
1

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

CHAPTER 2

2.1 Write pseudocode to implement the flowchart depicted in Fig. P2.1. Make sure that proper
indentation is included to make the structure clear.

IF x < 100 THEN
 IF x  50 THEN
 x = 0
 ELSE
 x = 75
 END IF
ELSE
 DO
 x = x – 50
 IF x < 200 EXIT
 END DO
ENDIF

2.2 Rewrite the following pseudocode using proper indentation:
DO
i = i + 1
IF z > 50 EXIT
x = x + 5
IF x > 5 THEN
y = x
ELSE
y = 0
ENDIF
z = x + y
ENDDO

2

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

DO
 i = i + 1
 IF z > 50 EXIT
 x = x + 5
 IF x > 5 THEN
 y = x
 ELSE
 y = 0
 ENDIF
 z = x + y
ENDDO

2.3 Develop, debug, and document a program to determine the roots of a quadratic equation,

ax2 + bx + c, in either a high-level language or a macro language of your choice. Use a subroutine

procedure to compute the roots (either real or complex). Perform test runs for the cases () a

 () b () c

Students could implement the subprogram in any number of languages. The following VBA program is

one example. It should be noted that the availability of complex variables in languages such as Fortran 90

would allow this subroutine to be made even more concise. However, we did not exploit this feature, in

order to make the code more compatible with languages that do not support complex variables. This

version is then followed by a MATLAB script and function that does accommodate complex variables.

Option Explicit

Sub Rootfind()
Dim ier As Integer
Dim a As Double, b As Double, c As Double
Dim r1 As Double, i1 As Double, r2 As Double, i2 As Double
a = 1: b = 7: c = 2
Call Roots(a, b, c, ier, r1, i1, r2, i2)
If ier = 0 Then
 MsgBox "No roots"
ElseIf ier = 1 Then
 MsgBox "single root=" & r1
ElseIf ier = 2 Then
 MsgBox "real roots = " & r1 & ", " & r2
ElseIf ier = 3 Then
 MsgBox "complex roots =" & r1 & "," & i1 & " i" & "; "_
 & r2 & "," & i2 & " i"
End If
End Sub

Sub Roots(a, b, c, ier, r1, i1, r2, i2)
Dim d As Double
r1 = 0: r2 = 0: i1 = 0: i2 = 0
If a = 0 Then
 If b <> 0 Then
 r1 = -c / b
 ier = 1
 Else
 ier = 0
 End If

3

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Else
 d = b ^ 2 - 4 * a * c
 If (d >= 0) Then
 r1 = (-b + Sqr(d)) / (2 * a)
 r2 = (-b - Sqr(d)) / (2 * a)
 ier = 2
 Else
 r1 = -b / (2 * a)
 r2 = r1
 i1 = Sqr(Abs(d)) / (2 * a)
 i2 = -i1
 ier = 3
 End If
End If
End Sub

The answers for the 3 test cases are: (a) 0.2984, 6.702; (b) 0.32; (c) 0.4167 + 1.5789i;
0.4167  1.5789i.

Several features of this subroutine bear mention:
 The subroutine does not involve input or output. Rather, information is passed in and out via the

arguments. This is often the preferred style, because the I/O is left to the discretion of the programmer
within the calling program.

 Note that a variable is passed (IER) in order to distinguish among the various cases.

MATLAB:
function [r1,r2]=quadroots(a,b,c)
r1 = 0; r2 = 0;
if a == 0
 if b ~= 0
 r1=-c/b;
 else
 r1='Trivial solution';
 end
else
 discr=b^2-4*a*c;
 if discr >= 0
 r1=(-b+sqrt(discr))/(2*a);
 r2=(-b-sqrt(discr))/(2*a);
 else
 r1 =-b/(2*a); i1=sqrt(abs(discr))/(2*a);
 r2=r1-i1*i; r1=r1+i1*i;
 end
end

Script:
clc
format compact
disp('(a)'),[r1,r2]=quadroots(1,7,2)
disp('(b)'),[r1,r2]=quadroots(0,-5,1.6)
disp('(c)'),[r1,r2]=quadroots(3,2.5,8)

4

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Output when script is run
(a)
r1 =
 -0.2984
r2 =
 -6.7016
(b)
r1 =
 0.3200
r2 =
 0
(c)
r1 =
 -0.4167 + 1.5789i
r2 =
 -0.4167 - 1.5789i

2.4 The sine function can be evaluated by the following infinite series:

Write an algorithm to implement this formula so that it computes and prints out the values of cos x as each
term in the series is added. In other words, compute and print in sequence the values for

up to the order term n of your choosing. For each of the preceding, compute and display the percent
relative error as

Write the algorithm as () a a structured flowchart and () b pseudocode.

The development of the algorithm hinges on recognizing that the series approximation of the sine can be
represented concisely by the summation,

where i = the order of the approximation.

5

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

(a) Structured flowchart:

(b) Pseudocode:

SUBROUTINE Coscomp(n,x)
i = 0; truth = COS(x); approx = 0
factor = 1
DO
 IF i > n EXIT
 approx = approx + (-1)ix2i / factor
 error = (truth - approx) / truth) * 100
 PRINT i, truth, approx, error
 i = i + 1
 factor = factor(2i-1)(2i)
END DO
END

T

factor = factor(2i-1)(2i)

i = i + 1

OUTPUT
i, approx, error

approx = approx + (-1)i x2i / factor

error = |(true-approx)/true| 100%

i>n

F

i=0

true = cos(x)

approx = 0

factor = 1

start

INPUT x,n

end

6

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.5 Develop, debug, and document a program for Prob. 2.4 in either a high-level language or a macro
language of your choice. Employ the library function for the cosine in your computer to determine the true
value. Have the program print out the series approximation and the error at each step. As a test case,
employ the program to compute sin(1.25) for up to and including the term x10/10!. Interpret your results.

Students could implement the subprogram in any number of languages. The following MATLAB M-file is
one example. It should be noted that MATLAB allows direct calculation of the factorial through its
intrinsic function factorial. However, we did not exploit this feature, in order to make the code more
compatible with languages such as Visual BASIC and Fortran.

function coscomp(x,n)
i = 0; tru = cos(x); approx = 0;
f = 1;
fprintf('\n');
fprintf('order true value approximation error\n');
while (1)
 if i > n, break, end
 approx = approx + (-1)^i * x^(2*i) / f;
 er = abs((tru - approx) / tru)* 100;
 fprintf('%3d %14.10f %14.10f %12.8f \n',i,tru,approx,er);
 i = i + 1;
 f = f*(2*i-1)*(2*i);
end

Here is a run of the program showing the output that is generated:

>> coscomp(1.25,5)

order true value approximation error
 0 0.3153223624 1.0000000000 217.13576938
 1 0.3153223624 0.2187500000 30.62655045
 2 0.3153223624 0.3204752604 1.63416828
 3 0.3153223624 0.3151770698 0.04607749
 4 0.3153223624 0.3153248988 0.00080437
 5 0.3153223624 0.3153223323 0.00000955

2.6 The following algorithm is designed to determine a grade for a course that consists of quizzes,
homework, and a final exam:

Step 1: Input course number and name.
Step 2: Input weighting factors for quizzes (WQ), homework (WH), and the final exam (WF).
Step 3: Input quiz grades and determine an average quiz grade (AQ).
Step 4: Input homework grades and determine an average homework grade (AH).
Step 5: If this course has a final exam grade, continue to step 6. If not, go to step 9.
Step 6: Input final exam grade (FE).
Step 7: Determine average grade AG according to

Step 8: Go to step 10.
Step 9: Determine average grade AG according to

Step 10: Print out course number, name, and average grade.
Step 11: Terminate computation.
()a Write well-structured pseudocode to implement this algorithm.

