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CHAPTER 1. Basic Principles

1.1.

1.2.

1.3

Classify each of the following flows as steady or unsteady from the viewpoint of the observer:

Flow Observer

(a) Flow of river around bridge piers @) Standing on bridge
2) In boat, drifting

(b) Movement of flood surge downstream (D Standing on bank

2) Moving with surge
Solution.

(a) Over relatively short time intervals, the observer standing on the bridge will see a steady flow
even though the flow may be unsteady over longer time intervals; however, the observer drifting
in the boat will see an unsteady flow as the boat passes under the bridge because the velocity
increases around the bridge piers even if the approach flow is steady.

(b) An observer standing on the river bank will see an unsteady flow as the surge passes but a
steady flow while riding on the surge if the flow is uniform in the direction of movement.

At the crest of an ogee spillway as shown in Figure 1.1c, would you expect the pressure on the
face of the spillway to be greater than, less than, or equal to the hydrostatic value? Explain your
answer.

Solution.

The convex curvature near the crest of the spillway results in a centripetal acceleration toward the
center of curvature and a corresponding pressure gradient with decreasing pressure toward the
center of curvature. The decreasing pressure reduces the equivalent hydrostatic pressure for a
parallel flow so that the pressure is less than hydrostatic on the face of the spillway. The decrease
in pressure can be so severe that vapor pressure is reached and cavitation occurs with pitting and
erosion of the concrete spillway surface (see Chapter 6).

On the Internet, find a photograph of the Hoover Dam overflow spillway near Las Vegas,
Nevada. The flow coming over the spillway is collected in a channel that runs perpendicular to
the incoming flow. How would you classify the flow in the collection channel during a flood
flow? Explain your answer.

Solution.

Arrows show the flow that would come over the spillway into a collection channel and then flow
into a tunnel. The flow in the collection channel during a flood is unsteady and nonuniform but
more specifically is unsteady, spatially-varied flow because the discharge is changing in the flow
direction.
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1.4.  The river flow at an upstream gauging station is measured to be 1500 m’/s, and at another
gauging station 3 km downstream, the discharge is measured to be 750 m?/s at the same instant of
time. If the river channel is uniform with a width of 300 m, estimate the rate of change in the
water surface elevation in meters per hour. Is it rising or falling?

Solution.

Use Equation 1.6, the continuity equation:

aﬁ:Bal:—ag;—w:OQsz/s

ot ot ox 3000

P _025_025_ 8.33x107* m/s or 3.0 m/hr (rising)
ot B 300

1.5. A paved parking lot section has a uniform slope over a length of 100 m (in the flow direction)
from the point of a drainage area divide to the inlet grate, which extends across the lot width of 30
m. Rainfall is occurring at a uniform intensity of 10 cm/hr. If the detention storage on the paved
section is increasing at the rate of 60 m*/hr, what is the runoff rate into the inlet grate?

Solution.

Utilize the continuity equation for a finite control volume given by Equation 1.3 for an
incompressible fluid so that the fluid density p cancels on both sides of the equation. Then we
have

av
EZ _ZQout + ZQin

10

+———x100x30
100cm/m

60 == Qrunoff
O norr =300 —-60 =240 m’/hr

1.6.  If the lake level upstream of the spillway in Figure 1.1c is 55 m above the channel floor at the
base of the spillway just upstream of the hydraulic jump, estimate the depth and velocity there for
a flow rate of 1,000 m’/s and a spillway width of 30 m. What is the value of the Froude number?
Neglect the approach velocity in the lake and the head losses on the spillway.

Solution.
Writing the energy equation from the water surface upstream of the spillway where the velocity

head is negligible to the floor of the stilling basin downstream of the spillway, and neglecting
head losses, we have
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q
=y, +
yl y2 2gy§
1000/30)2 56.63
55=y2+(—2)=y2+ >
19.62y; vy

Solving by trial and error for the supercritical solution (see Chapter 2), the result is y, = 1.024 m
and V, = g/y, = 33.33/1.024 = 32.55 m/s. The Froude number becomes

v, 32.55

F = = =
Jor,  +/9.81x1.024

10.3

which is supercritical and will provide a strong, stable hydraulic jump as shown in Chapter 3.

