
SOLUTIONS MANUAL
OPERATING SYSTEMS

NINTH EDITION

CHAPTERS 1–9

WILLIAM STALLINGS

Copyright 2017: William Stallings

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

https://selldocx.com/products
/solution-manual-operating-systems-internals-and-design-principles-9e-stallings

https://selldocx.com/products/solution-manual-operating-systems-internals-and-design-principles-9e-stallings

-2-

© 2017 by William Stallings

All rights reserved. No part
of this document may be
reproduced, in any form or
by any means, or posted on
the Internet, without
permission in writing from
the author. Selected
solutions may be shared
with students, provided
that they are not available,
unsecured, on the Web.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-3-

NOTICE

 This manual contains solutions to the review
questions and homework problems in Operating
Systems, Ninth Edition. If you spot an error in a
solution or in the wording of a problem, I would
greatly appreciate it if you would forward the
information via email to wllmst@me.net. An
errata sheet for this manual, if needed, is
available at
http://www.box.net/shared/fa8a0oyxxl . File
name is S-OS9e-mmyy.

W.S.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-4-

Chapter 1 Computer System Overview 5	
Chapter 2 Operating System Overview 12	
Chapter 3 Process Description and Control 15	
Chapter 4 Threads .. 21	
Chapter 5 Mutual Exclusion and Synchronization 25	
Chapter 6 Deadlock and Starvation ... 42	
Chapter 7 Memory Management ... 54	
Chapter 8 Virtual Memory .. 60	
Chapter 9 Uniprocessor Scheduling ... 69	

TABLE OF CONTENTS

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-5-

CHAPTER 1 COMPUTER SYSTEM OVERVIEW

ANSWERS TO QUESTIONS
1.1 A processor, which controls the operation of the computer and performs

its data processing functions ; a main memory, which stores both data
and instructions; I/O modules, which move data between the
computer and its external environment; and the system bus, which
provides for communication among processors, main memory, and I/O
modules.

1.2 User-visible registers: Enable the machine- or assembly-language

programmer to minimize main memory references by optimizing
register use. For high-level languages, an optimizing compiler will
attempt to make intelligent choices of which variables to assign to
registers and which to main memory locations. Some high-level
languages, such as C, allow the programmer to suggest to the compiler
which variables should be held in registers. Control and status
registers: Used by the processor to control the operation of the
processor and by privileged, operating system routines to control the
execution of programs.

1.3 These actions fall into four categories: Processor-memory: Data may

be transferred from processor to memory or from memory to processor.
Processor-I/O: Data may be transferred to or from a peripheral device
by transferring between the processor and an I/O module. Data
processing: The processor may perform some arithmetic or logic
operation on data. Control: An instruction may specify that the
sequence of execution be altered.

1.4 An interrupt is a mechanism by which other modules (I/O, memory)

may interrupt the normal sequencing of the processor.

1.5 Two approaches can be taken to dealing with multiple interrupts. The

first is to disable interrupts while an interrupt is being processed. A
second approach is to define priorities for interrupts and to allow an
interrupt of higher priority to cause a lower-priority interrupt handler to
be interrupted.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-6-

1.6 The three key characteristics of memory are cost, capacity, and access

time.

1.7 Cache memory is a memory that is smaller and faster than main

memory and that is interposed between the processor and main
memory. The cache acts as a buffer for recently used memory locations.

1.8 A multicore computer is a special case of a multiprocessor, in which all

of the processors are on a single chip.

1.9 Spatial locality refers to the tendency of execution to involve a

number of memory locations that are clustered. Temporal locality
refers to the tendency for a processor to access memory locations that
have been used recently.

1.10 Spatial locality is generally exploited by using larger cache blocks

and by incorporating prefetching mechanisms (fetching items of
anticipated use) into the cache control logic. Temporal locality is
exploited by keeping recently used instruction and data values in
cache memory and by exploiting a cache hierarchy.

