Instructor's Solution Manual for Numerical Methods: Using MATLAB

John H. Mathews and Kurtis D. Fink ${\rm August~2002}$

Contents

1	\mathbf{Pre}	liminaries	5	
	1.1	Review of Calculus	5	
	1.2	Binary Numbers	7	
	1.3	Error Analysis	11	
2	The	e Solution of Nonlinear Equations $f(x) = 0$	15	
	2.1	Iteration for Solving $x = g(x) \dots \dots \dots$	15	
	2.2	Bracketing Methods for Locating a Root	18	
	2.3	Initial Approximation and Convergence Criteria	20	
	2.4	Newton-Raphson and Secant Methods	$\frac{1}{21}$	
	2.5	Aitken's Process and Steffensen's and Muller's Methods	27	
3	The	Solution of Linear Systems $AX = B$	33	
	3.1	Introduction to Vectors and Matrices	33	
	3.2	Properties of Vectors and Matrices	34	
	3.3	Upper-Triangular Linear Systems	37	
	3.4	Gaussian Elimination and Pivoting	38	
	3.5	Triangular Factorization	39	
	3.6	Iterative Methods for Linear Systems	40	
	3.7	Iteration for Nonlinear Systems	44	
4	Interpolation and Polynomial Approximation			
	4.1	Taylor Series and Calculation of Functions	51	
	4.2	Introduction to Interpolation	57	
	4.3	Lagrange Approximation	59	
	4.4	Newton Polynomials	62	
	4.5	Chebyshev Polynomials (Optional)	65	
	4.6	Padé Approximations	68	
5	Curve Fitting			
	5.1	Least-Squares Line	73 73	
	5.2	Curve Fitting	77	
	5.3	Interpolation by Spline Functions	Ω1	

4	CONTENTS
	COLUEDITE

	5.4	Fourier Series and Trigonometric	
		Polynomials	
	5.5	Bézier Curves	
6	Nur	nerical Differentiation 93	
	6.1	Approximating the Derivative	
	6.2	Numerical Differentiation Formulas	
7	Mark		
•	7.1	nerical Integration 101	
	7.2	Introduction to Quadrature	
	7.3	Composite Trapezoidal and Simpson's Rule	
	7.4	Recursive Rules and Romberg Integration	
	7.5	Adaptive Quadrature	
	•••	County Engendre Integration	
8	Nur	nerical Optimization 121	
	8.1	Minimization of a function	
	8.2	Nelder-Mead and Powell's Methods	
	8.3	Gradient and Newton's Methods	
9	Solu	ution of Differential Equations 135	
		135	
	9.1	Introduction to Differential Equations 125	
		Introduction to Differential Equations	
	9.1	Introduction to Differential Equations	
	$9.1 \\ 9.2$	Introduction to Differential Equations	
	9.1 9.2 9.3	Introduction to Differential Equations135Euler's Method138Heun's Method140Taylor Series Method142	
	9.1 9.2 9.3 9.4	Introduction to Differential Equations135Euler's Method138Heun's Method140Taylor Series Method142Runge-Kutta Methods144	
	9.1 9.2 9.3 9.4 9.5	Introduction to Differential Equations135Euler's Method138Heun's Method140Taylor Series Method142Runge-Kutta Methods144Predictor-Corrector Methods147	
	9.1 9.2 9.3 9.4 9.5 9.6	Introduction to Differential Equations135Euler's Method138Heun's Method140Taylor Series Method142Runge-Kutta Methods144Predictor-Corrector Methods147Systems of Differential Equations147	
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Introduction to Differential Equations135Euler's Method138Heun's Method140Taylor Series Method142Runge-Kutta Methods144Predictor-Corrector Methods147Systems of Differential Equations147Boundary Value Problems149	
10	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Introduction to Differential Equations Euler's Method	
10	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155	
10	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 155	
10	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu 10.1 10.2	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 155 Parabolic Equations 157	
10	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu 10.1 10.2	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 155	
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu 10.1 10.2	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 155 Parabolic Equations 157	
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu 10.1 10.2 10.3	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 155 Parabolic Equations 157 Elliptic Equations 160 envalues and Eigenvectors 163	
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu 10.1 10.2 10.3 Eige 11.1	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 157 Elliptic Equations 160 Envalues and Eigenvectors 163 Homogeneous Systems: The Eigenvalue Problem 163	
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Solu 10.1 10.2 10.3 Eige 11.1 11.2	Introduction to Differential Equations 135 Euler's Method 138 Heun's Method 140 Taylor Series Method 142 Runge-Kutta Methods 144 Predictor-Corrector Methods 147 Systems of Differential Equations 147 Boundary Value Problems 149 Finite-Difference Method 151 Ition of Partial Differential Equations 155 Hyperbolic Equations 155 Parabolic Equations 157 Elliptic Equations 160 envalues and Eigenvectors 163	

Chapter 1

Preliminaries

1.1 Review of Calculus

1. (a)
$$L = \lim_{n \to \infty} \frac{4n+1}{2n+1} = 2$$
 $\lim_{n \to \infty} \epsilon_n = \lim_{n \to \infty} (2 - \frac{4n+1}{2n+1}) = 2 = \frac{4}{2} = 0$

(b)
$$\lim_{n\to\infty} \frac{2n^2+6n-1}{4n^2+2n+1} = \frac{2}{4} = \frac{1}{2}$$

 $\lim_{n\to\infty} \epsilon_n = (\frac{1}{2} - \frac{2n^2+6n-1}{4n^2+2n+1}) = \frac{1}{2} - \frac{1}{2} = 0$

