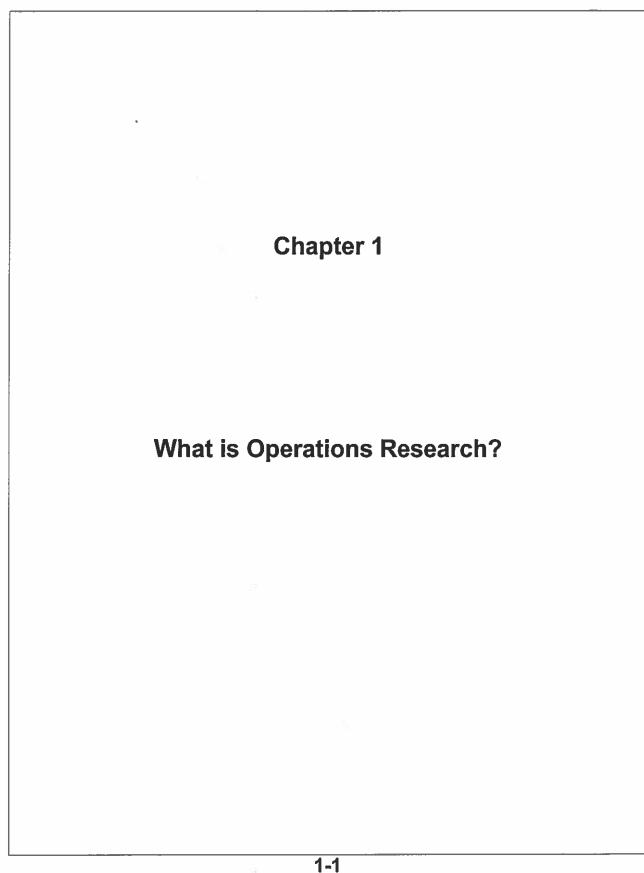
Solutions manual

Operations Research: An Introduction


Tenth Edition

Hamdy A. Taha

University of Arkansas/Fayetteville

Contents

1	What is Operations Research?
2	Modeling with Linear Programming
3	The Simplex Method and Sensitivity Analysis
4	Duality and Post-Optimal Analysis
5	Transportation Model and its Variants
6	Network Models
7	Advanced Linear Programming
8	Goal Programming
9	Integer Liner Programming
10	Heuristic Programming
11	Traveling Salesperson Problem (TSP)
12	Deterministic Dynamic Programming
13	Inventory Modeling (with Introduction to Supply Chains)
14	Review of Probability
15	Decision Analysis and Games
16	Probabilistic Inventory Models
17	Queuing Systems
18	Simulation Modeling
19	Markov Chains
20	Classical Optimization Theory
21	Nonlinear Programming Algorithms
Appendix C	AMPL modeling Language

1

Weeks 1-4: 2 weekend trips FYV-DEN-FYV and 2 weekend trips DEN-FYV-DEN. Week 5: 1 regular trip.

Cost: 4x320+1x400= \$2200

4

- (a) Given a fence of length L:
 - (1) h = .3L, w = .2L, Area = $.06L^2$
 - (2) h = .1L, w = .4L, Area = $.04L^2$

Solution (2) is better because the area is larger

(b)
$$L = 2(w + h)$$
, $w = L/2 - h$

$$z = wh = h(L/2 - h) = Lh/2 - h^2$$

 $\delta z/\delta h = L/2 - 2h = 0$

Thus, h = L/4 and w = L/4.

Solution is optimal because z is a concave function

3

x = cumulative number of drops of balls #1 and #2 at any floor (problem unknown)

 y_i = floor from which ith drop of ball #1 occurs.

Step 0: Set $y_0 = 0$, $y_1 = x$, and i = 1.

General step i: Drop ball#1 from floor yi. If it is dented, use ball#2 to check floors $y_{i-1} + 1$ to $y_i - 1$, in that order. Else, if #1 is not dented, set i = i + 1, and repeat step i.

Formula for determining vi:

 y_i must include the (cumulative) i #1-drops from floor y_i to floor y_i . To maintain the same number of drops at any floor y_i , #2-drops cannot exceed x - i. Thus,

$$y_i = y_{i-1} + (x - i + 1)$$

$$= x + (x-1) + (x-2) + ... + (x-i+1)$$

$$= ix - (1 + 2 + ... + i - 1) = ix - (i - 1) i/2$$

Maximum number of #1-drops is x (else $y_i \le y_{i-1}$ for i > x). Hence the highest floor from which #1 can be dropped is

 $y_x = x^2 - (x-1)x/2 = x^2 - x^2/2 + x/2 = (x^2 + x)/2$

For a 100-storey building, $y_x \ge 100$, or $x^2 + x - 200 \ge 0$. The associated quadratic equation yields x = 13.64 and -14.64. The rounded positive value x = 13.64

14 is the smallest integer that satisfies the inequality.