1.7. A rectangular channel 6 m wide with a depth of flow of 3 m has a mean velocity of 1.5 m/s. The
channel undergoes a smooth, gradual contraction to a width of 4.5 m.
(a) Calculate the depth and velocity in the contracted section.
(b) Calculate the net fluid force on the walls and floor of the contraction in the flow direction.
In each case, identify any assumptions that you make.

Solution.
1

6m 45m

(a) Apply the energy equation from the approach section 1 to the contracted section 2 with
negligible head losses and assuming a horizontal channel bottom:

5 0
+L =y +
g T T g

where g, = Vo, = (6/4.5)q; = (6/4.5)(1.5)(3.0) = 6.0 m*/s. Substituting and solving, we have

L5t _ 607
1962 19.62x y?

1.835
Vs +—2:3115

2

from which y, = 2.90 m by trial and error and V> = ¢»/y, = 6.0/2.90 = 2.07 m/s. Note that there
are two solutions, but this is the subcritical solution and the correct one as discussed in more
detail in Chapter 2.
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1.8.

(b) Apply the momentum equation in the flow direction in which F = the resultant force of the
walls and floor on the flow. Assume a hydrostatic pressure distribution at sections 1 and 2.
Because the transition is horizontal, there is no component of the gravity force in the flow
direction. The momentum equation becomes

2 2
~F byl —by L= pO, 1))
2 2
2 2
L F 1 6.0x9810%x>20 — 4.5%9810% 220 Z1000% (1.5x3.0% 6.0)x(2.07—1.5)

from which F = 63.8 kN.

A bridge has cylindrical piers 1 m in diameter and spaced 15 m apart. Downstream of the bridge

where the flow disturbance from the piers is no longer present, the flow depth is 2.9 m and the

mean velocity is 2.5 m/s.

(a) Calculate the depth of flow upstream of the bridge assuming that the pier coefficient of
dragis 1.2.

(b) Determine the head loss caused by the piers.

Solution.

In part (@), apply the momentum equation with the control volume boundaries halfway between
the piers; then apply the energy equation in part (b).

<—D s=15m
| O F

p2

p

(a) The momentum equation, neglecting boundary friction, is
Fpl _Fp2 _szQ(V2 _I/l)

2 2

2
.
sy%—sy%—chAfTI = POV, -V,)

in which D = drag force on the pier; F, = hydrostatic force; A4,= frontal area of the pier at section
1 on a plane perpendicular to the flow direction = ay;; a = pier diameter = 1.0 m; s = pier spacing
=15.0 m; Cp = drag coefficient =1.2; and Q = 4,V = (15)(2.9)(2.5) = 108.8 m*/s. Using
continuity and substituting, we have
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1.9.

2 2 2
15><9810><(y—1—2'9 )—1.2><1000><(1.0y1)x—(108'8)2:1000x108.82( I — 1 )
2 2 2(15y,) 15x2.9 15y,
which reduces to
yf+10'30—12.11=o
Vi

and the solution is y; = 2.932 m, or a backwater of 0.032 m, and V', = O/4, = 108.8/[(15)(2.932)]
= 2.474 m/s.

(b) The head loss, 4;, is obtained from the energy equation assuming a negligible change in
channel bed elevation from point 1 to 2:

VZ V2 ) 2 . 2
h, =y, +—+—-y,——2=2932+ 2474 -2.90- 2:5 =0.0254 m
2g 2g 19.62 19.62

A symmetric compound channel in overbank flow has a main channel with a bottom width of 30
m, side slopes of 1:1, and a flow depth of 3 m. The floodplains on either side of the main channel
are both 300 m wide and flowing at a depth of 0.5 m. The mean velocity in the main channel is
1.5 m/s, while the floodplain flow has a mean velocity of 0.3 m/s. Assuming that the velocity
variation within the main channel and the floodplain subsections is much smaller than the change
in mean velocities between subsections, find the value of the kinetic energy correction coefficient
a.
, : | | |
I 0.5m |
3m A4 'T
300m 1 300 m

30 m

Solution.

Flow area of the floodplains, 4;:
A, =2x(300x0.5) =300 m’

Flow area of the main channel, 4,,:

A, = %(30+ 35)x2.5+35x0.5=98.75m’

Then for the entire channel, we have a total discharge, O = 300(0.3 m/s) + 98.75(1.5 m/s) = 238
m’/s, and mean velocity V= Q/4 = 238/398.75 = 0.597 m/s. The kinetic energy flux correction
coefficient, ¢, then is given by

_Yvla,  2x(0.3)°x150+(1.5)’ x98.75 _4.02
V4 (0.597)* x (398.75) )
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1.10. The power law velocity distribution for fully-rough turbulent flow in an open channel is given by

in which u = point velocity at a distance z from the bed; u« = shear velocity = (7¢/0)"% 7, = bed
shear stress; p = fluid density; &, = equivalent sand grain roughness height; and a = constant.