2. (a)
$$\lim_{n\to\infty} \sin(x_n) = \sin(\lim_{n\to\infty} x_n) = \sin(2)$$

(b)
$$\lim_{n\to\infty} ln(x_n^2) = ln(\lim_{n\to\infty} x_n^2) = ln(4)$$

3. (a) Since
$$f$$
 is continuous on $[-1, 0]$; solve

$$\begin{array}{rcl}
-x^2 + 2x + 3 & = & 2 \\
x^2 - 2x - 1 & = & 0 \\
x & = & \frac{2 \pm \sqrt{2^2 - 4(1)(-1)}}{1 - \sqrt{2}} \\
c & = & 1 - \sqrt{2} \in [-1, 0]
\end{array}$$

(b) Since f is continuous on [6,8]; solve

$$\begin{array}{rcl}
\sqrt{x^2 - 5x - 2} & = & 3 \\
x^2 - 5x - 11 & = & 0 \\
x & = & \frac{5 \pm \sqrt{5^2 - 4(1)(-11)}}{2} \\
c & = & \frac{5 \pm \sqrt{69}}{2} \in [6, 8]
\end{array}$$

- 4. (a) f'(x) = 2x 3 = 0, thus the critical points are $c = \pm 1$. Thus $min\{f(-1), f(1), f(2)\} = min\{5, -1, -1\} = -1$ and $max\{f(-1), f(1), f(2)\} = max\{5, -1, -1\} = 5$
 - (b) $f'(x) = -2\cos(x)\sin(x) \cos(x) = -\cos(x)(2\sin(x) + 1) = 0$, thus the critical points are $c = \pi, 7\pi/6, 11\pi/6$. Thus

$$\min\{f(0),f(\pi),f(7\pi/6),f(11\pi/6),f(2\pi)\}=\min\{1,1,5/4,5/4,1\}=1$$
 and $\max\{f(0),f(\pi),f(7\pi/6),f(11\pi/6),f(2\pi)\}=\max\{1,1,5/4,5/4,1\}=5/4$

5. (a)
$$f'(x) = 4x^3 - 8x = 4x(x^2 - 2) = 0$$
, thus $c = 0, \pm \sqrt{2} \in [-2, 2]$

(b)

$$f'(x) = \cos(x) + 2\cos(2x)$$

$$= \cos(x) + 2(2\cos^{2}(x) - 1)$$

$$= 4\cos^{2}(x) + \cos(x) - 2$$

$$= 0$$

$$x = (-1 \pm \sqrt{33})/8$$

$$c = \cos^{-1}((-1 \pm \sqrt{33})/8), 2\pi - \cos^{-1}((-1 \pm \sqrt{33})/8)$$

6. (a)
$$f'(x) = \frac{1}{2\sqrt{x}}$$
 and $\frac{f(4)-f(0)}{4-0} = \frac{1}{2}$. Solving $\frac{1}{2\sqrt{x}} = \frac{1}{2}$ yields $c = 1$.

(b)
$$f'(x) = (x^2 + 2x)/(x+1)^2$$
 and $\frac{f(1)-f(0)}{1-0} = \frac{1}{2}$. Solving $f'(x) = (x^2 + 2x)/(x+1)^2 = \frac{1}{2}$ yields $c = -1 + \sqrt{2}$

- 7. The given function satisfies the hypotheses of the Generalized Rolle's Theorem. Since f(0) = f(1) = f(3) = 0, there exists a $c \in (0,3)$ such that f''(c) = 0. Solve 6c 8 = 0 to find c = 4/3.
- 8. (a) $\int_0^2 xe^x dx = xe^x e^x|_0^2 = e^2 + 1$
 - (b) $\int_{-1}^{1} \frac{3x}{x^2+1} dx = \frac{3}{2} \ln(x^2+1)|_{-1}^{1} = 0$ (The integrand is an odd function)
- 9. (a) $\frac{d}{dx} \int_0^x t^2 \cos(t) dt = x^2 \cos(x)$

(b)
$$\frac{d}{dx} \int_{1}^{x^3} e^{t^2} dt = e^{(x^3)^2} (3x^2) = 3x^2 e^{x^6}$$

10. (a)
$$\frac{1}{4-(-3)} \int_{-3}^{4} 6x^2 dx = \frac{2}{7}x^3|_{-3}^4 = 52$$
. Solving $6x^2 = 52$ yields $c = \pm \sqrt{26/3} \in [-3, 4]$.

- (b) $\frac{2}{3\pi} \int_0^{3\pi/2} x \cos(x) dx = \frac{2}{3\pi} (x \sin(x) + \cos(x))_0^{3\pi/2} = -(1 + \frac{2}{3\pi})$. Use a calculator to approximate the solution(s): $x \cos(x) = -(1 + \frac{2}{3\pi})$; $c \approx 2.16506, 4.43558 \in [0, 3\pi/2]$.
- 11. (a) $\frac{1}{1-\frac{1}{3}}=2$
 - (b) $\frac{1}{1-\frac{2}{3}} = 3$

(c)
$$\sum_{n=1}^{\infty} \frac{3}{n(n+1)} = 3 \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1}) = 3 \lim_{k \to \infty} \sum_{n=1}^{k} (\frac{1}{n} - \frac{1}{n+1}) = 3$$

(d)
$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right)$$
$$= \frac{1}{2} \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right) = \frac{1}{2}$$

12. (a)
$$-\frac{5}{128}(x-1)^4 + \frac{1}{16}(x-1)^3 - \frac{1}{8}(x-1)^2 + \frac{1}{2}(x-1) + 1$$

