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Chapter 1

Preliminaries

1.1 Review of Calculus

1. (a) L=lim,_ o 2l =9

2n+1 4 4
. T ntly __ o —
limy, o0 €, = limy— 00 (2 — 'QT;E'T) =2=35=0

(b) limin oo Fortinct = 2 = 4
oo en = (3 = i) = 5~ § =0
2. (8) limpoo s1n(2r) = sin(liMp— oo Tn) = sin(2)
(b) limp_yeo In(22) = In(limy_ oo 22) = In(4)

3. (a) Since f is continuous on [-1,0]; solve

2242243 = 2
2-2x-1 = 0
z = EV/FINCD
¢ = 1-+/2¢[-1,0]
(b) Since f is continuous on [6, 8]; solve
2 —b5r -2 = 3
2 —5r—11 = 0

r — 5EVEa(EID

2
¢ = By

4. (a) f'{x) =2z — 3 =0, thus the critical points are ¢ = 1. Thus
min{ f(=1), f(1), f(2)} = min{5,—1, -1} = —1 and
maz{f(-1), f(1), f(2)} = maxr{5,-1,-1} =5
(b) f'(x) = ~2cos(x)sin(x) — cos(z) = — cos(z)(2sin(x) + 1) = 0, thus
the critical points are ¢ = 7, 77/6, 117 /6. Thus

5



CHAPTER 1. PRELIMINARIES

Tlnin({if(()),f(ﬂ),f(ﬁ/ﬁ),f(llﬂ/ﬁ),f(%)} =min{l,1,5/4,5/4,1} =

maz{ f(0), f(r), f(77/6), f(117/6), f(2m)} = maz{1,1,5/4,5/4, 1} =
5/4

5. (a) f'(z) = 42® — 8z = 4z(2? - 2) = 0, thus ¢ = 0, 4v/2 € [-2, 2]
(b)
f(z) = cos(z) + 2cos(2z)

cos(r) + 2(2cos?(z) - 1)
4cos?(x) + cos(z) — 2

= 0
r = (-1:+33)/8
¢ = cosTH(—1%+/33)/8),2r — cosT1((—1 £ /33)/8)
6. (a) fl(x) = ﬁ and {A=10) %- Solving 55 = 3 yidlds e = 1.
(b) f'{x) = (@ + 22)/(z + 1)? and {H=LO _ 1 Qulying f/(x) =

(#* +25)/(z+1)2 = § yiclds ¢ = -1+ 2

7. The given function satisfics the hypotheses of the Generalized Rolle’s The-
orem. Since f(0) = f(1) = f(3) = 0, there exista a ¢ € (0,3) such that
f"(¢) = 0. Solve 6c — 8 =0 to find ¢ = 4/3.

8. (a) f(f ze®dr = ze® —e%|2 =e? + 1
(b) f* L #2dz = 2In(x® +1)|1; = 0 (The integrand is an odd function)
9. (a) £ f5 t?cos(t)dt = z? cos(x)

(b) & =" e dt = o) (352) = 322"

10. (a) 7=t [1 62%de = 2238, = 52. Solving 62° = 52 yields ¢ =
26/3 € [-3,4].
2 r3w/2 3m/2 2
(b) 5% fo “xcos(z)dr = &(zsin(z) + cos(z))g? = —(1 + ). Use
a calculator to apprommate the solution(s): zcos(z) = —(1 + 3%);
c =2 2.16506,4.43558 € [0, 37/2].
11. (a) — 1__ =2
(b) ¢ =3

K
(() Zn 1 n(n+1) 527‘: 1(1 n-lt-l) = 3 limp_oo Zi:l(%—n;ﬂ):;s
(d) Zk 13k2—1 71 QZk 1(2k T

2% +
= “llmn—»oo PG 2Ic+1) =

55eT)
1
z
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17.
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BINARY NUMBERS 7

(8) —pag(z — 1)* + &(x —1)3 - Fz—12+tz-1)+1
(b) 422 + 3z +1

(c) gpat =322 41

The Taylor polynomial of degree n = 4 expanded about xo = 0 for flx) =
sin(z) is P(z).