7

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

()b Write, debug, and document a structured computer program based on this algorithm. Test it using
the following data to calculate a grade without the final exam and a grade with the final exam:

and final exam

(a) The following pseudocode provides an algorithm for this problem. Notice that the input of the quizzes
and homeworks is done with logical loops that terminate when the user enters a negative grade:

INPUT WQ, WH, WF
nq = 0
sumq = 0
DO
 INPUT quiz (enter negative to signal end of quizzes)
 IF quiz < 0 EXIT
 nq = nq + 1
 sumq = sumq + quiz
END DO
AQ = sumq / nq
nh = 0
sumh = 0
DO
 INPUT homework (enter negative to signal end of homeworks)
 IF homework < 0 EXIT
 nh = nh + 1
 sumh = sumh + homework
END DO
AH = sumh / nh
DISPLAY "Is there a final exam (y or n)"
INPUT answer
IF answer = "y" THEN
 INPUT FE
 AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF)
ELSE
 AG = (WQ * AQ + WH * AH) / (WQ + WH)
END IF
DISPLAY AG
END

(b) Students could implement the program in any number of languages. The following VBA code is one
example.

Option Explicit

Sub Grader()
Dim WQ As Double, WH As Double, WF As Double
Dim nq As Integer, sumq As Double, AQ As Double
Dim nh As Integer, sumh As Double, AH As Double
Dim answer As String, FE As Double
Dim AG As Double, quiz As Double, homework As Double

'enter weights
WQ = InputBox("enter quiz weight")
WH = InputBox("enter homework weight")
WF = InputBox("enter final exam weight")
'enter quiz grades
nq = 0: sumq = 0
Do
 quiz = InputBox("enter negative to signal end of quizzes")
 If quiz < 0 Then Exit Do
 nq = nq + 1
 sumq = sumq + quiz

8

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Loop
AQ = sumq / nq
'enter homework grades
nh = 0: sumh = 0
Do
 homework = InputBox("enter negative to signal end of homeworks")
 If homework < 0 Then Exit Do
 nh = nh + 1
 sumh = sumh + homework
Loop
AH = sumh / nh
'determine and display the average grade
answer = InputBox("Is there a final exam (y or n)")
If answer = "y" Then
 FE = InputBox("final exam:")
 AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF)
Else
 AG = (WQ * AQ + WH * AH) / (WQ + WH)
End If
MsgBox "Average grade = " & AG
End Sub

The results should conform to:

AQ = 437/5 = 87.4
AH = 541/6 = 90.1667

without final

with final

Here is an example of how a MATLAB script could be developed to solve the same problem:

clc
% enter weights
WQ = input('enter quiz weight');
WH = input('enter homework weight');
WF = input('enter final exam weight');
% enter quiz grades
nq = 0; sumq = 0;
while(1)
 quiz = input('enter negative to signal end of quizzes');
 if quiz < 0;break;end
 nq = nq + 1;
 sumq = sumq + quiz;
end
AQ = sumq / nq;
% enter homework grades
nh = 0; sumh = 0;
while(1)
 homework = input('enter negative to signal end of homeworks');
 if homework < 0;break;end
 nh = nh + 1;
 sumh = sumh + homework;
end
AH = sumh / nh;
answer = input('Is there a final exam (y or n)','s');

9

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

if answer == 'y'
 FE = input('final exam:');
 AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF);
else
 AG = (WQ * AQ + WH * AH) / (WQ + WH);
end
fprintf('Average grade: %8.4f\n',AG)

Finally, here is an alternative MATLAB script that solves the same problem, but is much more concise.
Note that rather than using interactive input, the script employs vectors to enter the data. In addition, the
nonexistence of a final is denoted by entering a negative number for the final exam:

clc
WQ=30;WH=40;WF=30;
QG=[98 95 90 60 99];
HG=[98 95 86 100 100 77];
FE=91;
if FE>0
 AG=(WQ*mean(QG)+WH*mean(HG)+WF*FE)/(WQ+WH+WF);
else
 AG=(WQ*mean(QG)+WH*mean(HG))/(WQ+WH);
end
fprintf('Average grade: %8.4f\n',AG)

2.7 The “divide and average” method, an old-time method for approximating the square root of any
positive number , a can be formulated as

()a Write well-structured pseudocode to implement this algorithm as depicted in Fig. P2.7. Use proper
indentation so that the structure is clear.

()b Develop, debug, and document a program to implement this equation in either a high-level language or
a macro language of your choice. Structure your code according to Fig. P2.7.

(a) Pseudocode:

10

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

IF a > 0 THEN
 tol = 10–6

 x = a/2
 DO
 y = (x + a/x)/2
 e = (y – x)/y
 x = y
 IF e < tol EXIT
 END DO
 SquareRoot = x
ELSE
 SquareRoot = 0
END IF

(b) Students could implement the function in any number of languages. The following VBA and MATLAB
codes are two possible options.

VBA Function Procedure MATLAB M-File
Option Explicit
Function SquareRoot(a)
Dim x As Double, y As Double
Dim e As Double, tol As Double
If a > 0 Then
 tol = 0.000001
 x = a / 2
 Do
 y = (x + a / x) / 2
 e = Abs((y - x) / y)
 x = y
 If e < tol Then Exit Do
 Loop
 SquareRoot = x
Else
 SquareRoot = 0
End If
End Function

function s = SquareRoot(a)
if a > 0
 tol = 0.000001;
 x = a / 2;
 while(1)
 y = (x + a / x) / 2;
 e = abs((y - x) / y);
 x = y;
 if e < tol, break, end
 end
 s = x;
else
 s = 0;
end

2.8 An amount of money P is invested in an account where interest is compounded at the end of the
period. The future worth F yielded at an interest rate i after n periods may be determined from the
following formula:

Write a program that will calculate the future worth of an investment for each year from 1 through n. The
input to the function should include the initial investment P, the interest rate i (as a decimal), and the
number of years n for which the future worth is to be calculated. The output should consist of a table with
headings and columns for n and F. Run the program for P = $100,000, i = 0.06, and n = 5 years.

A MATLAB M-file can be written to solve this problem as

function futureworth(P, i, n)
% Calculates future worth of an investment
% input: P principle, i periodic interest rate, n number of periods
nn = 0:n;
F = P*(1+i).^nn;
y = [nn;F];
fprintf('\n year future worth\n');
fprintf('%5d %14.2f\n',y);

This function can be used to evaluate the test case,

11

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

>> futureworth(100000,0.06,5)

 year future worth
 0 100000.00
 1 106000.00
 2 112360.00
 3 119101.60
 4 126247.70
 5 133822.56
>>

2.9 Economic formulas are available to compute annual payments for loans. Suppose that you borrow
an amount of money P and agree to repay it in n annual payments at an interest rate of i. The formula to
compute the annual payment A is

Write a program to compute A. Test it with and an interest rate of Compute

results for and 5 and display the results as a table with headings and columns for n and A.