(b)
$$4x^2 + 3x + 1$$

(c)
$$\frac{1}{24}x^4 - \frac{1}{2}x^2 + 1$$

13. The Taylor polynomial of degree n = 4 expanded about $x_0 = 0$ for $f(x) = \sin(x)$ is P(x).

14. (a)
$$P(3) = -24$$

(b)
$$P(-1) = 20$$

- 15. The average area is given by; $\frac{1}{3-1} \int_1^3 \pi r^2 dr = \frac{\pi}{2} (\frac{r^3}{3})_1^3 = \frac{13\pi}{3}$.
- 16. Any polynomial P(x) satisfies the hypotheses of Rolle's Theorem on the interval [a, b]. Thus P'(x) has at least n-1 real roots in the interval [a, b], P''(x) has at least n-2 real roots in the interval [a, b], ..., and $P^{(n-1)}$ has at least n-(n-1)=1 real root in the interval [a, b].
- 17. If f, f' and f'' are defined on the interval [a, b], then f is continuous on the interval [a, b] and f is differentiable on the interval (a, b). By Theorem 1.6 (Mean Value Theorem) there exists numbers $c_1 \in (a, c)$ and $c_2 \in (c, b)$ such that:

$$f'(c_1) = \frac{f(c) - f(a)}{c - a}$$
 and $f'(c_2) = \frac{f(b) - f(c)}{b - c}$

. But, since f(a) = f(b) = 0 it follows that $f'(c_1) = f(c)/(c-a)$ and $f'(c_2) = f(c)/(c-b)$. Given that f' and f'' are defined in the interval [a,b], it follows that f' also satisfies the hypotheses of Theorem 1.6. Thus there exists a number $d \in (a,b)$ such that:

$$f''(d) = \frac{f'(c_2) - f'(c_1)}{c_2 - c_1} = \frac{\frac{f(c)}{c - b} - \frac{f(c)}{c - a}}{c_2 - c_1} = \frac{f(c)(b - a)}{(c_2 - c_1)(c - b)(c - a)} < 0,$$

since f(c) > 0.

1.2 Binary Numbers

- 1. Answers will depend on specific platform.
- 2. (a) 21
- (b) 56
- (c) 254
- (d) 519

- 3. (a) 0.75
- (b) 0.65625
- (c) 0.6640625
- (d) 0.85546875

- 4. (a) 1.4140625
- (b) 3.1416015625
- 5. (a) $\sqrt{2} 1.4140625 = 0.00015109...$
 - (b) $\pi 3.1416015625 = -0.000008908...$

6. (a)
$$23 = 10111_{two}$$

$$\begin{array}{rclcrcl} 23 & = & 2(11) + 1 & b_0 = 1 \\ 11 & = & 2(5) + 1 & b_1 = 1 \\ 5 & = & 2(2) + 1 & b_2 = 0 \\ 2 & = & 2(1) + 0 & b_3 = 0 \\ 1 & = & 2(0) + 1 & b_4 = 1 \end{array}$$

(b) $87 = 1010111_{two}$

$$\begin{array}{rclrcl} 87 & = & 2(43) + 1 & b_0 = 1 \\ 43 & = & 2(21) + 1 & b_1 = 1 \\ 21 & = & 2(10) + 1 & b_2 = 1 \\ 10 & = & 2(5) + 0 & b_3 = 0 \\ 5 & = & 2(2) + 1 & b_4 = 1 \\ 2 & = & 2(1) + 0 & b_5 = 0 \\ 1 & = & 2(0) + 1 & b_6 = 1 \end{array}$$

- (c) $378 = 101111010_{two}$
- (d) $2388 = 10010101010100_{two}$
- 7. (a) 0.0111_{two} (b) 0.1101_{two} (c) 0.10111_{two} (d) 0.1001011_{two}
- 8. (a) $0.0\overline{0011}_{two}$
 - (b) $\frac{1}{3} = 0.\overline{d_1 d_2}_{two} = 0.\overline{01}_{two}$

$$\begin{array}{lll} 2R = \frac{2}{3} & d_1 = 0 = INT(\frac{2}{3}) & F_1 = \frac{2}{3} = FRAC(\frac{2}{3}) \\ 2F_1 = \frac{4}{3} & d_2 = 1 = INT(\frac{4}{3}) & F_2 = \frac{1}{3} = FRAC(\frac{4}{3}) \\ 2F_2 = \frac{2}{3} & d_3 = 0 = INT(\frac{2}{3}) & F_3 = \frac{2}{3} = FRAC(\frac{2}{3}) \\ 2F_3 = \frac{4}{3} & d_4 = 1 = INT(\frac{4}{3}) & F_4 = \frac{1}{3} = FRAC(\frac{4}{3}) \\ \vdots & \vdots & \vdots & \vdots \end{array}$$

(c) $\frac{1}{7} = 0.\overline{d_1 d_2 d_3}_{two} = 0.\overline{001}_{two}$

$$\begin{array}{lll} 2R = \frac{2}{7} & d_1 = 0 = INT(\frac{2}{7}) & F_1 = \frac{2}{7} = FRAC(\frac{2}{7}) \\ 2F_1 = \frac{4}{7} & d_2 = 0 = INT(\frac{4}{7}) & F_2 = \frac{4}{7} = FRAC(\frac{4}{7}) \\ 2F_2 = \frac{8}{7} & d_3 = 1 = INT(\frac{8}{7}) & F_3 = \frac{1}{7} = FRAC(\frac{8}{7}) \\ 2F_3 = \frac{2}{7} & d_4 = 0 = INT(\frac{2}{7}) & F_4 = \frac{2}{7} = FRAC(\frac{2}{7}) \\ \vdots & \vdots & \vdots \end{array}$$