(a) Let T = total time to move all four individuals to the other side of the river. The objective is to determine the transfer schedule that minimizes T.

(b) Let t = crossing time from one side to the other. Use codes 1, 2, 5, and 10 to represent Amy, Jim, John, and Kelly.

East	Crossing	West
5,10	$(1,2) \rightarrow (\mathbf{t} = 2)$	1,2
1,5,10	(t = 1)←(1)	2
1	$(5,10) \rightarrow (t = 10)$	2,5,10
1,2	(t = 2)←(2)	5,10
none	$(1,2) \rightarrow (\mathbf{t} = 2)$	1,2,5,10
Total = $2 + 1 + 10 + 2 + 2 = 17$ minutes		

5

		Jim		
		Curve	Fast	
Joe	Curve	.500	.200	П
	Fast	.100	.300	

(a) Alternatives:

Jim: Throw curve of fast ball.

Joe: Prepare for curve or fast ball.

(b) Joe tries to improve his batting score and Jim tries to counter Joe's action by selecting a less favorable strategy. This means that neither player will be satisfied with a single (pure) strategy.

The problem is not an optimization situation in the familiar sense in which the objective is maximized or minimized. Instead, the conflicting situation requires a compromise solution in which neither player is tempted to change strategy. Game theory (Chapter 14) provides such a solution.

6

```
\L L Let L=ops. 1 and 2=20 sec, C=ops. 3 and 4=25 sec, U=op. 5=20 sec
Gant chart: L1=load horse 1, L2=load horse 2, etc.
one joist: 0---L1---20---C1---45----U1+L1---85----U2+L2----125---U1+L1---165---
U2+L2---205
      20-L2-40 45---C2----70 85---C1---110 125---C2---140
      165-C1-190
      205---C2---230---U2---250
             Total = 250
             Loaders utilization=[250-(5+25)]/250=88%
Cutter utilization=[250-(20+15+15+15+15)]/250=68%
      two joists: 0--2L1---40----2C1----90----2(U1+L1)---170----2C1----220---2U1--
             -260
      40---2L2---80 90---2C2----140 170---2U2---210
             Total = 260
             Loaders utilization=[260-(10+10)]/260=92%
             Cutter utilization=[260-(40+30+40)]/250=58\%
      three joists: 0--3L1--60---3C1----3C2----210---3U2---270
      60---3L2---120 135-----3U1-----195
             Total = 270
             Loaders utilization=[270-(15+15)]/270=89%
             Cutter utilization=[270-(60+60)]/270=56\%
```

Recommendation: One joist at time gives the smallest time. The problem has other alternatives that combine 1, 2, and 3 joists. Cutter utilization indicates that cutter represents the bottleneck.

7

Note that all 'dots' are indistinguishable even if they are designated as 1, 2, 3, ..., 10.

- (a) Alternative 1: Move dots 5, 6, and 7 below bottom row, move dots 8 and 9 below new 5, 6, and 7. Move 10 to the bottom. Number of moves = 6. Alternative 2: See part (b).
- (b) Three moves: Move dot 1 up to the left of dot 8, dot 4 to the right of dot 9, and dot 10 below dots 2 and 3.