A MATLAB M-file can be written to solve this problem as

function annualpayment(P, i, n)
% Calculates the annual / periodic payments on a loan of various lengths
% Inputs: P amount borrowed, i periodic interest rate, n maximum number of
% periodic payments
% Outputs: yearly payment amount for terms of 1 to n years
nn = 1:n;
A = P*i*(1+i).^nn./((1+i).^nn-1);
y = [nn;A];
fprintf('\n years annual payment\n');
fprintf('%5d %14.2f\n',y);

This function can be used to evaluate the test case,

>> annualpayment(55000,0.05,5)

 years annual payment
 1 57750.00
 2 29579.27
 3 20196.47
 4 15510.65
 5 12703.61

2.10 The average daily temperature for an area can be approximated by the following function,

where the average annual temperature, the peak temperature, ω = the frequency of the

annual variation day of the peak temperature (≅ 205 d). Develop a program

that computes the average temperature between two days of the year for a particular city. Test it for () a
January–February in Miami, Florida and ()b July–August

 in Boston, Massachusetts

Students could implement the function in any number of languages. The following VBA and MATLAB
codes are two possible options.

12

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

VBA Function Procedure MATLAB M-File
Option Explicit
Function avgtemp(Tm, Tp, ts, te)
Dim pi As Double, w As Double
Dim Temp As Double, t As Double
Dim sum As Double, i As Integer
Dim n As Integer
pi = 4 * Atn(1)
w = 2 * pi / 365
sum = 0
n = 0
t = ts
For i = ts To te
 Temp = Tm+(Tp-Tm)*Cos(w*(t-205))
 sum = sum + Temp
 n = n + 1
 t = t + 1
Next i
avgtemp = sum / n
End Function

function Ta = avgtemp(Tm,Tp,ts,te)
w = 2*pi/365;
t = ts:te;
T = Tm + (Tp-Tm)*cos(w*(t-205));
Ta = mean(T);

The function can be used to evaluate the test cases. The following show the results for MATLAB,

>> avgtemp(22.1,28.3,0,59)

ans =
 16.2148

>> avgtemp(10.7,22.9,180,242)

ans =
 22.2491

2.11 Develop, debug, and test a program in either a high-level language or a macro language of your
choice to compute the velocity of the falling parachutist as outlined in Example 1.2. Design the program so
that it allows the user to input values for the drag coefficient and mass. Test the program by duplicating the
results from Example 1.2. Repeat the computation but employ step sizes of 1 and 0.5 s. Compare your
results with the analytical solution obtained previously in Example 1.1. Does a smaller step size make the
results better or worse? Explain your results.

The programs are student specific and will be similar to the codes developed for VBA and MATLAB as
outlined in sections 2.4 and 2.5. For example, the following MATLAB script was developed to use the
function from section 2.5 to compute and tabulate the numerical results for the value at t = 12 s, along with
an estimate of the absolute value of the true relative error based on the analytical solution:

clc; format compact
m=68.1; cd=12.5;
ti=0; tf=12.;
vi=0;
vtrue=9.81*m/cd*(1-exp(-cd/m*tf))
dt=[2 1 0.5]';
for i = 1:3
 v(i)=euler(dt(i),ti,tf,vi,m,cd);
end
et=abs((vtrue-v)/vtrue*100);
z=[dt v' et']';
fprintf(' dt v(12) et(pct)\n')
fprintf('%10.3f %10.3f %10.3f\n',z);

Output:

13

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

vtrue =
 47.5387
 dt v(12) et(pct)
 2.000 50.010 5.199
 1.000 48.756 2.561
 0.500 48.142 1.269

The general conclusion is that the error is halved when the step size is halved.

2.12 The bubble sort is an inefficient, but easy-to-program, sorting technique. The idea behind the sort
is to move down through an array comparing adjacent pairs and swapping the values if they are out of
order. For this method to sort the array completely, it may need to pass through it many times. As the
passes proceed for an ascending-order sort, the smaller elements in the array appear to rise toward the
top like bubbles. Eventually, there will be a pass through the array where no swaps are required. Then,
the array is sorted. After the first pass, the largest value in the array drops directly to the bottom.
Consequently, the second pass only has to proceed to the second-to-last value, and so on. Develop a
program to set up an array of 20 random numbers and sort them in ascending order with the bubble
sort (Fig. P2.12).

14

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Students could implement the subprogram in any number of languages. The following VBA/Excel and
MATLAB programs are two examples based on the algorithm outlined in Fig. P2.12.

VBA/Excel MATLAB
Option Explicit

Sub Bubble(n, b)
Dim m As Integer, i As Integer
Dim switch As Boolean, dum As Double
m = n - 1
Do
 switch = False
 For i = 1 To m
 If b(i) > b(i + 1) Then
 dum = b(i)
 b(i) = b(i + 1)
 b(i + 1) = dum
 switch = True
 End If
 Next i
 If switch = False Then Exit Do
 m = m - 1
Loop
End Sub

function y = Bubble(x)
n = length(x);
m = n - 1;
b = x;
while(1)
 s = 0;
 for i = 1:m
 if b(i) > b(i + 1)
 dum = b(i);
 b(i) = b(i + 1);
 b(i + 1) = dum;
 s = 1;
 end
 end
 if s == 0, break, end
 m = m - 1;
end
y = b;

Notice how the MATLAB length function allows us to omit the length of the vector in the function
argument. Here is an example MATLAB script that invokes the function to sort a vector:

clc
a=[6 3 4 2 1 5 7];
Bubble(a)

ans =
 1 2 3 4 5 6 7

2.13 Figure P2.13 shows a cylindrical tank with a conical base. If the liquid level is quite low in the
conical part, the volume is simply the conical volume of liquid. If the liquid level is midrange in the
cylindrical part, the total volume of liquid includes the filled conical part and the partially filled cylindrical
part. Write a well-structured function procedure to compute the liquid’s volume as a function of given
values of R and d. Use decisional control structures (like IF/THEN, ELSEIF, ELSE, ENDIF). Design the
function so that it returns the volume for all cases where the depth is less than 3R. Return an error message
(“Overtop”) if you overtop the tank, that is, d > 3R. Test it with the following data:

15

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Students could implement the function in any number of languages. The following VBA and MATLAB
codes are two possible options.

VBA Function Procedure MATLAB M-File
Option Explicit
Function Vol(R, d)
Dim V1 As Double, V2 As Double
Dim pi As Double
pi = 4 * Atn(1)
If d < R Then
 Vol = pi * d ^ 3 / 3
ElseIf d <= 3 * R Then
 V1 = pi * R ^ 3 / 3
 V2 = pi * R ^ 2 * (d - R)
 Vol = V1 + V2
Else
 Vol = "overtop"
End If
End Function

function Vol = tankvolume(R, d)
if d < R
 Vol = pi * d ^ 3 / 3;
elseif d <= 3 * R
 V1 = pi * R ^ 3 / 3;
 V2 = pi * R ^ 2 * (d - R);
 Vol = V1 + V2;
else
 Vol = 'overtop';
end

The results are:

R d Volume
1 0.5 0.1309
1 1.2 1.675516
1 3 7.330383
1 3.1 overtop

2.14 Two distances are required to specify the location of a point relative to an origin in two-dimensional
space (Fig. P2.14):
• The horizontal and vertical distances (x, y) in Cartesian coordinates
• The radius and angle (r, θ) in radial coordinates.