9. (a)

$$\begin{array}{rcl} \frac{1}{10} - 0.0001100_{two} & = & 0.0\overline{0011}_{two} - 0.0001100_{two} \\ & = & 0.0000000\overline{1100}_{two} \\ & = & \frac{1}{160} \\ & = & 0.00625 \end{array}$$

$$\frac{1}{7} - 0.0010010_{two} = 0.\overline{001}_{two} - 0.0010010_{two}
= 0.000000001\overline{001}_{two}
= \frac{1}{448}
= 0.0022321428...$$

10. In Theorem 1.14 let $c = \frac{1}{8}$ and $r = \frac{1}{8}$, then

$$\frac{1}{8} + \frac{1}{64} + \frac{1}{512} + \dots = \frac{\frac{1}{8}}{1 - \frac{1}{8}} = \frac{1}{7}$$

11. In Theorem 1.14 let c = 3/16 and r = 1/16, then

$$\frac{3}{16} + \frac{3}{256} + \frac{3}{4096} + \dots = \frac{\frac{3}{16}}{1 - \frac{1}{16}} = \frac{1}{5}$$

12. $\frac{1}{2} = \frac{5}{10}$. Assume $\left(\frac{1}{2}\right)^k = \frac{5^k}{10^k}$. Then

$$\left(\frac{1}{2}\right)^{k+1} = \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)$$
$$= \left(\frac{5^k}{10^k}\right) \left(\frac{5}{10}\right)$$
$$= \frac{5^{k+1}}{10^{k+1}}$$

Therefore, by the principle of mathematical induction, 2^{-N} can be represented as a decimal number that has N digits.

13. (a)

Thus $(\frac{1}{3} + \frac{1}{5}) + \frac{1}{6} \approx 0.1100_{two}$

$$\begin{array}{ccccc} \frac{13}{30} & \approx & 0.1110_{two} \times 2^{-1} & = & 0.011100_{two} \times 2^{0} \\ \frac{1}{5} & \approx & 0.1101_{two} \times 2^{-2} & = & 0.001101_{two} \times 2^{0} \\ \hline \frac{19}{30} & & & & 0.101001_{two} \times 2^{0} \end{array}$$

Thus $(\frac{1}{10} + \frac{1}{3}) + \frac{1}{5} \approx 0.1010_{two}$

(c)

$$\begin{array}{rcl} \frac{\frac{3}{17}}{\frac{1}{9}} &\approx & 0.1011_{two} \times 2^{-2} &= & 0.01011 \times 2^{-1} \\ \frac{\frac{44}{153}}{\frac{2}{153}} &\approx & 0.1110_{two} \times 2^{-3} &= & 0.001110 \times 2^{-1} \\ \hline \frac{\frac{44}{153}}{\frac{2}{153}} &= & 0.1001_{two} \times 2^{-1} \\ \frac{\frac{4}{153}}{\frac{2}{153}} &\approx & 0.1001_{two} \times 2^{-1} &= & 0.1001_{two} \times 2^{-1} \\ \frac{\frac{4}{153}}{\frac{2}{153}} &\approx & 0.1001_{two} \times 2^{-2} &= & 0.01001_{two} \times 2^{-1} \\ \hline \frac{461}{1071} &= & 0.11011_{two} \times 2^{-1} \end{array}$$

$$\begin{array}{rcl} &\text{Thus } \left(\frac{3}{17} + \frac{1}{9}\right) + \frac{1}{7} \approx 0.1110_{two} \times 2^{-1} \end{array}$$

(d)

Thus $(\frac{7}{10}+\frac{1}{9})+\frac{1}{7}\approx 0.1111_{two}$

- 14. (a) $10 = 101_{three}$
 - (b) $23 = 212_{three}$
 - (c) $421 = 120121_{three}$
 - (d) $1784 = 211002_{three}$
- 15. (a) $\frac{1}{3} = 0.1_{three}$
 - (b) $\frac{1}{2} = 0.\overline{1}_{three}$
 - (c) $\frac{1}{10} = 0.\overline{0022}_{three}$
 - (d) $\frac{11}{27} = 0.102_{three}$
- 16. (a) (a) $10 = 20_{five}$
 - (b) (b) $35 = 120_{five}$
 - (c) (c) $721 = 1034_{five}$
 - (d) (d) $734 = 10414_{five}$
- 17. (a) $\frac{1}{3} = 0.\overline{13}_{five}$
 - (b) $\frac{1}{2} = 0.\overline{2}_{five}$

 - (c) $\frac{1}{10} = 0.0\overline{2}_{five}$ (d) $\frac{154}{625} = 0.1104_{five}$

1.3 Error Analysis

- 1. (a) $x \hat{x} = 0.00008182, \frac{x \hat{x}}{x} = 0.0000300998..., 4$ significant digits
 - (b) $y \hat{y} = 350, \frac{y \hat{y}}{y} = 0.0355871...,$ 2-significant digits
 - (c) $z=\hat{z}=0.000008, \frac{z-\hat{z}}{z}=0.117647,$ 0-significant digits

$$\begin{array}{rcl} \int_0^{1/4} e^{x^2} dx & \approx & \int_0^{1/4} (1 + x^2 + \frac{x^4}{3} + \frac{x^6}{3!}) dx \\ & = & (x + \frac{x^3}{3} + \frac{x^5}{5(2!)} + \frac{x^7}{7(3!)})_{x=0}^{x=-1/4} \\ & = & \frac{1}{4} + \frac{1}{192} + \frac{1}{10240} + \frac{1}{688128} \\ & = & \frac{292807}{1146880} \approx 0.2553074428 = \hat{p} \end{array}$$

