈ [0, 1].

Inequality (*) now follows from Eq. (**) as in the proof of Prop. 1.2.3. In particular, we

have f(xk+1) ≤ f(xk) ≤ f(x0) and xk+1 ∈ A. This completes the induction. The remainder of

the proof is the same as in Prop. 1.2.3.
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We have

∇f(x) −∇f(x∗) =
∫ 1

0

∇2f
(
x∗ + t(x − x∗)

)
(x − x∗)dt

and since

∇f(x∗) = 0,
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we obtain

(x − x∗)′∇f(x) =
∫ 1

0

(x − x∗)′∇2f(x∗ + t(x − x∗))(x − x∗)dt ≥ m

∫ 1

0

‖x − x∗‖2dt.

Using the Cauchy-Schwartz inequality (x − x∗)′∇f(x) ≤ ‖x − x∗‖‖∇f(x)‖, we have

m

∫ 1

0

‖x − x∗‖2dt ≤ ‖x − x∗‖‖∇f(x)‖,

and

‖x − x∗‖ ≤ ‖∇f(x)‖
m

.

Now define for all scalars t,

F (t) = f(x∗ + t(x − x∗))

We have

F ′(t) = (x − x∗)′∇f(x∗ + t(x − x∗))

and

F ′′(t) = (x − x∗)′∇2f(x∗ + t(x − x∗))(x − x∗) ≥ m‖x − x∗‖2 ≥ 0.

Thus F ′ is an increasing function, and F ′(1) ≥ F ′(t) for all t ∈ [0, 1]. Hence

f(x) − f(x∗) = F (1) − F (0) =
∫ 1

0

F ′(t)dt

≤ F ′(1) = (x − x∗)′∇f(x)

≤ ‖x − x∗‖‖∇f(x)‖ ≤ ‖∇f(x)‖2

m
,

where in the last step we used the result shown earlier.
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Assume condition (i). The same reasoning as in proof of Prop. 1.2.1, can be used here to show

that

0 ≤ ∇f(x̄)′p̄, (1)

where x̄ is a limit point of {xk}, namely {xk}k∈K̄ −→ x̄, and

pk =
dk

||dk|| , {pk}k∈K̄ → p̄. (2)

Since ∇f is continuous, we can write

∇f(x̄)′p̄ = lim
k→∞, k∈K̄

∇f(xk)′pk

= lim inf
k→∞, k∈K̄

∇f(xk)′pk

≤
lim infk→∞, k∈K̄ ∇f(xk)′dk

lim supk→∞, k∈K̄ ||dk|| < 0,

9



Section 1.2

which contradicts (1). The proof for the other choices of stepsize is the same as in Prop.1.2.1.

Assume condition (ii). Suppose that ∇f(xk) �= 0 for all k. For the minimization rule we

have

f(xk+1) = min
α≥0

f(xk + αdk) = min
θ≥0

f(xk + θpk), (3)

for all k, where pk = dk

||dk|| . Note that

∇f(xk)′pk ≤ −c||∇f(xk)||, ∀ k. (4)

Let x̂k+1 = xk+α̂kpk be the iterate generated from xk via the Armijo rule, with the corresponding

stepsize α̂k and the descent direction pk. Then from (3) and (4), it follows that

f(xk+1) − f(xk) ≤ f(x̂k+1) − f(xk) ≤ σα̂k∇f(xk)′pk ≤ −σcα̂k||∇f(xk)||2. (5)

Hence, either {f(xk)} diverges to −∞ or else it converges to some finite value. Suppose

that {xk}k∈K → x̄ and ∇f(x̄) �= 0. Then, limk→∞,k∈K f(xk) = f(x̄), which combined with (5)

implies that

lim
k→∞,k∈K

α̂k||∇f(xk)||2 = 0.

Since limk→∞,k∈K ∇f(xk) = ∇f(x̄) �= 0, we must have limk→∞,k∈K α̂k = 0. Without loss of

generality, we may assume that limk→∞,k∈K pk = p̄. Now, we can use the same line of arguments

as in the proof of the Prop. 1.2.1 to show that (1) holds. On the other hand, from (4) we have

that

lim
k→∞,k∈K

∇f(xk)′pk = ∇f(x̄)′p̄ ≤ −c||∇f(x̄)|| < 0.

This contradicts (1), so that ∇f(x̄) = 0.
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Consider the stepsize rule (i). From the Descent Lemma (cf. the proof of Prop. 1.2.3), we have

for all k

f(xk+1) ≤ f(xk) − αk

(
1 − αkL

2

)
‖∇f(xk)‖2.

From this relation, we obtain for any minimum x∗ of f ,

f(x∗) ≤ f(x0) − ε

2

∞∑
k=0

‖∇f(xk)‖2.

It follows that ∇f(xk) → 0, that {f(xk)} converges, and that
∑∞

k=0 ‖∇f(xk)‖2 < ∞, from which

∞∑
k=0

‖xk+1 − xk‖2 < ∞,
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