(a) Find the ratio of the maximum velocity, which occurs at the free surface where z = the depth,
Vo, to the mean velocity for a very wide channel.

(b) Calculate the values of the kinetic energy correction coefficient & and the momentum flux
correction coefficient £ for a very wide channel.

Solution.

(a) Substituting for u = u .y at z = y,, we have

u ax :au*(

m

Yo /6
k)

S

The mean velocity, V, is obtained by integration of the point velocity distribution over the depth
for a very wide channel:

, 716 Yo
v :LJ'oy au*(i)”ﬁdz = 0“1*/6 [ ]O zga”*(&)”é
b G E AT e T

Then by comparison, it is obvious that #y,../V = 7/6.

(b) From the definition of « for a very wide channel, we have

[ P I

. 'k R

=73 = = 735 = 1.059
Vv, (6/7)" v,

aul (677 v,

Similarly, fis given by

) 2 2%, Z\1/3
J‘Oy ude a Us IO (k ) dz (3/4)y4/3
— — K _ 0 _
,B— 2 - o 2 _.4/3 =1.021
2y, (6/7)" v,

@ (6/77°") vy

s
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1.11  The velocity distribution for laminar flow in an open channel is given by

in which v= kinematic viscosity; yo = depth of flow; and the other variables are as defined in
Exercise 1.10. Answer questions (a) and () of Exercise 1.10 for this laminar velocity
distribution.

Solution.

(a) Substituting for u = u .y at z = y,, we have

L_u(x

The mean velocity, V, is obtained by integration of the point velocity distribution over the depth
for a very wide channel:

2 2 2 2 3 P 2
R LR A {Z__Z_} _un
Yo o0 v 2y, Wol 2 6y, 3v

Then by comparison, it is obvious that #y,../V = 3/2.

(b) From the definition of « for a very wide channel, we have

6 2
U, Yo zZ 3
woaa o B (- E oy
_J‘o udz_ i J‘o 27,

o= =
Vv, (U y)/(3vy
4 5 6
a==1 y“(z3—3z N 23}12:1.543
Yo °° 2y, 4y, 8y
Similarly, fZis given by
RS z°
Yo 2 L 0 z—— 2(lz
ﬂzjoudzzvzjo< 2
Vv, (uly;)/(3v)’
9 ¢n( , 22z
a=—["|7-+"5|dz=1.20
Yo 0 Yo 4V
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1.12.

An alternative expression for the velocity distribution in fully-rough, turbulent flow is given by
the logarithmic distribution
u 1 z
Z - lnl =
u. K Z,

in which « = the von Karman constant = 0.40; zy= &, / 30; and the other variables are the same as
defined in Exercise 1.10. Show that « and £ for this distribution in a very wide channel are given
by

a=1+3¢"-2¢’

B=1+¢&’
in which €= (tnax / V) — 1; tmax= maximum velocity; and /= mean velocity.
Solution.
First, find the mean velocity, V, by integrating over the depth with a change of variable, 77 = z/z,

so that dz = zy d77 and the upper limit, 77y = yo/zo. Then we have

U Us

0 zZ
jglm—qdz=
Ky Zy K

U.z,

Yo
V= [z inndp=="C[nlnn-n

0

so, the mean velocity is

y=Y

~(Inn, —1)
K

and the maximum velocity is given by

Us 1
z/lmax = n770
K
so we conclude that

u 1

max _ | —

&= =
4 Inn, -1

Now we can calculate « from its definition, using the same change of variable to 7, to produce

3
u.z,

a=—2>"
KV y,

[, )’ dn
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1.13.

From a math handbook, we can look up the integral, which is given by

[(nn)’ dn=nl(iny)’ =3(nn)’ +6lnn—6]

Substituting the integral, with the limits applied, and the expression for mean velocity into the
equation for «, we have

B x’ =3x>+6x—6 B (x=1° +3x-5
(x=1)° (x=1)°

in which x =In 7= 1/¢+ 1. Substituting for x in terms of & we have finally
a=1+3g"-2¢°
Similarly, we have for S

2
Uz,

F= KV,

[ nmy* dn
and the indefinite integral is given in this case by

[(nn)* dn =nl(nn)* —2Inp+2]

so that upon substitution into the equation for S we have

2 2
ﬂ:x 2x-2k2=(x 1) j1=1+52
(x=1) (x-=1)

in which x =1n 7 = 1/&+1 as before.

