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SECTION 1.1

1.1.9 (www)

For any z,y € R, from the second order expansion

—~

see Appendix A, Proposition A.23) we have

fly) = f@) = (y—2)Vi)+ 5y —2)V3(z)(y —2), (1)

DN | =

where z is some point of the line segment joining x and y. Setting = 0 in (1) and using the
given property of f, it can be seen that f is coercive. Therefore, there exists z* € R™ such that

f(z*) = infzern f(x) (see Proposition A.8 in Appendix A). The condition
mllyl]> <y'V2f(x)y,  Va,yeRm,

is equivalent to strong convexity of f. Strong convexity guarantees that there is a unique global

minimum z*. By using the given property of f and the expansion (1), we obtain

(v — 2y VI (@) + 2lly —all? < Fy) — F(a) < (v — 2y V() + Blly — a2

Taking the minimum over y € R™ in the expression above gives

min ((y = 2)'Vf(@) + Ty = ll?) < f(a*) = f(2) < min (<y V() + o lly - x|2) .

yeERN? yERM

Note that for any a > 0

min (v -2/ 5) + Sy~ 2ll2) =~ VAP

vf

and the minimum is attained for y = x — % Using this relation for a = m and a = M, we

obtain
1 1
_ 2 < *) < - 2,
VAR < fa) ~ £(2) < — 5 195
The first chain of inequalities follows from here. To show the second relation, use the expansion

(1) at the point z = z*, and note that V f(z*) = 0, so that

Fl) ~ F@*) = Sy~ 2y V2 ()~ 2°),

The rest follows immediately from here and the given property of the function f.
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Since z* is a nonsingular strict local minimum, we have that V2f(z*) > 0. The function f is
twice continuously differentiable over 37, so that there exists a scalar § > 0 such that

V2f(z) >0, Vx, with ||z —2*|| <.

This means that the function f is strictly convex over the open sphere B(x*,d) centered at z*
with radius §. Then according to Proposition 1.1.2, x* is the only stationary point of f in the
sphere B(x*,0).

If f is not twice continuously differentiable, then x* need not be an isolated stationary
point. The example function f does not have the second derivative at x = 0. Note that f(z) > 0
for x # 0, and by definition f(0) = 0. Hence, 2* = 0 is the unique (singular) global minimum.

The first derivative of f(x) for x # 0 can be calculated as follows:
f'(z) =2z (\/5 —sin (5% - \/§ln(x2)> + V3 cos (%T - \/§ln(x2))>
=2z <\/§ — 2cos g sin <%T - \/gln(m2)> + 25sin g oS <%T - \/gln(x2)>)
=% (ﬁ+2sin (g - %” + \/§1n(x2)>>
=2z (\/5 - 2cos(2\/§lnz)) .

(1—8k)7 —(14-8k)7
Solving f/(xz) = 0, gives 2k = ¢ 83 and y* =e 8v3 for k integer. The second derivative

of f(x), for x # 0, is given by

f'(x) =2 (\/_ —2cos(2V3Inz) + 4\/§Sin(2\/§lnaﬁ)) .

Thus: - .
1"(prk) — — — n —
f(xk) 2(\/_ 20054+4\/§sm4)
=2 <f2£ +4\/§£>
2 2
= 4V6.
Similarly

Fr(yk) = =2 (\/5 — 2cos (_Tﬂ) +4/3sin (%))
=2 <\/§—2§—4\/§?>

= —46.

Hence, {z* | k > 0} is a sequence of nonsingular local minima, which evidently converges to z*,

while {y* | k > 0} is a sequence of nonsingular local maxima converging to z*.
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(a) Let x* be a strict local minimum of f. Then there is § such that f(z*) < f(z) for all x in
the closed sphere centered at x* with radius 6. Take any local sequence {z*} that minimizes f,
ie. ||zk —2*|| <6 and limg oo f(2*) = f(2*). Then there is a subsequence {z*i} and the point
T such that zFi — T and ||T — z*|| < ¢. By continuity of f, we have

f(@) = lim f(zhi) = f(z*).

11— 00

Since x* is a strict local minimum, it follows that T = x*. This is true for any convergent
subsequence of {z*}, therefore {z*} converges to x*, which means that x* is locally stable. Next
we will show that for a continuous function f every locally stable local minimum must be strict.
Assume that this is not true, i.e., there is a local minimum z* which is locally stable but is not

strict. Then for any 6 > 0 there is a point z¢ # x* such that

0< ||zt —a*|| <8 and f(af)= f(x*). (1)
Since z* is a stable local minimum, there is a 6 > 0 such that ¥ — z* for all {z¥} with

Jm f(z%) = f(z*) and [[z* —a*|| <o. (2)

For # = ¢ in (1), we can find a point 20 # x* for which 0 < ||z0 — z*|| < § and f(20) = f(z*).
Then, for § = $||z0 — z*|| in (1), we can find a point ! such that 0 < [|z1 — z*|| < 3||z0 — z*||
and f(z!) = f(z*). Then, again, for § = %|[z1 — z*|| in (1), we can find a point 22 such that
0 < ||z2 — 2*|| < 3|[#* — 2*|| and f(22) = f(z*), and so on. In this way, we have constructed
a sequence {z¥} of distinct points such that 0 < ||k — z*|| < §, f(z¥F) = f(z*) for all k, and

limy_,00 % = 2*. Now, consider the sequence {y*} defined by
y2m =gm, y2m+1 — {,CU, Y m Z 0.