(a) P(3) = 24
(b) P(-1)=20

The average area is given by; y1o fla mridr = %(%)5{' = 131,
Any polynomial P(x) satisfies the hypotheses of Rolle’s Theorem on the
interval [a,b]. Thus P’(x) has at least n — 1 recal roots in the interval [a, 8],
P"(r) has at least n — 2 real roots in the interval [a,b],..., and P(*~D

has at least n — (n — 1) = 1 real root in the interval |a, b].

If £, f" and f" are defined on the interval [a,b], then f is continuous on
the interval [a,b] and f is differentiable on the interval (a,b). By Theorem
1.6 (Mean Value Theorem) there exists numbers ¢; € (a,c) and ¢s € (¢, b)
such that:

f’((fl) = L():# and fl((fg) = f(bl)) : f"(r’)

. But, since f(a) = f(b) = 0 it follows that f'(c;) = f(¢)/(¢c — a) and
f'(c2) = f(e)/(c—b). Giveu that f’ and f” are defined in the interval
[a, ], it follows that f also satisfies the hypotheses of Theorem 1.6. Thus
there exists a number d € (a,b) such that:

pra= L= -8 jee-a 0.
¢y — ¢ co — €1 (2 —e1){e=b)c—a)
since f(c) > 0.
1.2 Binary Numbers
Answers will depend on specific platform.
(a) 21 (b) 56 (c) 254 (d) 519
(a) 0.75 (b) 0.65625 (¢) 0.6640625 (d) 0.85546875
(a) 1.4140625 (b) 3.1416015625

4.

=

J.

(a) V2 — 1.4140625 = 0.00015109. . .
(b) m ~3.1416015625 = —0.000008908 . . .
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6. (a) 23 = 10111,,

23 = 2001)+1 by =

11 = 25)41 b=1
5 = 2241 by=0
2 = 2)+0 b3=0
1 = 2000+1 by=1

(b) 87 = 10101114y,

87 = 2(43)+1 by =1

43 = 2021)+1 b =1

21 = 2(10)+1 by =

10 = 2(5)+0 b3=0
5 = 22)+1 by=1
2 = 2(1) +0 bs =0
1 200+1 bg=1

(¢) 378 = 1011110104
(d) 2388 = 1001010101004,
7. (a) 00111 (b) 0.1010m () 0.1011140  (d) 0.100101140,

8. (a) 0.0001 10
(b) % = 0.d1dz000 = 000,00

2R=2%2 d1=0= INT(%) Fy = 2 = FRAC(2)
2F) = % de=1= INT(g) Fy= % = FRAC(%)
2F; = 3 dy = 0= INT(g) Fy = 3= FRAC(g)

2R=% dy=0=INT(3) F=2%=FRAC(E)
2Fi =2 dy=0= INT(E) Iy =2 =FRAC(%)
oy =% dy=1=INT(E) B =L_ FrACE)
28,=% ay=0=1INT(}) F,=L=FRracd)

176 — 0.00011001, = 0.000111u0 — 0.0001100;4,0
0.0000000TT00;0
1

[l

160
0.00625

I



1.2. BINARY NUMBERS 9

(b)
2 —0.0010010t, = 0.00T¢0 — 0.0010010,0
= 0.000000001007 4,
-
= 0.0022321428. ..
10. In Theorem 1.14 let ¢ = -é— and r = %, then
L1 1 s 1
8 64 512 C1-%
11. In Theorem 1.14 let ¢ = 3/16 and r = 1/16, then
SOV B S
16 256 4096 1-4 75

1_ 5 1\k __ sk
12. 5 = 75. Assume (2) = 75¢. Then

- (EN(S
- 10% 10
5k+1

105+

Therefore, by the principle of mathematical induction, 2=V can be repre-
sented as a decimal number that has N digits.

13. (a)
-% 2 010114, x 270 = 0.1011 x 21
L~ 011014, %272 = 001101 x 2°!
3 0.10001 100 X 20
15;? A~ 0100150 X 2° = 0.10014y,, x 2°
7 010114, X272 = 0.0010114,, x 20
e 0.10111 1,0 x 20

Thus (% + %) + % 22 01100410
(b)

0.1101&00 x 273
0.1011440 x 271

0.001101 x 21
0.101100 x 21
0.111001 44y % 271

¢ Q

8!Em|>—5|"‘
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14.