In a hydraulic jump in a rectangular channel of width b, the depth after the jump y, is known to
depend on the following variables:

yzzf[yl’q’g]

in which y; = depth before the jump; g = discharge per unit width = Q/b; and g = gravitational
acceleration. Complete the dimensional analysis of the problem.

Solution.
We have n = 4 variables but only two fundamental dimensions, L and T, so that m = 2 and n—-m =

2 IT groups. Choose y; and g as repeating variables. Then by inspection, the first IT group is
given by
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1.14.

m, =22
Y1

The second IT group is found from

[M,1=LT = [y, [g] g = L (LT ™) (L°T™)

in which the square brackets denote "the dimensions of" the enclosed variables. Equating
exponents on length, L, and time, T, we have

L:0=c+d+2
T: 0=-2d -1

from which d =—1/2 and ¢ = -3/2 so that

q
I, =—757=F

g N

which is the Froude number for a rectangular channel. Finally we can write from the dimensional
analysis that

22 = §(F)
Vi

The backwater Ay caused by bridge piers in a bridge opening is thought to depend on the pier
diameter and spacing, d and s, respectively; downstream depth, y,; downstream velocity, V; fluid
density, p; fluid viscosity, z; and gravitational acceleration, g. Complete the dimensional
analysis of the problem.

Solution. First, write the functional relationship as
Ay = f(das’y05Vap5/u’g)

We have 8 variables and 3 fundamental dimensions so there must be 5 I'T groups. Choose p, V,
and y, as repeating variables. Then by inspection, the first 3 I'T groups are I[1; = Ay/yo; 1, = d/yy;
and I1; = s/yy. The next IT group is found from

[I1,1=ML'T =[p] [V ][y, ] = (ML) (LT (L)* (ML T ™)

in which the square brackets denote "the dimensions of" the enclosed variables. Equating
exponents, we have

10
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1.15.

M: 0=c+1
L: 0=-3¢c+d+e-1
T: 0=-d -1

from which ¢ =-1; d =—1; and e =—1. Then Il4 = pVy/x, which is the Reynolds number of the
flow. The final IT group is obtained from

[ ]=M"L'T" =[p]'[V]°[%,]°g = (ML7)*(LT )" (L)* (LT )

Equating the exponents, we have

M: 0=c
L: 0=-3c+d+e+1
T: 0=—-d -2

so that c=0; d=-2; and e = 1. Then Ils can be written as V/(gyo)” 2 which is the Froude number.
The final functional relationship, with some rearrangement of the IT groups, is

Yo d pvd ¥V

Ay _
AT ’(gyo)”z]

The longitudinal velocity u near the fixed bed of an open channel depends on the distance from
the bed, z; the kinematic viscosity, v; and the shear velocity u« = (74/p)"" in which 7 is the wall
shear stress. Develop the dimensional analysis for the point velocity, u.

Solution.

The functional relationship is

u=f(z,v,u.)

There are 4 variables and only 2 fundamental dimensions (L and T), so we should expect 2 I'1
groups. Choose z and u- as repeating variables. Then we have

d
IT, =zulu

which, by inspection, gives I1; = u/u+. The second IT group comes from

11
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1.16.

I, = zulv

LT =[¢ (LT—I)d 12T
L:0=c+d+2

T: 0=—-d-1

from which d =—1 and ¢ =1 so that Il = u=z/v. The final relationship is

u Uu.z

)
1%

In very slow motion of a fluid around a sphere, the drag force on the sphere, D, depends on the
sphere diameter, d; the velocity of the approach flow, V; and the fluid viscosity, 4 Complete the
dimensional analysis. How many dimensionless groups are there and what are the implications
for the corresponding values of the group(s)? Why was the fluid density not included in the list
of variables?

Solution.