ANSWERS TO PROBLEMS
1.1 Memory (contents in hex): 300: 3005; 301: 5940; 302: 7006
 Step 1: 3005 → IR; Step 2: 3 → AC
 Step 3: 5940 → IR; Step 4: 3 + 2 = 5 → AC
 Step 5: 7006 → IR; Step 6: AC → Device 6

1.2 1. a. The PC contains 300, the address of the first instruction. This

value is loaded in to the MAR.
 b. The value in location 300 (which is the instruction with the value

1940 in hexadecimal) is loaded into the MBR, and the PC is
incremented. These two steps can be done in parallel.

 c. The value in the MBR is loaded into the IR.
 2. a. The address portion of the IR (940) is loaded into the MAR.
 b. The value in location 940 is loaded into the MBR.
 c. The value in the MBR is loaded into the AC.
 3. a. The value in the PC (301) is loaded in to the MAR.
 b. The value in location 301 (which is the instruction with the value

5941) is loaded into the MBR, and the PC is incremented.
 c. The value in the MBR is loaded into the IR.
 4. a. The address portion of the IR (941) is loaded into the MAR.
 b. The value in location 941 is loaded into the MBR.
 c. The old value of the AC and the value of location MBR are added

and the result is stored in the AC.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-7-

 5. a. The value in the PC (302) is loaded in to the MAR.
 b. The value in location 302 (which is the instruction with the value

2941) is loaded into the MBR, and the PC is incremented.
 c. The value in the MBR is loaded into the IR.
 6. a. The address portion of the IR (941) is loaded into the MAR.
 b. The value in the AC is loaded into the MBR.
 c. The value in the MBR is stored in location 941.

1.3 a. 224 = 16 MBytes
 b. (1) If the local address bus is 32 bits, the whole address can be

transferred at once and decoded in memory. However, since the data
bus is only 16 bits, it will require 2 cycles to fetch a 32-bit instruction
or operand.

 (2) The 16 bits of the address placed on the address bus can't
access the whole memory. Thus a more complex memory interface
control is needed to latch the first part of the address and then the
second part (since the microprocessor will end in two steps). For a
32-bit address, one may assume the first half will decode to access a
"row" in memory, while the second half is sent later to access a
"column" in memory. In addition to the two-step address operation,
the microprocessor will need 2 cycles to fetch the 32 bit
instruction/operand.

 c. The program counter must be at least 24 bits. Typically, a 32-bit
microprocessor will have a 32-bit external address bus and a 32-bit
program counter, unless on-chip segment registers are used that
may work with a smaller program counter. If the instruction register
is to contain the whole instruction, it will have to be 32-bits long; if it
will contain only the op code (called the op code register) then it will
have to be 8 bits long.

1.4 In cases (a) and (b), the microprocessor will be able to access 216 =

64K bytes; the only difference is that with an 8-bit memory each
access will transfer a byte, while with a 16-bit memory an access may
transfer a byte or a 16-byte word. For case (c), separate input and
output instructions are needed, whose execution will generate
separate "I/O signals" (different from the "memory signals" generated
with the execution of memory-type instructions); at a minimum, one
additional output pin will be required to carry this new signal. For case
(d), it can support 28 = 256 input and 28 = 256 output byte ports and
the same number of input and output 16-bit ports; in either case, the
distinction between an input and an output port is defined by the
different signal that the executed input or output instruction
generated.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-8-

1.5 Clock cycle = 1
8 MHz

= 125 ns

 Bus cycle = 4 × 125 ns = 500 ns
 2 bytes transferred every 500 ns; thus transfer rate = 4 MBytes/sec

 Doubling the frequency may mean adopting a new chip manufacturing

technology (assuming each instructions will have the same number of
clock cycles); doubling the external data bus means wider (maybe
newer) on-chip data bus drivers/latches and modifications to the bus
control logic. In the first case, the speed of the memory chips will also
need to double (roughly) not to slow down the microprocessor; in the
second case, the "word length" of the memory will have to double to be
able to send/receive 32-bit quantities.

1.6 a. Input from the Teletype is stored in INPR. The INPR will only accept

data from the Teletype when FGI=0. When data arrives, it is stored
in INPR, and FGI is set to 1. The CPU periodically checks FGI. If FGI
=1, the CPU transfers the contents of INPR to the AC and sets FGI to
0.