16

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

It is relatively straightforward to compute Cartesian coordinates (x, y) on the basis of polar coordinates
(r, θ). The reverse process is not so simple. The radius can be computed by the following formula:

If the coordinates lie within the first and fourth coordinates (i.e., x > 0), then a simple formula can be used
to compute θ

The difficulty arises for the other cases. The following table summarizes the possibilities:

x y θ

<0 >0

<0 <0

<0 =0
=0 >0

=0 <0
=0 =0 0

()a Write a well-structured flowchart for a subroutine procedure to calculate r and θ as a function of x and
y. Express the final results for θ in degrees.

()b Write a well-structured function procedure based on your flowchart. Test your program by using it to
fill out the following table:

x y r θ

1 0
1 1
0 1

−1 1
−1 0
−1 −1
0 −1
1 −1
0 0

17

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Here is a flowchart for the algorithm:

Function Polar(x, y)

22 yxr +=

x < 0

y > 0y > 0

pq +





= -

x
y1tan

pq -





= -

x
y1tan pq -






= -

x
y1tanq = 0

2

pq -=

y < 0
2

pq =

q = p

y < 0

p
q 180=Polar

p
180Polar

End Polar

p = 3.141593

T

T

T

T

T

F

F

F

F

x > 0

q 





= -

x
y1tan

TF

F

Students could implement the function in any number of languages. The following MATLAB M-file is
one option. Versions in other languages such as Fortran 90, Visual Basic, or C would have a similar
structure.

function polar(x, y)
r = sqrt(x .^ 2 + y .^ 2);
n = length(x);
for i = 1:n
 if x(i) > 0
 th(i) = atan(y(i) / x(i));
 elseif x(i) < 0
 if y(i) > 0
 th(i) = atan(y(i) / x(i)) + pi;
 elseif y(i) < 0
 th(i) = atan(y(i) / x(i)) - pi;
 else
 th(i) = pi;
 end
 else
 if y(i) > 0
 th(i) = pi / 2;
 elseif y(i) < 0
 th(i) = -pi / 2;
 else
 th(i) = 0;
 end
 end
 th(i) = th(i) * 180 / pi;
end

18

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

ou=[x;y;r;th];
fprintf('\n x y radius angle\n');
fprintf('%8.2f %8.2f %10.4f %10.4f \n',ou);

This function can be used to evaluate the test cases as in the following script:

clc; format compact
x=[1 1 0 -1 -1 -1 0 1 0];
y=[0 1 1 1 0 -1 -1 -1 0];
polar(x,y)

When the script is run, the resulting output is

 x y radius angle
 1.00 0.00 1.0000 0.0000
 1.00 1.00 1.4142 45.0000
 0.00 1.00 1.0000 90.0000
 -1.00 1.00 1.4142 135.0000
 -1.00 0.00 1.0000 180.0000
 -1.00 -1.00 1.4142 -135.0000
 0.00 -1.00 1.0000 -90.0000
 1.00 -1.00 1.4142 -45.0000
 0.00 0.00 0.0000 0.0000

2.15 Develop a well-structured function procedure that is passed a numeric grade from 0 to 100 and
returns a letter grade according to the following scheme:

Letter Criteria

 A 90 ≤ numeric grade ≤ 100
 B 80 ≤ numeric grade < 90
 C 70 ≤ numeric grade < 80
 D 60 ≤ numeric grade < 70
 F numeric grade < 60

Students could implement the function in any number of languages. The following VBA and MATLAB
codes are two possible options.

VBA Function Procedure MATLAB M-File
Function grade(s)
If s >= 90 Then
 grade = "A"
ElseIf s >= 80 Then
 grade = "B"
ElseIf s >= 70 Then
 grade = "C"
ElseIf s >= 60 Then
 grade = "D"
Else
 grade = "F"
End If
End Function

function grade = lettergrade(score)
if score >= 90
 grade = 'A';
elseif score >= 80
 grade = 'B';
elseif score >= 70
 grade = 'C';
elseif score >= 60
 grade = 'D';
else
 grade = 'F';
end

19

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.16 Develop well-structured function procedures to determine (a) the factorial; (b) the minimum value
in a vector; and (c) the average of the values in a vector.

Students could implement the functions in any number of languages. The following VBA and MATLAB
codes are two possible options.

VBA Function Procedure MATLAB M-File
(a) Factorial
Function factor(n)
Dim x As Long, i As Integer
x = 1
For i = 1 To n
 x = x * i
Next i
factor = x
End Function

(b) Minimum
Function min(x, n)
Dim i As Integer
min = x(1)
For i = 2 To n
 If x(i) < min Then min = x(i)
Next i
End Function

(c) Average
Function mean(x, n)
Dim sum As Double
Dim i As Integer
sum = x(1)
For i = 2 To n
 sum = sum + x(i)
Next i
mean = sum / n
End Function

function fout = factor(n)
x = 1;
for i = 1:n
 x = x * i;
end
fout = x;

function xm = xmin(x)
n = length(x);
xm = x(1);
for i = 2:n
 if x(i) < xm, xm = x(i); end
end

function xm = xmean(x)
n = length(x);
s = x(1);
for i = 2:n
 s = s + x(i);
end
xm = s / n;

2.17 Develop well-structured programs to (a) determine the square root of the sum of the squares of the
elements of a two-dimensional array (i.e., a matrix) and (b) normalize a matrix by dividing each row by the
maximum absolute value in the row so that the maximum element in each row is 1.

Students could implement the functions in any number of languages. The following VBA and MATLAB
codes are two possible options.

VBA Function Procedure MATLAB M-File
(a) Square root sum of squares
Function SSS(x, n, m)
Dim i As Integer, j As Integer
SSS = 0
For i = 1 To n
 For j = 1 To m
 SSS = SSS + x(i, j) ^ 2
 Next j
Next i
SSS = Sqr(SSS)
End Function

function s = SSS(x)
[n,m] = size(x);
s = 0;
for i = 1:n
 for j = 1:m
 s = s + x(i, j) ^ 2;
 end
end
s = sqrt(s);

20

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

(b) Normalization
Sub normal(x, n, m, y)
Dim i As Integer, j As Integer
Dim max As Double
For i = 1 To n
 max = Abs(x(i, 1))
 For j = 2 To m
 If Abs(x(i, j)) > max Then
 max = x(i, j)
 End If
 Next j
 For j = 1 To m
 y(i, j) = x(i, j) / max
 Next j
Next i
End Sub

function y = normal(x)
[n,m] = size(x);
for i = 1:n
 mx = abs(x(i, 1));
 for j = 2:m
 if abs(x(i, j)) > mx
 mx = x(i, j);
 end
 end
 for j = 1:m
 y(i, j) = x(i, j) / mx;
 end
end

Alternate version:

function y = normal(x)
n = size(x);
for i = 1:n
 y(i,:) = x(i,:)/max(x(i,:));
end

2.18 Piecewise functions are sometimes useful when the relationship between a dependent and an
independent variable cannot be adequately represented by a single equation. For example, the velocity of a
rocket might be described by

Develop a well-structured function to compute v as a function of t. Then use this function to generate a
table of v versus t for t = −5 to 50 at increments of 0.5.