16.

17.
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;-; A~ 0111040 X 271 = 0.0111004,, x 2°
£ & 011014 x 272 = 0.00110144, x 2°
5= 0.101001 ¢y x 2°
Thus (-115 + %) + £ =~ 0.10104,0
(c)
% & 01011, x 272 = 0.01011 x 271
5 &~ 0111040 x 272 = 0.001110 x 21
= 0.10010047,0 > 271
14?4% A~ 010010 X278 = 0.1001440 x 271
7 & 0.1001we x 272 = 0.01001 4, x 27°
o 01101110 X 271
Thus (& + §) + 2 22 0.11104,, x 271
(d)
% ~ 0.1011we x 2° = 0.1011000 x 2°
g = 0110w, x27% = 0.0001110 x 2°
e 0.110011040 x 2°
% A~ 011010, x 20 = 0.110100.40 x 2°
7 & 01011 x 272 = 0.00100140 % 2°
= 0.1111010p0 x 20

(a) 10 = 101inree
(b) 23 = 212three

(c) 421 = 120121 1pree
d) 1784 = 211002,

b

1

(
(
(¢ ).0022 41 ce
(
(

-

d

|

] (i
il

o o
— :
s’

bo

>

>

3

o

o

(a
(

)
)
)
)
a) (a) 10 = 204y
b} (b) 35 = 1204y

) () 721 = 1034 ;40

)

)

)

)

d) 734 = 10414 44,

13five
five

P

(c
(
(a
(b
(¢
(d

[= W)
—

\
=

2
0.02five
5 = 01104,

E EIH bO]—= Lol
- I
i

)|
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1.3 Error Analysis
L. (a) = — &= 0.00008182, £=£ = (.0000300998 ..., 4- significant digits
(b) y—§ =350, = 0.0355871 .. ., 2-significant digits
(¢) z=

significant digits

fol/lle’zd:c A 1/4(14-9: + "+ 3,)dT

7 =1/4
(3" +%5 3(21) + m); of

+ 1o +
2 10240 688128
?194268838% ~ 0.2553074428 = p

I

3. (a) p1 +p2 = 1.414 4 0.09125 = 1.505
o2 = (2.1414)(0.09125) = 0.1290

(b) p1 + p2 = 31.415 + 0.027182 = 31.442
1Pz = (31.415)(0.27182) = 0.85392

4 (a) 0.70711385222—0.70710678110 0.00000707103

0.00001 = TTo.00001  — 0.707103 The error in-
volves loss of significance.

(b) M%M@é = 00002499969 — ().4999938 The error in-

volves loss of significance.

P(2.72) (2.72)% — 3(2.72)2 +3(2.72) — 1
20.12 — 3(7.398) + 8.16 — 1
20.12 - 22.19+ 8.16 — 1

5.09

it

Q(2.72)

(272 = 3)(2.72) + 3)(2.72) —
(—0. 2800)(2 72) + 3)(2.72) —
(—0.7616 + 3)(2.72) — 1
(2.2384)(2.72) — 1

6.088 — 1

5.088

R(2.72) (2.72-1)3
(1.72)3

5.088

o
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(b)

8. (a)
(b)

(¢)

CHAPTER 1. PRELIMINARIES

P09T5) = (((0.975)° — 3(0.975)2) + 3(0.975)) —
(0.9268 — 3(0.9506)) +2.925) — 1

((
(
((0.9268 — 2.852) -+ 2.925) + 1
(-
1

i

fl

1.925 + 2.925) — 1
—1=0

Il

Q(0.975) = ((0.975 — 3)(0.975) + 3)(0.975) - 1
= ((—2.025)(0.975) + 3)(0.975) — 1

(—1.9774 + 3)(0.975) — 1

(1.026)(0.975) - 1

1-1=0

it

i

R(0.975) = (0.975—1)°
(~0.025)*
—0.00001562

The propagation of error is €, + ¢, + €.

q B (j‘}'eq

p_ﬁ+€p ]_3+ +26q
q G+ €

Hence, if 1 < [§] < ||, then there is a possibility of magnification of
the original error.