 When the CPU has data to send to the Teletype, it checks FGO.
If FGO = 0, the CPU must wait. If FGO = 1, the CPU transfers the
contents of the AC to OUTR and sets FGO to 0. The Teletype sets FGI
to 1 after the word is printed.

 b. The process described in (a) is very wasteful. The CPU, which is
much faster than the Teletype, must repeatedly check FGI and FGO.
If interrupts are used, the Teletype can issue an interrupt to the CPU
whenever it is ready to accept or send data. The IEN register can be
set by the CPU (under programmer control)

1.7 If a processor is held up in attempting to read or write memory, usually

no damage occurs except a slight loss of time. However, a DMA transfer
may be to or from a device that is receiving or sending data in a stream
(e.g., disk or tape), and cannot be stopped. Thus, if the DMA module is
held up (denied continuing access to main memory), data will be lost.

1.8 Let us ignore data read/write operations and assume the processor only

fetches instructions. Then the processor needs access to main memory
once every microsecond. The DMA module is transferring characters at a
rate of 1200 characters per second, or one every 833 µs. The DMA
therefore "steals" every 833rd cycle. This slows down the processor

approximately 1
833

×100% = 0.12%

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-9-

1.9 a. The processor can only devote 5% of its time to I/O. Thus the

maximum I/O instruction execution rate is 106 × 0.05 = 50,000
instructions per second. The I/O transfer rate is therefore 25,000
words/second.

 b. The number of machine cycles available for DMA control is

 106(0.05 × 5 + 0.95 × 2) = 2.15 × 106

 If we assume that the DMA module can use all of these cycles, and

ignore any setup or status-checking time, then this value is the
maximum I/O transfer rate.

1.10 a. A reference to the first instruction is immediately followed by a

reference to the second.
 b. The ten accesses to a[i] within the inner for loop which occur

within a short interval of time.

1.11 Define
 Ci = Average cost per bit, memory level i
 Si = Size of memory level i
 Ti = Time to access a word in memory level i
 Hi = Probability that a word is in memory i and in no higher-level

memory
 Bi = Time to transfer a block of data from memory level (i + 1) to

memory level i

 Let cache be memory level 1; main memory, memory level 2; and so

on, for a total of N levels of memory. Then

Cs =

CiSi
i=1

N
∑

Si
i=1

N
∑

 The derivation of Ts is more complicated. We begin with the result from

probability theory that:

Expected Value of x = iPr x = 1[]
i=1

N

∑

 We can write:

Ts = TiHi
i=1

N

∑

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-10-

 We need to realize that if a word is in M1 (cache), it is read immediately.

If it is in M2 but not M1, then a block of data is transferred from M2 to
M1 and then read. Thus:

 T2 = B1 + T1

 Further
 T3 = B2 + T2 = B1 + B2 + T1

 Generalizing:

Ti = Bj +T1
j=1

i−1

∑

 So

Ts = BjHi()
j=1

i−1

∑
i=2

N

∑ +T1 Hi
i=1

N

∑

 But Hi
i=1

N

∑ = 1

 Finally

Ts = BjHi()
j=1

i−1

∑
i=2

N

∑ +T1

1.12 a. Cost = Cm × 8 × 106 = 8 × 103 ¢ = $80
 b. Cost = Cc × 8 × 106 = 8 × 104 ¢ = $800
 c. From Equation 1.1 : 1.1 × T1 = T1 + (1 – H)T2
 (0.1)(100) = (1 – H)(1200)
 H = 1190/1200

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-11-

1.13 There are three cases to consider:

Location of referenced
word Probability Total time for access

in ns

In cache 0.9 20

Not in cache, but in main
memory (0.1)(0.6) = 0.06 60 + 20 = 80

Not in cache or main
memory (0.1)(0.4) = 0.04 12ms + 60 + 20 =

12,000,080

 So the average access time would be:

 Avg = (0.9)(20) + (0.06)(80) + (0.04)(12000080) = 480026 ns

1.14 Yes, if the stack is only used to hold the return address. If the stack is

also used to pass parameters, then the scheme will work only if it is
the control unit that removes parameters, rather than machine
instructions. In the latter case, the processor would need both a
parameter and the PC on top of the stack at the same time.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