- 3. (a) $p_1 + p_2 = 1.414 + 0.09125 = 1.505$ $p_1p_2 = (2.1414)(0.09125) = 0.1290$
 - (b) $p_1 + p_2 = 31.415 + 0.027182 = 31.442$ $p_1p_2 = (31.415)(0.27182) = 0.85392$
- 4. (a) $\frac{0.70711385222 0.70710678110}{0.00001} = \frac{0.00000707103}{0.00001} = 0.707103$ The error involves loss of significance.
 - (b) $\frac{0.69317218025 0.6931478056}{0.00005} = \frac{0.00002499969}{0.00005} = 0.4999938$ The error involves loss of significance.
- 5. (a) $ln(\frac{x+1}{x})$
 - (b) $\frac{1}{\sqrt{x^2+1}+x}$
 - (c) cos(2x)
 - (d) cos(x/2)
- 6. (a)

$$P(2.72) = (2.72)^3 - 3(2.72)^2 + 3(2.72) - 1$$

$$= 20.12 - 3(7.398) + 8.16 - 1$$

$$= 20.12 - 22.19 + 8.16 - 1$$

$$= 5.09$$

$$\begin{array}{lll} Q(2.72) & = & ((2.72-3)(2.72)+3)(2.72)-1 \\ & = & (-0.2800)(2.72)+3)(2.72)-1 \\ & = & (-0.7616+3)(2.72)-1 \\ & = & (2.2384)(2.72)-1 \\ & = & 6.088-1 \\ & = & 5.088 \end{array}$$

$$R(2.72) = (2.72 - 1)^3$$

$$= (1.72)^3$$

$$= 5.088$$

(b)

$$P(0.975) = (((0.975)^3 - 3(0.975)^2) + 3(0.975)) - 1$$

$$= ((0.9268 - 3(0.9506)) + 2.925) - 1$$

$$= ((0.9268 - 2.852) + 2.925) + 1$$

$$= (-1.925 + 2.925) - 1$$

$$= 1 - 1 = 0$$

$$\begin{array}{lll} Q(0.975) & = & ((0.975-3)(0.975)+3)(0.975)-1 \\ & = & ((-2.025)(0.975)+3)(0.975)-1 \\ & = & (-1.9774+3)(0.975)-1 \\ & = & (1.026)(0.975)-1 \\ & = & 1-1=0 \end{array}$$

$$R(0.975) = (0.975 - 1)^3$$

= $(-0.025)^3$
= -0.00001562

7. (a)
$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \frac{1}{729} \approx 0.498$$

(b)
$$\frac{1}{729} + \frac{1}{243} + \frac{1}{81} + \frac{1}{27} + \frac{1}{9} + \frac{1}{3} \approx 0.499$$

8. (a) The propagation of error is $\epsilon_p + \epsilon_q + \epsilon_r$.

(b)

$$\frac{p}{q} = \frac{\hat{p} + \epsilon_p}{\hat{q} + \epsilon_q} = \frac{\hat{p}}{\hat{q}} + \frac{\epsilon_p + \frac{\hat{p}}{\hat{q}}\epsilon_q}{\hat{q} + \epsilon_q}$$

Hence, if $1 < |\hat{q}| < |\hat{p}|$, then there is a possibility of magnification of the original error.

(c)

$$\begin{array}{lll} pqr & = & (\hat{p}+\epsilon_p)(\hat{q}+\epsilon_q)(\hat{r}+\epsilon_r) \\ & = & \hat{p}\hat{q}\hat{r}+\hat{p}\hat{r}\epsilon_q+\hat{q}\hat{r}\epsilon_p+\hat{p}\hat{q}\epsilon_r+\hat{r}\epsilon_p\epsilon_q+\hat{q}\epsilon_p\epsilon_r+\hat{p}\epsilon_q\epsilon_r+\epsilon_p\epsilon_q\epsilon_r \\ & = & \hat{p}\hat{q}\hat{r}+(\hat{p}\hat{r}\epsilon_q+\hat{q}\hat{r}\epsilon_p+\hat{p}\hat{q}\epsilon_r) \\ & + (\hat{r}\epsilon_p\epsilon_q+\hat{q}\epsilon_p\epsilon_r+\hat{p}\epsilon_q\epsilon_r)+\epsilon_p\epsilon_q\epsilon_r \end{array}$$

Depending on the absolute values of \hat{p} , \hat{q} , and \hat{r} , there is a possibility of magnification of the original errors ϵ_p , ϵ_q , and ϵ_r .

$$\frac{1}{1-h} + \cos(h) = 2 + h + \frac{h^2}{2} + h^3 + O(h^4)$$
$$(\frac{1}{1-h})\cos(h) = 1 + h + \frac{h^2}{2} + \frac{h^3}{2} + O(h^4)$$

1.3. ERROR ANALYSIS

13

10.

$$e^h + \sin(h) = 1 + 2h + \frac{h^2}{2} + O(h^4)$$

 $e^h \sin(h) = h + h^2 + \frac{h^3}{3} + O(h^5)$

An intermediate computation was

$$(1+h+\frac{h^2}{2!}+\frac{h^3}{3!}+\frac{h^4}{4!})(h-\frac{h^3}{3!})=h+h^2+\frac{h^3}{3}-\frac{h^5}{24}-\frac{h^6}{36}-\frac{h^7}{144}$$