par = (p+e)(G+eg)(F +er)
PP + preq + diep + Pde, + Fepeg + depe, + Pegr + Epeyey
= PaF + (ie + die, + pier)

+H(Pepeq + Geper + Pegty) + €p€qeyr

Depending on the absolute values of p, ¢, and #, there is a possibility
of maguification of the original crrors €, €q, and €,

= +cos(h) = 2—|—h+%+h3+0(h4)
(t25)cos(h) = 1+4h+8 +2 4 0nm



1.3. ERROR ANALYSIS

10.
eh +sin(h) = 1+2h+% +O(h)
etsin(h) = h+h%+2 4 O(KS)
An intermediate computation was
11.
cos(h) +sin(h) = 1+4+h— '12—2 - %3, + g—: + O(h®)
cos(h)sin(h) = h-— % + % + O(R")
An intermediate comutation was
R R
12.

z, = —b++v/b% _dac

( gb-J-Q [3 —4ac)( —b—\/b5—4ar:)
2 —b—vb2—4dac

a
_ bz—gb2—4ac!
T 2a(~b—vbT"4dac)
— —2c

b+vb% "4ac

The case for 23 is handled in a similar manner.

13. (a) o1 = —0.001000, 7, = —1000

(b) = = —0.00100, x5 = —10000

(¢) 21 = —0.000010, 5 = —100000
)

(d) 1 = —0.000001, x5 = ~1000000
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Chapter 2

The Solution of Nonlinear
Equations f(z) =0

2.1

1.

(a)

Iteration for Solving z = g(z)

Clearly, g(z) € C[0,1]. Since ¢’(2) = ~z/2 < 0 on the interval [0, 1],
the function g(x) is strictly decreasing on the interval [0,1]. If g is
strictly decreasing on [0, 1], then g(0) = 1 and g(1) = 0 imply that
g([0,1]) = [0,1] € [0,1]. Thus, by Theorem 2.2, the function g(z)
has a fixed point on the interval [0, 1].

In addition: |f'(z)] = | — /2| = x/2 < 1/2 < 1 on the interval
[0,1]. Thus, by Theorem 2.2, the function g(x) has a unique fixed
point on the interval [0, 1].

Clearly, g(zx) € C[0,1]. Since ¢'(z) = —In(2)27% < 0 on the interval
[0,1], the function g() is strictly decreasing on the interval [0,1]. If
g is strictly decreasing on [0, 1], then g(0) = 1 and g(1) = 1/2 imply
that ¢([0,1]) = [1/2,1] C [0,1]. Thus, by Theorem 2.2,the function
g() has a fixed point on the interval [0, 1].

In addition: |¢'(z)| = | -1n(2)27%] = In(2)272 < In(2) < In(e) =
1 on the interval [0,1]. Thus, by Theorem 2.2, the function g(x) has
an unique fixed point on the interval [0, 1].

Clearly g(z) is continuous on [0.5,5.2] and g([0.5,5.2]) € [0.5,5.2].
But, g([0.5,2]) € [0.5,2]. Thus, the hypotheses of the first part of
Theorem 2.2 are satisfied and g has a fixed point in [0.5,2]. While
(1,1) is the unique fixed point in [0.5,2], |f/(1)] = 1 £ 1, thus the
hypothesee in part (4) of Theorem 2.2 cannot be satisfied.

15



16CHAPTER 2. THE SOLUTION OF NONLINEAR EQUATIONS F(X)=0

2.

4. The fixed points are P = 2 and P = —2. Since ¢/(2) = 5 and ¢/(-2) = —3

5.

(a)
g(z) = =
—4+4r— 322 = 0
22-6z+8 = 0
r = 2,4
and
g(2) = -44+48-2 = 2
g4) = -4+16-8 = 4
(b)
o = L9
P = 1.795
pa = 1.5689875
p3 = 1.04508911
()
Po = 3.8
P2 = 3.9998
ps = 3.99999998
(d) For part (b)
Fy = 0.1 Ry = 095
Ey; = 043110125 Ry; = 0.21550625
Ez = 095491089 R; = (.477455444

(e) The sequence in part (b) does not converge to P = 2. The sequence

in part (c) converges to P = 4.