The following MATLAB function implements the piecewise function:

function v = vpiece(t)
if t<0
 v = 0;
elseif t<10
 v = 11*t^2 - 5*t;
elseif t<20
 v = 1100 - 5*t;
elseif t<30
 v = 50*t + 2*(t - 20)^2;
else
 v = 1520*exp(-0.2*(t-30));
end

Here is a script that uses vpiece to generate the plot

k=0;
for i = -5:.5:50
 k=k+1;
 t(k)=i;
 v(k)=vpiece(t(k));
end
plot(t,v)

21

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.19 Develop a well-structured function to determine the elapsed days in a year. The function should be
passed three values: mo = the month (1–12), da = the day (1–31), and leap = (0 for non–leap year and
1 for leap year). Test it for January 1, 1999; February 29, 2000; March 1, 2001; June 21, 2002; and
December 31, 2004. Hint: A nice way to do this combines the for and the switch structures.

The following MATLAB function implements the algorithm:

function nd = days(mo, da, leap)
nd = 0;
for m=1:mo-1
 switch m
 case {1, 3, 5, 7, 8, 10, 12}
 nday = 31;
 case {4, 6, 9, 11}
 nday = 30;
 case 2
 nday = 28+leap;
 end
 nd=nd+nday;
end
nd = nd + da;

>> days(1,1,0)
ans =
 1
>> days(2,29,1)
ans =
 60
>> days(3,1,0)
ans =
 60
>> days(6,21,0)
ans =
 172
>> days(12,31,1)
ans =
 366

22

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.20 Develop a well-structured function to determine the elapsed days in a year. The first line of the
function should be set up as

function nd = days(mo, da, year)

where mo = the month (1–12), da = the day (1–31), and year = the year. Test it for January 1, 1999;
February 29, 2000; March 1, 2001; June 21, 2002; and December 31, 2004.

The following MATLAB function implements the algorithm:

function nd = days(mo, da, year)
leap = 0;
if year / 4 - fix(year / 4) == 0, leap = 1; end
nd = 0;
for m=1:mo-1
 switch m
 case {1, 3, 5, 7, 8, 10, 12}
 nday = 31;
 case {4, 6, 9, 11}
 nday = 30;
 case 2
 nday = 28+leap;
 end
 nd=nd+nday;
end
nd = nd + da;

>> days(1,1,1999)
ans =
 1
>> days(2,29,2000)
ans =
 60
>> days(3,1,2001)
ans =
 60
>> days(6,21,2002)
ans =
 172
>> days(12,31,2004)
ans =
 366

2.21 Manning’s equation can be used to compute the velocity of water in a rectangular open channel,

where U = velocity (m/s), S = channel slope, n = roughness coefficient, B = width (m), and H = depth
(m). The following data are available for five channels:

 n S B H

0.036 0.0001 10 2
0.020 0.0002 8 1
0.014 0.0012 19 1.7
0.030 0.0007 24 3
0.021 0.0004 15 2.6

23

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Write a well-structured program that computes the velocity for each of these channels. Have the program
display the input data along with the computed velocity in tabular form where velocity is the fifth column.
Include headings on the table to label the columns.

A MATLAB M-file can be written as

function Manning(A)
% computes the velocity of water in an open rectangular channel via
% Mannings equation for each row of matrix A
% Inputs: Matrix A of dimension r x 4 with columns information
% column 1 n roughness coefficient
% column 2 S channel slope
% column 3 B width in meters
% column 4 H depth in meters
A(:,5)=sqrt(A(:,2))./A(:,1).*(A(:,3).*A(:,4)./(A(:,3)+2*A(:,4))).^(2/3);
fprintf('\n n S B H U\n');
fprintf('%8.3f %8.4f %10.2f %10.2f %10.4f\n',A');

This function can be called from a script to create the table,

% Chapter2 problem 21 calling script
A = [.036 .0001 10 2
.020 .0002 8 1
.014 .0012 19 1.7
.03 .0007 24 3
.021 .0004 15 2.6];
Manning(A)

Running the script from the MATLAB command line:

>> ch2p21

 n S B H U
 0.036 0.0001 10.00 2.00 0.3523
 0.020 0.0002 8.00 1.00 0.6094
 0.014 0.0012 19.00 1.70 3.1581
 0.030 0.0007 24.00 3.00 1.5809
 0.021 0.0004 15.00 2.60 1.4767

2.22 A simply supported beam is loaded as shown in Fig. P2.22. Using singularity functions, the
displacement along the beam can be expressed by the equation

By definition, the singularity function can be expressed as follows:

Develop a program that creates a plot of displacement versus distance along the beam x. Note that x = 0 at
the left end of the beam.

24

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

A MATLAB M-file can be written as

function beam(x)
xx = linspace(0,x);
n=length(xx);
for i=1:n
 uy(i) = -5/6.*(sing(xx(i),0,4)-sing(xx(i),5,4));
 uy(i) = uy(i) + 15/6.*sing(xx(i),8,3) + 75*sing(xx(i),7,2);
 uy(i) = uy(i) + 57/6.*xx(i)^3 - 238.25.*xx(i);
end
plot(xx,uy)

function s = sing(xxx,a,n)
if xxx > a
 s = (xxx - a).^n;
else
 s=0;
end

This function can be run to create the plot,

>> beam(10)

25

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.23 The volume V of liquid in a hollow horizontal cylinder of radius r and length L is related to the
depth of the liquid h by

Develop a well-structured function to create a plot of volume versus depth. Test the program for r = 2.5 m
and L = 6 m.

A MATLAB M-file can be written as

function cylinder(r, L)
% calculates the volume of water in horizontal cylinder of radius r and
% length L, in meters
% Ouptut: plot of Volume (m^3) versus height (m)
h = linspace(0,2*r);
V = (r^2*acos((r-h)./r)-(r-h).*sqrt(2*r*h-h.^2))*L;
plot(h, V)
title('Volume of liquid in a horizontal cylinder')
xlabel('height, (m)')
ylabel('volume (m^3)')

This function can be run to create the plot,

>> cylinder(2,5)

2.24 Develop a well-structured program to compute the velocity of a parachutist as a function of time
using Euler’s method. Test your program for the case where m = 85 kg and c = 11 kg/s. Perform the
calculation from t = 0 to 20 s with a step size of 2 s. Use an initial condition that the parachutist has an
upward velocity of 25 m/s at t = 0. At t = 10 s, assume that the parachute is instantaneously deployed
so that the drag coefficient jumps to 55 kg/s.