11.

$$cos(h) + sin(h) = 1 + h - \frac{h^2}{2} - \frac{h^3}{6} + \frac{h^4}{24} + O(h^5)
cos(h) sin(h) = h - \frac{2h^3}{3} + \frac{2h^5}{15} + O(h^7)$$

An intermediate comutation was

$$(1 - \frac{h^2}{2} + \frac{h^4}{24})(h - \frac{h^3}{6} + \frac{h^5}{120}) = h - \frac{2h^3}{3} + \frac{2h^5}{15} - \frac{h^7}{90} + \frac{h^9}{2880}$$

12.

$$\begin{array}{rcl} x_1 & = & \frac{-b + \sqrt{b^2 - 4ac}}{2a} \\ & = & (\frac{-b + \sqrt{b^2 - 4ac}}{2a})(\frac{-b - \sqrt{b^2 - 4ac}}{-b - \sqrt{b^2 - 4ac}}) \\ & = & \frac{b^2 - (b^2 - 4ac)}{2a(-b - \sqrt{b^2 - 4ac})} \\ & = & \frac{-2c}{b + \sqrt{b^2 - 4ac}} \end{array}$$

The case for x_2 is handled in a similar manner.

13. (a)
$$x_1 = -0.001000, x_2 = -1000$$

(b)
$$x_1 = -0.00100, x_2 = -10000$$

(c)
$$x_1 = -0.000010, x_2 = -100000$$

(d)
$$x_1 = -0.000001$$
, $x_2 = -1000000$

Chapter 2

The Solution of Nonlinear Equations f(x) = 0

2.1 Iteration for Solving x = g(x)

1. (a) Clearly, $g(x) \in C[0, 1]$. Since g'(x) = -x/2 < 0 on the interval [0, 1], the function g(x) is strictly decreasing on the interval [0, 1]. If g is strictly decreasing on [0, 1], then g(0) = 1 and g(1) = 0 imply that $g([0, 1]) = [0, 1] \subseteq [0, 1]$. Thus, by Theorem 2.2, the function g(x) has a fixed point on the interval [0, 1].

In addition: $|f'(x)| = |-x/2| = x/2 \le 1/2 < 1$ on the interval [0,1]. Thus, by Theorem 2.2, the function g(x) has a unique fixed point on the interval [0,1].

(b) Clearly, $g(x) \in C[0, 1]$. Since $g'(x) = -\ln(2)2^{-x} < 0$ on the interval [0, 1], the function g(x) is strictly decreasing on the interval [0, 1]. If g is strictly decreasing on [0, 1], then g(0) = 1 and g(1) = 1/2 imply that $g([0, 1]) = [1/2, 1] \subseteq [0, 1]$. Thus, by Theorem 2.2,the function g(x) has a fixed point on the interval [0, 1].

In addition: $|g'(x)| = |-\ln(2)2^{-2}| = \ln(2)2^{-2} \le \ln(2) < \ln(e) = 1$ on the interval [0, 1]. Thus, by Theorem 2.2, the function g(x) has an unique fixed point on the interval [0, 1].

(c) Clearly g(x) is continuous on [0.5, 5.2] and $g([0.5, 5.2]) \not\subseteq [0.5, 5.2]$. But, $g([0.5, 2]) \subseteq [0.5, 2]$. Thus, the hypotheses of the first part of Theorem 2.2 are satisfied and g has a fixed point in [0.5, 2]. While (1,1) is the unique fixed point in [0.5, 2], $|f'(1)| = 1 \not< 1$, thus the hypothesee in part (4) of Theorem 2.2 cannot be satisfied.

16CHAPTER 2. THE SOLUTION OF NONLINEAR EQUATIONS F(X) = 0

2. (a)

$$g(x) = x
-4 + 4x - \frac{1}{2}x^2 = 0
x^2 - 6x + 8 = 0
x = 2.4$$

and

$$g(2) = -4 + 8 - 2 = 2$$

 $g(4) = -4 + 16 - 8 = 4$

(b)

$$p_0 = 1.9$$

 $p_1 = 1.795$
 $p_2 = 1.5689875$
 $p_3 = 1.04508911$

(c)

$$p_0 = 3.8$$

 $p_1 = 3.98$
 $p_2 = 3.9998$
 $p_3 = 3.99999998$

(d) For part (b)

- (e) The sequence in part (b) does not converge to P=2. The sequence in part (c) converges to P=4.
- 3. (a) $p_1 = \sqrt{13}$, $p_2 = \sqrt{6 + \sqrt{13}}$, converges
 - (b) $p_1 = \frac{3}{2}, p_2 = \frac{7}{3}$, converges
 - (c) $p_1 = 4.083333$, $p_2 = 5.537869$, diverges
 - (d) $p_1 = -5.5$, $p_2 = -69.5$, diverges
- 4. The fixed points are P = 2 and P = -2. Since g'(2) = 5 and g'(-2) = -3, fixed-point iteration will not converge to P = 2 and P = -2, respectively.

$$\begin{array}{rcl} x & = & x\cos(x) \\ x(1-\cos(x)) & = & 0 \\ x & = & 2n\pi \end{array}$$

2.1. ITERATION FOR SOLVING X = G(X)

Thus g(x) has infinitely many fixed points: $P=2n\pi$, where $n\in Z$. Note:

17

$$|g'(2n\pi)| = |\cos(2n) - 2n\pi i n(2n\pi)| = 1.$$

Thus Theorem 2.3 may not be used to find the fixed points of g(x).