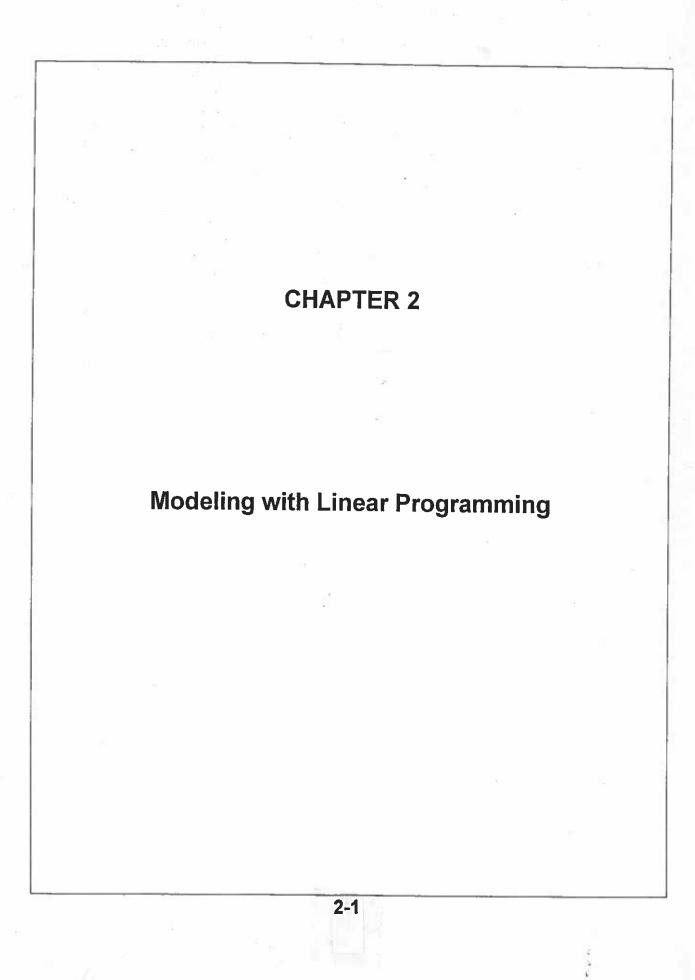
Chapter 1

8

- (a) Alternative 1: Break one end link of each chain and connect to another chain. Four breaks and resolders, $cost = 4 \times (2 + 3) = 20$ cents. Alternative 2: See Part (b)
- (b) Break three links in one chain and use them to connect the remaining three chains: Three breaks and re-solder, $cost = 3 \times (2 + 3) = 15$ cents.

9

Represent the selected 2-digit number as 10x+y. The corresponding square number is 10x+y-(x+y)=9x. This means that the selected square will always be 9, 18, 27, ..., or 81. By assigning zero dollars to these squares, the reward is always zero regardless of the rewards assigned to the remaining squares or the number of times the game is repeated.


10

Assign a sequential number x to each cartons, $x \in X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

(a) Let Y be the set of cartons so far weighed (initially $Y = \emptyset$).

General Step: Randomly select a carton yeX-Y. If y weighs 90 oz, stop. Else, augment y to Y and repeat the General Step. $1 \le$ number of times scale is used ≤ 10 .

(b) Exactly once! Take x bottles from carton xeX to end up with (1+2+...+10) = (10+11)/2=55 bottles. Weigh the 55 bottles. If the weight = 550 - x, carton x is the defective one.

(a)
$$X_2 - X_1 \ge 1$$
 or $-X_1 + X_2 \ge 1$

- (b) $X_1 + 2X_2 \ge 3$ and $X_1 + 2X_2 \le 6$
- (c) $X_2 \ge X_1$ or $X_1 X_2 \le 0$
- (d) X, + X, 23
- (e) $\frac{x_{\ell}}{x_{i} + x_{\ell}} \leq .5 \text{ or } .5x_{i} .5x_{i} \geqslant 0$

(a)
$$(x_1, x_2) = (1, 4)$$

 $(x_1, x_2) \ge 0$
 $6x1 + 4x4 = 22 < 24$
 $1x1 + 2x4 = 9 \ne 6$ infeasible

(b)
$$(X, X_1) = (2, 2)$$

 $(X_1, 3X_2) \ge 0$
 $6X2 + 4X2 = 20 < 24$
 $1X2 + 2X2 = 6 = 6$
 $-1X2 + 1X2 = 0 < 1$
feasible

Z = 5x2+4x2 = \$18

(c)
$$(x_1, x_2) = (3, 1.5)$$

 $x_1, x_2 \ge 0$
 $6x3 + 4x1.5 = 24 = 24$
 $1x3 + 2x1.5 = 6 = 6$
 $-1x3 + 1x1.5 = -1.5$ < 1
 $1x1.5 = 1.5$ < 2