Before the chute opens (t < 10), Euler’s method can be implemented as

v (t+Δt)=v (t)+[9 .8−1080 v (t)]Δt
After the chute opens (t  10), the drag coefficient is changed and the implementation becomes

26

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

v (t+Δt)=v (t)+[9 .8−5080 v (t)]Δt
You can implement the subprogram in any number of languages. The following MATLAB M-file is one
example. Notice that the results are inaccurate because the stepsize is too big. A smaller stepsize should be
used to attain adequate accuracy.

function parachute
% calculates the velocity of parachutist using Euler method and parameters
% from Chapra 8e Chapter 2, problem 24
g = 9.81;
m = 85; c = 11;
ti = 0; tf = 20; dt = 2;
vi = -25;
tc = 10; cc = 55;
np = (tf - ti) / dt;
t = ti; v = vi;
tout(1) = t; vout(1) = v;
for i = 1:np
 if t < tc
 dvdt = g - c / m * v;
 else
 dvdt = g - cc / m * v;
 end
 v = v + dvdt * dt;
 t = t + dt;
 tout(i+1) = t; vout(i+1) = v;
end
figure('Position',[300 300 800 400])
plot(tout,vout)
title('Velocity of parachutist, chute deployed at t = 10 s')
xlabel('velocity (m/s)')
ylabel('time (s)')
saveas(gcf,'ch2p24.jpg')
z=[tout;vout];
fprintf(' t v\n');
fprintf('%5d %10.3f\n',z);

>> parachute
 t v
 0 -25.000
 2 1.091
 4 20.428
 6 34.761
 8 45.384
 10 53.258
 12 3.956
 14 18.456
 16 14.192
 18 15.446
 20 15.077

27

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.25 The pseudocode in Fig. P2.25 computes the factorial. Express this algorithm as a well-structured
function in the language of your choice. Test it by computing 0! and 6!. In addition, test the error trap by
trying to evaluate −2!.

Students could implement the function in any number of languages. The following VBA and MATLAB
codes are two possible options.

VBA/Excel MATLAB
Option Explicit
Function fac(n)
Dim x As Long, i As Integer
If n >= 0 Then
 x = 1
 For i = 1 To n
 x = x * i
 Next i
 fac = x
Else
 MsgBox "value must be positive"
 End
End If
End Function

function f = fac(n)

if n >= 0
 x = 1;
 for i = 1: n
 x = x * i;
 end
 f = x;
else
 error 'value must be positive'
end

MATLAB example script to generate test fac.m

% Chapra 8e, Chapter 2, problem 25
format compact
fac(0)
fac(6)
fac(-2)

>> ch2p25
ans =
 1
ans =
 720

28

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Error using fac (line 10)
value must be positive
Error in ch2p25 (line 5)
fac(-2)

The first two lines are the error generated from the function file, and the second two lines are from the
script file.

2.26 The height of a small rocket y can be calculated as a function of time after blastoff with the
following piecewise function:

Develop a well-structured pseudocode function to compute y as a function of t. Note that if the user enters a
negative value of t or if the rocket has hit the ground (y ≤ 0), then a value of zero is returned for y. Also,
the function should be invoked in the calling program as height(t). Write the algorithm (a) as
pseudocode or (b) in a high-level language of your choice.

(a) Pseudocode:

FUNCTION height(t)
IF t < 0 THEN
 y = 0
ELSE IF t < 15 THEN
 y = 38.1454t + 0.13743t3

ELSE IF t < 33 THEN
 y = 1036 + 130.909(t – 15) + 6.18425(t – 15)2 - 0.428 (t – 15)3

ELSE
 y = 2900 - 62.468(t – 33) - 16.9274(t – 33)2 + 0.41796 (t – 33)3

END IF
IF y < 0 THEN y = 0
height = y

END

(b) MATLAB:
function y = height(t)
%Function to compute height of rocket from piecewise function
% y = height(t)
% input:
% t = time
% output:
% y = height

if t < 0
 y = 0;
elseif t < 15
 y = 38.14544*t + 0.137428*t^3;
elseif t < 33
 y = 1036 + 130.909*(t - 15) + 6.18425*(t - 15)^2 - 0.428*(t - 15)^3;
else
 y = 2900 - 62.468*(t - 33) - 16.9274*(t - 33)^2 + 0.41796*(t - 33)^3;
end
if y < 0, y = 0; end
end

29

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Here is a script that uses the function to generate a plot:

clc,clf
t=[-2:47];
for i=1:length(t)
 y(i)=height(t(i));
end
plot(t,y)

-10 0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

VBA:

Option Explicit

Function height(t)
If t < 0 Then
 y = 0
ElseIf t < 15 Then
 y = 38.14544 * t + 0.137428 * t ^ 3
ElseIf t < 33 Then
 y = 1036 + 130.909 * (t - 15) + 6.18425 * (t - 15) ^ 2 _
 - 0.428 * (t - 15) ^ 3
Else
 y = 2900 - 62.468 * (t - 33) - 16.9274 * (t - 33) ^ 2 _
 + 0.41796 * (t - 33) ^ 3
End If
If y < 0 Then y = 0
height = y
End Function

2.27 As depicted in Fig. P2.27, a water tank consists of a cylinder topped by the frustum of a cone.
Develop a well-structured function in a high-level language or macro language of your choice to compute
the volume given the water level h (m) above the tank’s bottom. Design the function so that it returns a
value of zero for negative h’s and the value of the maximum filled volume for h’s greater than the tank’s
maximum depth. Given the following parameters, H1 = 11 m, r1 = 3.5 m, H2 = 5 m, and r2 = 6 m, test
your function by using it to compute the volumes and generate a graph of the volume as a function of level
from h = −1 to 17 m.

30

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

We must first identify the general formulas for the volumes. For example, for the full cylinder

(1)
and for the volume of the full circular cone frustum

(2)

With this knowledge we can come up with the other cases that can occur:

Case 1: Full tank or overflowing tank.

Case 2: The depth, h  0. V = 0

Case 3: Partially-full cylinder (0 < h < H1)

Case 4: Full cylinder with partially-full frustum (H1  h < H1 + H2)

31

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

where r2(h) = the radius of the top of the partially-filled frustum. This quantity can be computed using the
problem parameters via linear interpolation as

We can then use an if/then/elseif control structure to logically combine these cases as in

IF h  0 THEN
 V = 0
ELSEIF h < H1 THEN

ELSEIF h < H1 + H2 THEN

ENDIF

Notice how Eqs. (1) and (2) are used several times, but with different arguments. This suggests that we

should represent them as independent functions that would be called by the main function. We do this in
the following code.

VBA/Excel.

Option Explicit

Const pi As Double = 3.14159265358979

Function Vol(h, r1, h1, r2, h2)
Dim r2h As Double
Vol = VCyl(r1, h1) + VFus(r1, r2, h2)
If h <= 0 Then
 Vol = 0
ElseIf h < h1 Then
 Vol = VCyl(r1, h)
ElseIf h < h1 + h2 Then
 r2h = r1 + (r2 - r1) / h2 * (h - h1)
 Vol = VCyl(r1, h1) + VFus(r1, r2h, h - h1)
End If
End Function

Function VCyl(r, y)
VCyl = pi * r ^ 2 * y
End Function

Function VFus(r1, r2, h2)
VFus = pi * h2 / 3 * (r1 ^ 2 + r2 ^ 2 + r1 * r2)
End Function

32

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

-2 0 2 4 6 8 10 12 14 16 18
0

100
200
300
400
500
600
700
800
900

Cylinder topped with frustrum

volume of lquid

liquid height (m)

vo
lu

m
e

(m
^3

)