Evidently, the sequence {y*} is contained in the sphere centered at z* with the radius . Also
we have that f(y*¥) = f(z*), but {y*} does not converge to x*. This contradicts the assumption

that z* is locally stable. Hence, x* must be strict local minimum.

(b) Since z* is a strict local minimum, we can find § > 0, such that f(z) > f(z*) for all  # z*
with ||z —2*|| < 0. Then min,_,«=5 f(z) = f0 > f(z*). Let G = max|;_»*||<s |9(z)|. Now,
we have

f(x) —eG < f(z) +eg(x) < f(x) + eGY, Ve>0, Va |lz—a* <.

)
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Choose €% such that

fO— GO > fla*) 4 €G3,
and notice that for all 0 < € < €9 we have
fo— €GO > f(z*) + eGo.
Consider the level sets
L(e) = {z | f(x) +eg(x) < f(a*) + G0, flx —a*[| <6}, 0<e<e

Note that
L(el) € L(e2) C B(z*,9), VO<el <e2<eéd, (3)

where B(z*,d) is the open sphere centered at x* with radius 6. The relation (3) means that
the sequence {L(e)} decreases as e decreases. Observe that for any € > 0, the level set L(e) is
compact. Since x* is strictly better than any other point x € B(z*,0), and a* € L(e) for all
0 <e<éd, we have

No<e<es L(€) = {z*}. (4)

According to Weierstrass’ theorem, the continuous function f(z)+ eg(z) attains its minimum on
the compact set L(e) at some point z. € L(e). From (3) it follows that . € B(z*, ) for any € in

the range [0, €/]. Finally, since zc € L(e), from (4) we see that lime_.oc e = x*.

1.1.13 (www)

In the solution to the Exercise 1.1.12 we found the numbers § > 0 and €5 > 0 such that for all
€ € [0,€9) the function f(z)+ eg(x) has a local minimum z. within the sphere B(z*,d) = {z |
||z — z*|| < §}. The Implicit Function Theorem can be applied to the continuously differentiable
function G(e,z) = Vf(z) + eVg(x) for which G(0,2*) = 0. Thus, there are an interval [0, €), a
number dy and a continuously differentiable function ¢ : [0,e) — B(x*,d0) such that ¢(e) = x¢

and

Vo(e) = V.G (6,6(€)) (VoG (6,0() ", Ve€l0e).

We may assume that € is small enough so that the first order expansion for ¢(e) at € = 0 holds,

namely

¢(e) = ¢(0) +eVe(0) +o(e),  Vee(0,e). (1)

It can be seen that VG (0,¢(0)) = V,G(0,2*) = V2 f(z*), and V.G (0,¢(0)) = Vg(x*)’, which
combined with ¢(e) = z¢, ¢(0) = (z*)’ and (1) gives the desired relation.
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(a) Given a bounded set A, let r = sup{||z| | z € A} and B = {z | ||z|] < r}. Let L =
max{||V2f(x)|| | + € B}, which is finite because a continuous function on a compact set is

bounded. For any z,y € A we have

1
V@) = Vi = [ V(e (1= 0y -yt
0
Notice that tz + (1 — t)y € B, for all t € [0, 1]. It follows that

IV f(@) = f)l < Lljz -yl
as desired.

(b) The key idea is to show that x* stays in the bounded set
A={z|f(z) < f(=°)}

and to use a stepsize a* that depends on the constant L corresponding to this bounded set. Let
R = max{||z|| | z € A},

G =max{[|Vf(z)| |z € A},

and

B={z||z| < R+2G}.

Using condition (i) in the exercise, there exists some constant L such that |V f(x) — Vf(y)| <
L|lz — y||, for all x,y € B. Suppose the stepsize ok satisfies

0<e<ak <(2—¢€)yk min{l,1/L},

where
_ [V f(ak)dk|
[ak(z -

Let 8k = ak(vk — La*/2), which can be seen to satisfy 8% > €2~k /2 by our choice of ak. We

’Yk

will, show by induction on k that with such a choice of stepsize, we have z* € A and

f(ak+1) < fak) — BR[|k, )

7
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for all £ > 0.

To start the induction, we note that 20 € A, by the definition of A. Suppose that zF € A.