6.
$$|p_2 - p_1| = |g(p_1) - g(p_0)| = |g'(c_0)(p_1 - p_0)| < K|p_1 - p_2|$$

7.
$$|E_1| = |P - p_1| = |g(P) - g(p_0)| = |g'(c_0)(P - p_0)| > |P - p_0| = |E_0|$$

8. (a) By way of contradiction assume there exists k such that $p_{k+1} = g(p_k) \ge p_k$. It follows that:

$$\begin{array}{rcl} -0.0001p_k^2 + p_k & \geq & p_k \\ -0.0001p_k^2 & \geq & 0 \\ p_k & = & 0 \end{array}$$

Thus $p_{k-1}=0$ or $p_{k-1}=10,000$. Clearly, $p_{k-1}\neq 10,000$, since the maximum value of g(x) is 2500. Thus, if $p_k=0$, then $p_{k-1},\ldots,p_1=0$. A contradiction to the hypothesis $p_0=1$. Therefore, $p_0>p_1>\cdots>p_n>p_{n+1}>\cdots$.

(b) By way of contradiction assume there exists k such that $p_j \leq 0$. It follows that:

$$g(p_{j-1}) \leq 0$$

$$-0.0001p_{j-1}^2 + p_{j-1} \leq 0$$

$$(-0.0001p_{j-1} + 1) p_{j-1} \leq 0$$

From part (a); if $p_{j-1} = 0$, then $p_1 \neq 0$. Thus $p_{j-1} \neq 0$. If $p_{j-1} < 0$, then

$$-0.0001p_{j-1} + 1 \ge 0$$
$$p_{j-1} \ge 10,000,$$

a contradiction. If $p_{j-1} > 0$, then

$$-0.0001p_{j-1} + 1 \ge 0$$
$$p_{j-1} \le 10,000,$$

a contradiction. Therefore, $p_n > 0$ for all n.

- (c) $\lim_{n\to\infty} p_n = 0$
- 9. (a) g(3) = (0.5)(3) + 1.5 = 3

(b)
$$|P - p_n| = |3 - 1.5 - 0.5p_{n-1}| = |1.5 - 0.5p_{n-1}| = \frac{1}{2}|3 - p_{n-1}| = \frac{1}{2}|P - p_{n-1}|$$

18CHAPTER 2. THE SOLUTION OF NONLINEAR EQUATIONS F(X) = 0

(c) Using mathematical induction we note that $|P-p_1| = \frac{1}{2}|P-p_0|$ and assume that $|P-p_k| = \frac{1}{2^k}|P-p_0|$. Thus

$$|P - p_{k+1}| = \frac{|P - p_k|}{2}$$

$$= \frac{|P - p_0|}{2(2^k)}$$

$$= \frac{|P - p_0|}{2^{k+1}}$$

10. (a) Note: $p_1 = p_0/2$, $p_2 = p_0/2^2$, ..., $p_{k+1} = p_0/2^{k+1}$, Thus

$$\frac{|p_{k+1} - p_k|}{|p_{k+1}|} = \frac{|2^{-k-1} - 2^{-k}|}{|2^{-k-1}|} = \frac{2^{-k}(1 - 2^{-1})}{2^{-k}2^{-1}} = 1$$

- (b) Clearly, the stopping criteria will (theoretically) never be satisfied.
- 11. In inequality (11): $|P p_n| \le K^n |P p_0|$, where $|g'(x)| \le K < 1$. Therefore, the smaller the value of K the faster fixed-point iteration converges.

2.2 Bracketing Methods for Locating a Root

1.

$$I_0 = (0.11 + 0.12)/2 = 0.115$$
 $A(0.115) = 254,403$
 $I_1 = (0.11 + 0.115)/2 = 0.1125$ $A(0.1125) = 246,072$
 $I_2 = (0.1125 + .125)/2 = 0.11375$ $A(0.11375) = 250,198$

$$I_0 = (0.13 + 0.14)/2 = 0.135$$
 $A(0.135) = 394,539$
 $I_1 = (0.135 + 0.14)/2 = 0.1375$ $A(0.1375) = 408,435$
 $I_2 = (0.135 + 0.1375)/2 = 0.13625$ $A(0.13625) = 401,420$

- 3. (a) f(-3) > 0, f(0) < 0, and f(3) > 0; thus roots lie in the intervals [-3,0] and [0,3].
 - (b) $f(\pi/4) > 0$ and $f(\pi/2) < 0$; thus a root lies in the interval $[\pi/4, \pi/2]$.
 - (c) f(3) < 0 and f(5) > 0; thus a root lies in the interval [3, 5].
 - (d) f(3) > 0, f(5) < 0, and f(7) > 0; thus roots lie in the intervals [3, 5] and [5, 7].