MATLAB. Written as a function with subfunctions:

function V=Vol(h, r1, h1, r2, h2)
V = VCyl(r1, h1) + VFus(r1, r2, h2);
if h <= 0
 V = 0;
elseif h < h1
 V = VCyl(r1, h);
elseif h < h1 + h2
 r2h = r1 + (r2 - r1) / h2 * (h - h1);
 V = VCyl(r1, h1) + VFus(r1, r2h, h - h1);
end
end

function V=VCyl(r, y)
V = pi * r ^ 2 * y;
end

function V=VFus(r1, r2, h2)
V = pi * h2 / 3 * (r1 ^ 2 + r2 ^ 2 + r1 * r2);
end

Here is a script that uses the functions to develop a plot of volume versus height:

clc,clf, clear
h=[-1:0.5:17];
r1=4; H1=10; r2=6.5; H2=5;
n=length(h);
lvol=zeros(1,n);
for i=1:n
 lvol(i)=Vol(h(i),r1, H1, r2, H2);
end
plot(h,lvol, 'o-')
title('Volume of liquid in a cylinder topped with the frustrum of a cone')
xlabel('liquid height (m)')
ylabel('volume (m^3)')
saveas(gcf,'ch2p27.jpg')

33

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.28 Write a well-structured function procedure named Fnorm to calculate the Frobenius norm of an

 matrix using nested count-controlled (for) loops:

 Test your function with

MATLAB function code

function out = Fnorm(A)
[rmax,cmax] = size(A);
sum2 = 0;
for idx = 1:rmax
 for jdx = 1:cmax
 sum2 = sum2 + A(idx,jdx)^2;
 end
end
out = sqrt(sum2);

MATLAB calling script

% Chapra 8e, Chapter 2, problem 28
A = [5 7 9
1 8 4
7 6 2];
fprintf('Frobineous norm of A is: %7.5f\n',Fnorm(A))
% cross-check with built-in function
norm(A,'fro')

>> ch2p28
Frobineous norm of A is: 18.02776
ans =
 18.0278
>>

34

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.29 The pressure and temperature of the atmosphere are constantly changing depending on a number of
factors including altitude, latitude/longitude, time of day, and season. To take all these variations into
account when considering the design and performance of flight vehicles is impractical. Therefore, a

 standard atmosphere is frequently used to provide engineers and scientists with a common reference for
their research and development. The International Standard Atmosphere is one such model of how
conditions of the earth’s atmosphere change over a wide range of altitudes, or elevations. The following
table shows values of temperature and pressure at selected altitudes.

Layer
index i

Layer name Base
geopotential

altitude above
MSL h (km)

Lapse rate
(°C/km)

Base
temperature

T (°C)

Base pressure
p (Pa)

1 Troposphere 0 −6.5 15 101325

2 Tropopause 11 0 −56.5 22632

3 Stratosphere 20 1 −56.5 5474.9

4 Stratosphere 32 2.8 −44.5 868.02

5 Stratopause 47 0 −2.5 110.91

6 Mesosphere 51 −2.8 −2.5 66.939

7 Mesosphere 71 −2.0 −58.5 3.9564

8 Mesopause 84.852 — −86.28 0.3734

The temperature at each altitude can then be computed as

where T(h) = temperature at altitude h (°C), Ti = the base temperature for layer i (°C), γi = lapse rate, or the
rate at which atmospheric temperature decreases linearly with increase in altitude for layer i (°C/km), and
hi = base geopotential altitude above mean sea level (MSL) for layer i. The pressure at each altitude can
then be computed as

where p(h) = pressure at altitude h (Pa ≡ N/m2), pi = the base pressure for layer i (Pa). The density,
ρ (kg/m3), can then be calculated according to a molar form of the :ideal gas law

where M = molar mass (≅ 0.0289644 kg/mol), R = the universal gas constant (8.3144621 J/(mol K), and
Ta = absolute temperature (K) = T + 273.15.

Develop a function, StdAtmDens, to determine values of the density for a given altitude. If the
user requests a value outside the range of altitudes, have the function display an error message and
terminate the application. Test your function for altitudes of −200, 0, 11, 40, 84.852, and 100 km.

Note there is no test data provided in the problem.
The solution presented here affords an opportunity to introduce students to structures. The overhead in
setting up the structure array results in a very simple calculation section once the correct layer is identified.
This complexity is not required to solve the problem as presented in the text. The code here would need to
be modified to work with vector input; however, this would also be true for most solution approaches.

35

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

MATLAB function code

function [rho p T LName] = StdAtmDens(h)
% returns the denisty of air in the standard atmosphere given a height
% above sea level in km
% optionally also returns pressure and temperature at that height
%{
Chapra 8e Problem 2.29
RJ Genik II, 8 December 2019
The solution developed here provides an example of a structured array. This
would usually be filled from a text file, but here we use input arrays
because the data table is small.
Revised 12 December 2019 - corrected opensedclo interval checks as
h values allowed h > hmin, h <= hmax
%}
R = 8.3144621; % universal gas constant in J/(mol K)
M = 0.0289644; % molar mass in kg/mol
layernum = [1:8];
layername = {'Troposphere' 'Tropopause' 'Stratosphere' 'Stratosphere'...
 'Stratopause' 'Mesosphere' 'Mesosphere' 'Mesopause'};
htable = [0 11 20 32 47 51 71 84.852];% km
lpsrate = [-6.5 0 1 2.8 0 -2.8 -2.0 NaN];% deg C / km
baseT = [15 -56.5 -56.5 -44.5 -2.5 -2.5 -58.5 -86.28]; % deg C
baseP = [101325 22632 5474.9 868.02 110.91 66.939 3.9564 0.3734];% Pa
% build data structure to hold tabular data - could be read from file
% instead, as mentioned above
for idx = 1:length(layernum)
 atmos(idx).LayerIndex = layernum(idx);
 atmos(idx).LayerName = layername(idx);
 atmos(idx).hbase = htable(idx);
 atmos(idx).gamma = lpsrate(idx);
 atmos(idx).Tbase = baseT(idx);
 atmos(idx).pbase = baseP(idx);
end
hmax = atmos(end).hbase;
hmin = atmos(1).hbase;
if (h<=hmin) || (h>hmax)
 error('input height %g outside of model range %g < h <= %g (km)\n', ...
 h, hmin, hmax)
else
 % find the appropriate layer
 for jdx = 1:length(atmos)
 if h>atmos(jdx).hbase
 ilayer = jdx;
 end
 end
end
LName = atmos(ilayer).LayerName;
% Calculate temperature, pressure, and density
hrel = h - atmos(ilayer).hbase;
T = atmos(ilayer).Tbase + atmos(ilayer).gamma*hrel;
p = atmos(ilayer).pbase + (atmos(ilayer+1).pbase - atmos(ilayer).pbase)...
 / (atmos(ilayer+1).hbase - atmos(ilayer).hbase) * hrel;
rho = p*M/(R*(T + 273.15));

MATLAB error test from command line
>> StdAtmDens(-200)
Error using StdAtmDens (line 36)
input height -200 outside of model range 0 < h <= 84.852 (km)
>> StdAtmDens(0)
Error using StdAtmDens (line 36)
input height 0 outside of model range 0 < h <= 84.852 (km)
>> StdAtmDens(100)

36

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

Error using StdAtmDens (line 36)
input height 100 outside of model range 0 < h <= 84.852 (km)
>>

Similarly, the other input data that is not supposed to generate an error can be run to yield the results:

MATLAB test data
height (km) r (kg/m3) T(C) P (Pa)

11 0.36391 -56.5 22632
40 0.0064417 -22.1 464.228

84.9 6.96E-06 -86.2 0.3734

Finally, one can write a test script that will catch errors in a more controlled manner, and output results for
all of the requested inputs. For neatness, the error generating values have been moved to the end of the
input vector, but this is not required. This example afford the opportunity to practice MATLAB’s try/catch
structure for error handling, and impart to students that better error messages inform the user why
calculations failed.