(a) pr = V13, p2 = V6 + V13, converges
(b) pr = %: 2= %, converges

() p1 = 4.083333, py = 5.537869, diverges
(d) p1 = 5.5, po = —69.5, diverges

3

fixed- point iteration will not converge to P = 2 and P = -2, respectively.

r = zcos(x)

z(l—cos(z)) = 0

r = 2nmw



2.1. ITERATION FOR SOLVING X = G(X) 17
Thus g(x) has infinitely many fixed points: P = 2nw, where n € Z . Note:
lg'(2nm)| = |cos(2n) - 2nw in(2nm)| = 1.

Thus Theorem 2.3 may not be used to find the fixed points of g(z).
6. ip2 = p1| = 19(p1) — 9(po)| = lg'(co)(p1 — po)| < K|p1 — po
T (B =P —pi| = 9(P) — g(po)| = lg'(co) (P ~ po)| > |P — pol = | Eq|

8. (a) By way of contradiction assume therc exists k& such that Prt1 =
9(px) > pi. Tt follows that:

—0.0001p3 + pg

> D
—0.0001p > 0
pe = 0

Thus px_1 = 0 or pp_; = 10,000. Clearly, pr_; # 10,000, since the
maximum value of g(z) is 2500. Thus, if p; = 0, then px_y, ..., py =
0. A contradiction to the hypothesis pg = 1. Therefore, Po > p1 >
3P > Pppr >

(b) By way of contradiction assume there exists k such that p; <0. It
follows that:

9(pj-1) < 0
—0.0001p7_; +p;1 < 0
(=0.0001p;—1 +1)p;m1 < 0

From part (a); if pj_; = 0, then py # 0. Thus p;_; # 0. If Pj-1 <0,
then

—().00()11)]'_1 +1
Pj—1

0

Z
> 10,000,

a contradiction. If p;_; > 0, then

—-0.0001p;—1 +1 > 0
Pi—1 S 107 0007
a contradiction. Therefore, p, > 0 for all n.
(¢) limp—oopn =0
9. (a) g(3)=(05)(3)+1.5=3

(b) [P~ pnl = [3-15-0.5p, 1| = |1.5 — 0.5p,_q| = 23 — pno1| =
%lp‘pn—d'
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(¢) Using mathematical induction we note that |P —p,| = 1P —po| and
assume that |P — p| = 5¢|P — po|. Thus

P—pk
2
P—po
2(2%)
P—-pg

oFT

|P“Pk+1|

10. (a') Note: = p0/27 P2 = P0/22, sony Pey1 = p0/2k+1a ---. Thus

|Pr+1 — P _ |27F1 — 9=k _ 2°F(1-271)
{Pr+1] |2-4-1] 2-k2-1

=1

(b) Clearly, the stopping criteria will (theoretically) never be satisfied.

11. In inequality (11): |P — pn| < K™|P — pol, where |¢’(z)| < K < 1. Therc-
fore, the smaller the value of K the faster fixed-point iteration converges.

2.2 Bracketing Methods for Locating a Root
1.

lo = (0.114+012)/2 = 0115  A(0.115) = 254,403
L o= (01140115)/2 = 01125 A(0.1125) = 246,072
I = (0.1125+.125)/2 = 0.11375 A(0.11375) = 250,198
2.
Iy = (0.13+0.14)/2 = 0135  A(0.135) = 394,539
L = (0.135+0.14)/2 = 01375 A(0.1375) — 408,435
I = (0.135+0.1375)/2 = 013625 A(0.13625) = 401,420

3. (a) F(=3) > 0, £(0) < 0, and f(3) > 0; thus roots lic in the intervals
[—3,0] and [0, 3].

(b) f(x/4) > 0and f(r/2) < 0; thus a root lics in the interval [7/4, /2.

(c) F(3) <0 and f(5) > 0; thus a root lies in the interval [3,5].

(d) F(3) >0, f(5) <0, and f(7) > 0; thus roots lie in the intervals [3, 5|
and [5, 7).