By the definition of v*, we have

YRdE(2 = [V f(ak)ydh| < ||V f(®)] - ldkl.
Thus, [|d*|| < ||V f(z*)||/v* < G/+*. Hence,

[a* + aFd¥]| < [z*]] + oa*G /A% < R +2G,

which shows that x¥ + akd* € B. In order to prove Eq. (*), we now proceed as in the proof of
Prop. 1.2.3. A difficulty arises because Prop. A.24 assumes that the inequality |V f(z) =V f(y)| <
L||z — y|| holds for all x,y, whereas in this exercise this inequality holds only for z,y € B. We
thus essentially repeat the proof of Prop. A.24, to obtain

flaktl) = fak + akdF)

1
:/ bV f(xF + TakdF)'dk dr
0

1 /
< akV f(xk)'dF + / ak (Vf(ask + ak"rdk) - Vf(xk)) dk dr
0

1
< oV f(zkydk + (ak)2||dk||2/ Lrdr
0

k)2
= kv f(aryas + X0 e

We have used here the inequality
|V f(zF + akrdF) — V f(xF)|| < akL7||dF|,
which holds because of our definition of L and because z¥ € A C B, xk 4+ akdk € B and (because

of the convexity of B) zF + aFrdF € B, for T € [0, 1].

Inequality (*) now follows from Eq. (**) as in the proof of Prop. 1.2.3. In particular, we
have f(ak+1) < f(zF) < f(a9) and zF+! € A. This completes the induction. The remainder of

the proof is the same as in Prop. 1.2.3.

1.2.10 (www)
‘We have .
V(z) - V(z+) = /0 V2f (2% + t(x — o)) (x — o)t

and since

Vf(z) =0,
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we obtain
1 1
(x —az*)Vf(x) = / (x —z*)V2f(z* + t(x — x*))(z — x*)dt > m/ |l — a*||2dt.
0 0
Using the Cauchy-Schwartz inequality (x — 2*)'V f(z) < ||l — 2*||||Vf(2)||, we have

1
m / o — o |2dt < o — = ||V F(@)]]

and
Vf(x
o aef < IF@I
m
Now define for all scalars t,
F(t) = flax + t(z — z%))
We have
F'(t) = (x — a*)'V f(a* + t(x — z*))

and

Frt) = (x —z*)'V2f(z* + t(x — z*))(x — 2*) > m|lz — z*||? > 0.
Thus F” is an increasing function, and F’(1) > F'(t) for all ¢ € [0, 1]. Hence

f@) = fa*) = F / Frlt)dt
< F'(1)=(z—z*)Vf()
k

< - 29 @) < LD,

where in the last step we used the result shown earlier.

1.2.11 (www)

Assume condition (i). The same reasoning as in proof of Prop. 1.2.1, can be used here to show

that
0 < Vf(z)p, (1)

where Z is a limit point of {#*}, namely {z*}, ¢ — Z, and
dk _
pr= W» {P"}rex — D (2)
Since V f is continuous, we can write
Vf(@)p= lim _Vf(zk)pk
k—oo, ke

= liminf WV f(ak)pk
k—oo, keEKX

liminf, o ger V/(ab)dt

lim Supk—>oo, keK | |dk| |

<0,

9
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which contradicts (1). The proof for the other choices of stepsize is the same as in Prop.1.2.1.

Assume condition (ii). Suppose that V f(xz*k) # 0 for all k. For the minimization rule we
have

Flak+1) = glzlgf(mk + adk) = glzigf(xk + 0p*), (3)

for all k, where pk = I\Z:H' Note that

Vf@k)ypk < —cl[Vf@R), Yk (4)

Let #k+1 = zk+apF be the iterate generated from z* via the Armijo rule, with the corresponding

stepsize &, and the descent direction p*. Then from (3) and (4), it follows that
fQahtt) = faF) < f(@hH1) = f(ah) < oapV [ (2F)ph < —ocar|[V f(2F)][. (5)

Hence, either {f(z*)} diverges to —oco or else it converges to some finite value. Suppose
that {z¥}rex — T and Vf(Z) # 0. Then, limy_— o rex f(2*) = f(Z), which combined with (5)
implies that

: A V|2 —
lim @[V = o.

Since limy o0 ke Vf(2F) = Vf(Z) # 0, we must have limy_,o0 peic & = 0. Without loss of
generality, we may assume that limy_ o kexc P¥ = p. Now, we can use the same line of arguments
as in the proof of the Prop. 1.2.1 to show that (1) holds. On the other hand, from (4) we have
that

lim Y f(ek)pk = V(@)D < [V f(@)]| <0.

k—o0,k€E

This contradicts (1), so that Vf(z) = 0.

1.2.13 (www)

Consider the stepsize rule (i). From the Descent Lemma (cf. the proof of Prop. 1.2.3), we have

for all k£
ok L

f($k+1) < f(xk) — ak (1 — 5

) IV FER)|P.

From this relation, we obtain for any minimum x* of f,

F@) < @) = 5 DIV b

k=0
It follows that V f(z*) — 0, that {f(2*)} converges, and that >~ ||V f(z¥)||2 < oo, from which

oo

D llaktt — k|2 < oo,
k=0

10