$$4. \ \ [-2.4,-1.6], [-2.0,-1.6], [-2.0,-1.8], [-1.9,-1.8], [-1.85,-1.80]$$

5.
$$[0.8, 1.6], [1.2, 1.6], [1.2, 1.4], [1.2, 1.3], [1.25, 1.30]$$

$$6. \ \ [3.2,4.0], [3.6,4.0], [3.6,3.8], [3.6,3.7], [3.65,3.70]\\$$

7.
$$[6.0, 6.8], [6.4, 6.8], [6.4, 6.6], [6.5, 6.5], [6.40, 6.45]$$

- 8. (a) Starting with $a_0 < b_0$, then either $a_1 = a_0$ and $b_1 = \frac{a_0 + b_0}{2}$, or $a_1 = \frac{a_0 + b_0}{2}$ and $b_1 = b_0$. In either case we have $a_0 \le a_1 < b_1 \le b_0$. Now assume that the result is true for $n = 1, 2, \ldots, k$; in particular $a_0 \le a_1 \le \cdots \le a_k < b_k \le \cdots \le b_1 \le b_0$. Then either $a_{k+1} = a_k$ and $b_{k+1} = \frac{a_k + b_k}{2}$, or $a_{k+1} = \frac{a_k + b_k}{2}$ and $b_{k+1} = b_k$. In either case we have $a_k \le a_{k+1} < b_{k+1} \le b_k$. Hence $a_0 \le a_1 \le \cdots \le a_k \le a_{k+1} < b_{k+1} \le b_k \le \cdots \le b_1 \le b_0$. Thus by mathematical induction we have proven that $a_0 \le a_1 \le \cdots \le a_n < b_n \le \cdots \le b_1 \le b_0$ for all n.
 - (b) From part (a) either $a_1 = a_0$, $b_1 = \frac{a_0 + b_0}{2}$, and $b_1 = a_1 = \frac{b_0 a_0}{2}$ or $a_1 = \frac{a_0 + b_0}{2}$, $b_1 = b_0$, and $b_1 a_1 = \frac{b_0 a_0}{2}$. Now assume that the result is true for $n = 1, 2, \dots, k$, in particular $b_k a_k = \frac{b_0 = 0}{2^k}$. Then either $a_{k+1} = a_k$, $b_{k+1} = \frac{a_k + b_k}{2}$, and $b_{k+1} a_{k+1} = \frac{b_k a_k}{2} = \frac{b_0 a_0}{2^{k+1}}$ or $a_{k+1} = \frac{a_k + b_k}{2}$, $b_{k+1} = b_k$, and $b_{k+1} a_{k+1} = \frac{b_k a_k}{2} = \frac{b_0 a_0}{2^{k+1}}$. Thus by mathematical induction we have proven that $b_n a_n = \frac{b_0 a_0}{2^n}$ for all n.
 - (c) Using part (c) it follows that the sequence $\{a_n\}$ is non-decreasing and bounded above by b_0 , hence it is a convergent sequence and we write $\lim_{n\to\infty} a_n = L_1$. Similarly, the sequence $\{b_n\}$ is non-increasing and bounded below by a_0 , hence it is a convergent sequence and we write $\lim_{n\to\infty} b_n = L_2$

To show that the two limits are equal we observe that

$$L_{2} = \lim_{n \to \infty} b_{n}$$

$$= \lim_{n \to \infty} (a_{n} + (b_{n} - a_{n}))$$

$$= \lim_{n \to \infty} a_{n} + \lim_{n \to \infty} (b_{n} - a_{n})$$

$$= L_{1} + \lim_{n \to \infty} \frac{b_{0} - a_{0}}{2^{n}}$$

$$= L_{1} + 0 = L_{1}$$

Since $a_n \leq c_n \leq b_n$ the squeeze principle for limits implies that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n \lim_{n \to \infty} b_n$$

- 9. (a) The function does not change sign on the interval [3, 7].
 - (b) $\lim_{n\to\infty} a_n = 2 = \lim_{n\to\infty} b_n$, but f(x) is undefined at 2.
- 10. (a) It will converge to the zero at $x = \pi$.
 - (b) $\lim_{n\to\infty} a_n = \pi/2 = \lim_{n\to\infty} b_n$, but f(x) is undefined at $\pi/2$.
- 11. Solve:

$$\frac{7-2}{2^N} < 5 \times 10^{-9}$$

$$\ln(5) - N \ln(2) < \ln(5 \times 10^{-9})$$

$$N > \frac{|\ln(5) - \ln(5 \times 10^{-9})}{\ln(2)}$$

$$N > 29.89735$$

Thus N = 30.

12.

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

$$= \frac{b_n(f(b_n) - f(a_n)) - f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

$$= \frac{-b_n f(a_n) + a_n f(b_n)}{f(b_n) - f(a_n)}$$

$$= \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

13.

$$\begin{array}{rcl} \frac{|b-a|}{2^{N+1}} & < & \delta \\ \ln\left(\frac{|b-a|}{2^{N+1}}\right) & < & \ln(\delta), \end{array}$$

since ln is a strictly increasing function. Thus

$$\begin{array}{rcl} \ln(b-a) - (N+1) \ln(2) & < & \ln(\delta) \\ & \frac{\ln(b-a) - \ln(\delta)}{\ln(2)} & < & N+1 \\ & & N & > & \frac{\ln(b-a) - \ln(\delta)}{\ln(2)} - 1 \end{array}$$

Therefore, the smallest value of N is

$$N = int\left(rac{\ln(b-a) - \ln(\delta)}{\ln(2)}
ight)$$

- 14. The bisection method can't converge to x=2, unless $c_n=2$ for some $n\geq 1$.
- 15. We refer the reader to "Which Root Does the Bisection Algorithm Find?" by George Corliss, Mathematical Modeling: Classroom Notes in Applied Mathematics, Murray Klankin Ed., SIAM, 1987.

2.3 Initial Approximation and Convergence Criteria

- 1. Approximate root location -0.7. Computed root -0.7034674225.
- 2. Approximate root location 0.7. Computed root 0.7390851332.
- 3. Approximate root locations -1.0 and 0.6. Computed roots -1.002966954 and 0.6348668712.