4. [-2.4,-1.6],[~2.0,-1.6],[-2.0, ~1.8],[-1.9, ~1.8], [1.85, —1.80]

[oby ]

. [0.8,1.6],[1.2,1.6], [1.2,1.4], (1.2, 1.3], [1.25, 1.30]

=23

. [3.2,4.0},13.6,4.0, [3.6,3.8], 3.6, 3.7], [3.65, 3.70]
7. (6.0,6.8],[6.4,6.8], [6.4,6.6],[6.5,6.5], [6.40, 6.45]
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8.

9.

10.

(a) Starting with ag < bo, then either @y = ag and b, = %etbe o

(c)

(
(
(

b

)
)
)

2 3

a) = inﬂ’Q and by = bp. In either case we have ag < a; < by < by.
Now assume that the result is true for n = 1,2,... k; in particular
<o - <ap <bp €---< b <bg. Then cither Qpt1 = Qg
and by, = ﬂk;—b&, or Qg4 = ﬂ;—b& and bg41 = bx. In cither case we
have ap < agy1 < bryy < bg. Henceag < ap < --- < ap < Qg1 <
br+1 < by < -+ < by < bp. Thus by mathematical induction we have
proven that ag < a1 <+ <ap < by <+ < by < by for all n.

From part (a) either a; = ag, by = 2934"1, and by = aq; = bﬁfal or
a = ﬁﬂg—bﬁ, by = bg, and by —a; = 9“;—“‘1. Now assume that the
result is true for n = 1,2,..., k, in particular by — aj = %?1 Then
either ary1 = ay, brs1 = ﬂb:ztéh, and bgp1 —ag 1 = é%ah = %}k—__ﬁ(l or
Q1 = ﬂk;‘—b&, bpt1 = bi, and bryq —apyy = 9“:52& = %Eﬁ*l. Thus
by mathematical induction we have proven that b, — ap, = bﬁz_f“l for

all n.
Using part (¢) it follows that the scquence {as, } is non-decreasing and
bounded above by by, hence it is a convergent sequence and we write
limy—.o0 ap = L. Similarly, the sequence {b,} is non-increasing and
bounded below by ao, hence it is a convergent sequence and we write
lil’nn_,co bn = L2

To show that the two limits are equal we observe that

L,

limp oo by
limp oo (@n + (bn — an))
limp oo @ + limy, oo (b — ay)

Ly + limp oo 250
= L1 4+0=1I,

H

it

Since ay, < ¢, < by, the squeeze principle for limits implics that

lim e, = lim ¢, lim b,
n—oo n—oQ n—o0

a) The function does not change sign on the interval [3,7].

limy o0 @p = 2 = limy, o0 by, but f(z) is undefined at 2.

a) It will converge to the zero at ¢ = 7.

(b) limp—oo @n = /2 = limp_c0 by, but f(z) is undefined at /2.

11. Solve:

& < 5x107°
In(5) - NIn(2) < In(5 x 1079)
N > in(5)—In(5x10"%)

In(2)
N > 29.89735

Thus N = 30.
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12.

13,

14.

bn bn" n

o = b"*j}(bn(~f§n)

_ bn(.f(bn)_f(a’n))_f(bn)(bn‘an)
fbn J)“( n)

. nf(an)+anf(
fba) — flan)
anf (b -)_b f(aﬂ)
f(bn) = fla,)

b—a
SNFT < 6

m(%;.;—‘ﬂ) < lu(6),

since In is a strictly increasing function. Thus

In(b—a) - (N+1)In(2) < In(6)

In(b —a) ~ In(é
J——H (2] < N+1

N > lnbfa!—lnféy 1

In(?2)

Therefore, the smallest value of N is

N — it <1n(b *1222; ln(é))

The bisection method can’t converge to z = 2, unless ¢, = 2 for some
n>1.

We refer the reader to ”Which Root Does the Bisection Algorithm Find?”
by George Corliss, Mathematical Modeling: Classroom Notes in Applied
Mathematics, Murray Klankin Ed., SIAM, 1987.

2.3 Initial Approximation and Convergence Cri-

teria

Approximate root location —0.7. Computed root —0.7034674225.
Approximate root location 0.7. Computed root 0.7390851332.

Approximate root locations ~1.0 and 0.6. Computed roots —1.002966954
and 0.6348668712.