The functional relationship is

D=fd,V, 1)

There are 4 variables and 3 fundamental dimensions, so we should expect only one IT group.
Choose d, V, and u as repeating variables, which do not themselves form a IT group. Then we
have

I, =dV’u‘D

ML'T® =L“(LT")’(ML'T")*MLT
M: 0=c+1

L:0=a+b—c+1

T:0=-b—-c-2

from which ¢ =-1; b =—-1; a=-1 and Il = D/uVd. In this case, according to the Buckingham I1
theorem, we can set a function of the single I1 group to zero, which can only be true if the

IT group itself is a constant. This constant was determined analytically by Stokes to be 37, but in
the general case it could be determined experimentally. The fluid density was not included in the
list of variables because the acceleration terms were neglected as a result of the condition of very
slow, or creeping, motion.

12
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1.17.

The discharge over a sharp-crested weir, Q, is a function of the head on the weir crest, H; the
crest length, L; the height of the crest, P; density, p; viscosity, 4; surface tension, o ; and
gravitational acceleration, g. Carry out the dimensional analysis using p, g, and H as repeating
variables. If it is known that Q is directly proportional to crest length, L, how would you alter the
dependent IT group?

Solution.

Write the functional relationship as

Q = f(H,L,P,p,ILI,O-,g)

in which there are 8 variables and 3 fundamental dimensions resulting in 5 IT groups. Use p, g,
and H as repeating variables as suggested. Then each IT group is determined as follows:

By inspection, I, = H/L; and I'l, = H/P. Then we have

I,=p'g"H

M°L'T® =(ML?)*(LT?)’L‘'ML'T™"
M: O0=a+1

L: 0=-3a+b+c-1

T: 0=-2b-1

from which a = —1; b =-1/2; and ¢ =-3/2 so that IT; = pH(gH)"*/ .

I, =p'¢"Hc

M°L’T® =(ML)“(LT )" L‘MT >
M: O=a+1

L: 0=-3a+b+c

T: 0=-2b-2

from whicha=-1;b=-1;¢c=-2so thatH4=ng2/0'.

HszpangcQ

M°L’T® = (ML?)“(LT )’ L(L’'T ™)
M: O=a

L: 0=-3a+b+c+3

T: 0=-2b-1

13
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1.18.

from which @ =0; b =—1/2; and ¢ =—5/2 so that ITs = Q/(g"?H >*). The final functional
relationship can be written as

_9
gl/2H5/2

H H pH(gH)"” pgH’
L’ P’ U e

= )

If it is known that Q varies directly with the crest length, L, then the dependent IT group can be
multiplied by (H/L) with the result

_ 9
gl/ZLH3/2

=4(

H H pH(gH)" ngz)
L,P, 2

U o

The function ¢ becomes a discharge coefficient that depends on the IT groups listed, and the form
of its functional dependence can be determined by experiment. See Chapter 2.

The terminal fall velocity, wy, of a sphere in a stationary fluid of infinite extent is a function of the
fluid density, p ; the reduced gravitational acceleration, (p/p —1)g, in which p; = density of the
sphere and g = gravitational acceleration; the dynamic fluid viscosity, x ; and the sphere diameter,
d. Complete the dimensional analysis for the fall velocity as the dependent variable with p, d, and
4 as repeating variables. Repeat the dimensional analysis with (p/p—1) and g taken as separate
independent variables.

Solution.

Write the functional relationship as

in which there are 5 variables and 3 fundamental dimensions resulting in 2 IT groups. Use p, d,
and y as repeating variables as suggested. Then each I1 group is determined as follows:

Then we have for the first I group:

I, =p”db,ucwf

MOL°T® = (ML) (L) (ML'T™")* LT
M: O=a+c

L: 0=-3a+b-c+1

T: 0=——c-1

from which a =1; b=1; and ¢ =—1 so that I, = pw,d/uu= Re.

14
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For the second I1 group:

I, =p”d"ﬂ“(%—l)g

MOL°T? = (ML) (L)" (ML™'T™")* LT™*

M: O=a+c
L: 0=-3a+b-c+1
T: 0=—c-2

i
AP

V2

from which a =2; b=3; and ¢ = -2 so that I, =

P

=¢ -

14 14

. Then the final relationship is

given by

In this case, knowledge that the submerged weight of the particle is the important gravitational
force results in the final two dimensionless numbers that appear in the relationship for fall
velocity derived in Chapter 10. If (p/p —1) and g are taken as separate independent variables,
then the result is not quite as insightful and is given by

wd d’ p,
;zq{g_z,&_l}
v v:op

15
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