MATLAB test script:
% Chapra 8e Chapter 2 problem 29 test data
clear; clc
htest = [11, 40, 84.852, 100, -200, 0];

ltest = length(htest);

 fprintf('height(km) Layer Name rho(kg/m^3) T(deg C) P(Pa)\n')
for idx = 1:ltest
 try
 [dens pres temp LName] = StdAtmDens(htest(idx));
 fprintf(' %5.1f %15s %12.5g %5.1f %g\n',htest(idx), ...
 LName{1},dens,temp, pres)
 catch ME
 fprintf(2, '** %5.1f *** function returned error ***\n', htest(idx))
 fprintf(2,'** %60s\n',ME.message)
 end
end
>> ch2p29
height(km) Layer Name rho(kg/m^3) T(deg C) P(Pa)
 11.0 Troposphere 0.36391 -56.5 22632
 40.0 Stratosphere 0.0064417 -22.1 464.228
 84.9 Mesosphere 6.9581e-06 -86.2 0.3734
** 100.0 *** function returned error ***
** input height 100 outside of model range 0 < h <= 84.852 (km)

** -200.0 *** function returned error ***
** input height -200 outside of model range 0 < h <= 84.852 (km)

** 0.0 *** function returned error ***
** input height 0 outside of model range 0 < h <= 84.852 (km)

37

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

2.30 Develop a function to convert a vector of temperatures from Celsius to Fahrenheit and vice versa.
Test it with the following data for the average monthly temperatures at Death Valley, CA, and at the
South Pole.

Day 15 45 75 105 135 165 195 225 255 285 315 345

Death Valley °F 54 60 69 77 87 96 102 101 92 78 63 52

South Pole °C −27 −40 −53 −56 −57 −57 −59 −59 −59 −50 −38 −27

Using a single function for both conversions requires a control mechanism. One method is to accept text
input that contains a C or F and key the calculation on finding the input unit. Another method is to accept
two inputs, one the temperature and the second a text code; in this method, an error is thrown if the code is
not understood. A final method is to default to one calculation and accept an optional second argument to
reverse the calculation.

The second method mentioned above is shown here as a VBA function. This VBA function does not
directly generate vector output from vector input and requires calling from a range of spreadsheet cells.

Option Explicit

Function TempConv(Tin, cCode)

If UCase(cCode) = "C2F" Then
 TempConv = 9 / 5 * Tin + 32
ElseIf UCase(cCode) = "F2C" Then
 TempConv = (Tin - 32) * 5 / 9
Else
 MsgBox ("invalid control code, F2C or C2F only")
 TempConv = "Err"
End If

End Function

Similar results can be obtained with a MATLAB function using a flag value to reverse the calculation. A
character indicating units returned is used to allow users to verify the calculation proceeded as intended.

function [Tout, Tunits] = FtoC(Tin, rFlag)
if rFlag~=0
 Tout = 9/5*Tin + 32;
 Tunits = 'F';
else
 Tout = (Tin - 32)*5/9;
 Tunits = 'C';
end

Called from a script with the vector input, tabular results are obtained:

% Chapra 8e Chapter 2, problem 30
Day = [15 45 75 105 135 165 195 225 255 285 315 345];
DeathF = [54 60 69 77 87 96 102 101 92 78 63 52];
SouthC = [-27 -40 -53 -56 -57 -57 -59 -59 -59 -50 -38 -27];
DeathC = FtoC(DeathF,0);
SouthF = FtoC(SouthC, 1);
fprintf('Day ')
fprintf('%5.0f', Day); fprintf('\n')
fprintf('Death Valley °F ')
fprintf('%5.0f', DeathF); fprintf('\n')
fprintf('Death Valley °C ')
fprintf('%5.0f', DeathC); fprintf('\n')

38

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

fprintf('South Pole °C ')
fprintf('%5.0f', SouthC); fprintf('\n')
fprintf('South Pole °F ')
fprintf('%5.0f', SouthF); fprintf('\n')

Results agree from both procedures, rounded to nearest degree (Note: results are rounded to fit on the page
neatly in the table below – the results agree between the two methods to full machine precision):

Day 15 45 75 105 135 165 195 225 255 285 315 345
Death
Valley

°F 54 60 69 77 87 96 102 101 92 78 63 52
°C 12 16 21 25 31 36 39 38 33 26 17 11

South
Pole

°C -27 -40 -53 -56 -57 -57 -59 -59 -59 -50 -38 -27
°F -17 -40 -63 -69 -71 -71 -74 -74 -74 -58 -36 -17

2.31 As depicted in Fig. P2.31, the downward deflection, y (m), of a cantilever beam with a uniform load,
w (kg/m), can be computed as

where x = distance (m), E = the modulus of elasticity = 2 × 1011 Pa, I = moment of inertia = 3.25 × 10–4 m4,
w = 10,000 N/m, and L = length = 4 m. This equation can be differentiated to yield the slope of the
downward deflection as a function of x,

If y = 0 at x = 0, use this equation with Euler’s method (Δx = 0.125 m) to compute the deflection from x = 0
to L. Develop a plot of your results along with the analytical solution computed with the first equation.

The problem definition does not include a specific value for the uniform load, but the shape of the curve is
the same for every uniform load; therefore, we can plot the horizontal deflection per unit load as a function
of distance along the cantilever.

MATLAB Script

% Chapra 8e, Chapter 2, problem 31
% RJ Genik II, 8 - 12 December 2019

clear; clf
I = 3.25E-4;% m^4
E = 2E+11; % Pa
L=4;% m
w= 10000;% N/m
y0 = 0;

39

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior
written consent of McGraw-Hill Education.

ytrue = @(x) w/(24*E*I)*(x.^4 - 4*L*x.^3 + 6*L^2*x.^2) ; %kg^-1
dydxw = @(x) w/(24*E*I)*(4*x^3 - 12*L*x^2 + 12*L^2*x) ; %kg^-1/m

dx= 0.125; % m
x = 0:dx:L;
ywtrue = ytrue(x);
yw = zeros(1,length(x));
yw(1) = y0;
for idx = 1:length(x)-1
 yw(idx+1) = yw(idx) + dydxw(x(idx))*dx;
end
plot (x,ywtrue,'-b')
set(gca,'YDir','reverse','YLim',[-5E-4 5E-3])
hold on
plot (x,yw,'+g')
legend('Analytical Deflection', 'Euler Deflection')
xlabel('distance along cantilever (m)')
ylabel('horizontal deflection (m)')
title('Cantilever beam under uniform load 10^4 N/m')
saveas(gcf,'ch2p31.jpg')

	CHAPTER 2