 $Z = 5 \times 3 + 4 \times 1.5 = 21

Z = 5x2 + 4x1 = \$14

(e)
$$(x_1, x_2) = (27 - 1)$$

 $x_1 \ge 0, x_2 < 0, \text{ infearible}$

Conclusion: (c) gives the best feasible Solution

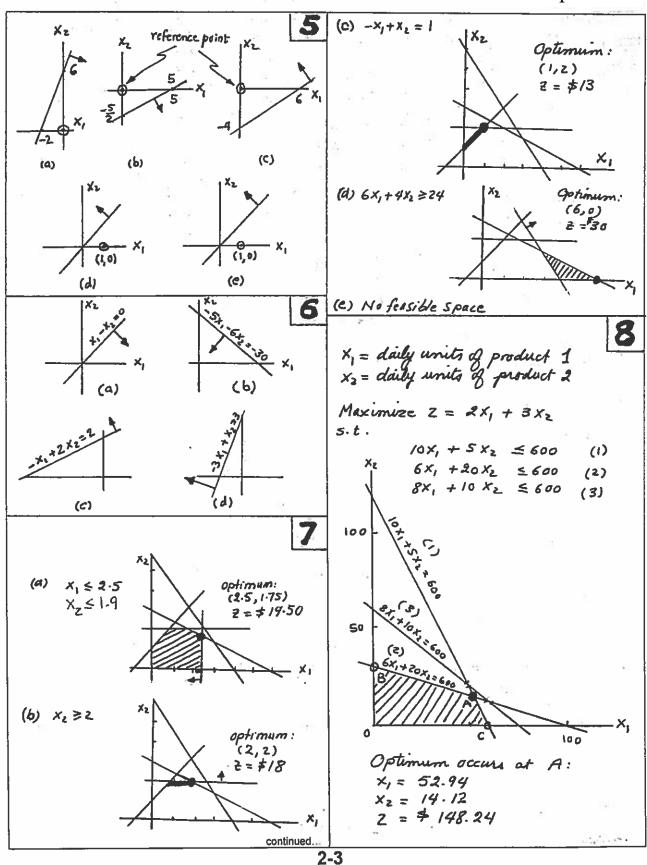
$$(X_1, X_2) = (2, 2)$$

Let S_1 and S_2 be the unused daily amounts of MI and M2.
For M1: $S_1 = 24 - (6X_1 + 4X_2) = 4$ for M2: $S_2 = 6 - (X_1 + 2X_2) = 0$ tons /day

Jollowing nonlinear objective function:

$$Z = \begin{cases} 5X_1 + 4X_2, & 0 \le X_1 \le 2 \\ 4.5X_1 + 4X_2, & X_1 > 2 \end{cases}$$

(X, X₁) = (2, 2)


(X, X₁) = (2, 2)

(X₁, X₂) \geq 0

(X₁, X₂) \geq 0

(X₂ + 4 x 2 = 20 < 24)

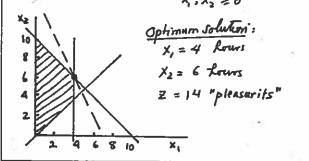
1 x 2 + 2 x 2 = 6 = 6 | feasible (Chapter 9).

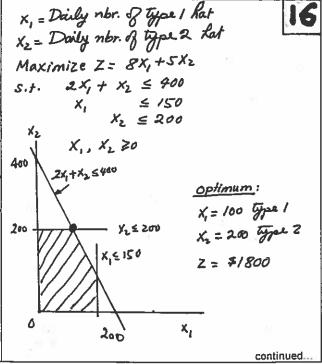
X, = \$ invested in A X, = number of units of A X = \$ invacted in B X2= number of units of B Maximize $Z = .05X_1 + .08X_2$ Maximize Z = 20 x1 + 50 X2 $X_1 \ge .25(X_1 + X_2)$ $\frac{X_1}{X_1 + X_2} \geqslant .8 \quad \text{or} \quad .2X_1 + .8X_2 \leq 0$ $X_2 \leq .5(X_1 + X_2)$ X, ≥ .5X2 x, & 100 X1+ X2 & 5000 2x, + 4x2 < 240 $X_1, X_2 \ge 0$ X1, X2 ≥0 5000 X,= 180 50 X. = \$2500 Z= +325 Optimal occurs at B: x, = number of practical courses 12 X2 = number of humanistic courses X = 80 units Maximize Z = 1500X, +1000X2 x2 = 20 units Z = \$2,600 S.F. X, + X2 = 30 410 X, = number of sheets /day.
X2 = number of bars/day 10 $X_2 \geq 10$ Maximize Z = 40x,+35x2 $X_1, X_2 \geq 0$ $\frac{X_1}{800} + \frac{X_2}{600} \leq 1$ (4)30 X2 Ophmum: 0 ≤ X, ≤ 550, 0 ≤ X, ≤ 580 X1 5580 X, 6 550 Ophnum

Ophimum solution: X, = 550 Sheets X₂ = 187.13 bars Z = \$28,549.40 (b) Change $x_1+x_2 \leq 30$ to $x_1+x_2 \leq 31$ Optimum Z = 441,500 $\Delta Z = 41,500 - 40,000 = 1500$ Conclusion: Any additional course will be fite practical type.

 $X_1 = units$ of solution A $X_2 = units$ of solution B $Maximize Z = 8X_1 + 10 X_2$ Subject to ·5x,+·5x2 = 150 .6 x, + .4x2 < 145 X2 3 40 $X_1, X_2 \geq 0$ € 200 X = nbr. of grano boxes X2 = nbr. of wheatie boxes

 $X_2 = nbr.$ of wheatie boxes


Maximize $Z = X_1 + 1.35 X_2$ S.t. $.2X_1 + .4X_2 \le 60$ $X_1 \le 200$ $X_2 \le /20$ $X_1, X_2 \ge 0$

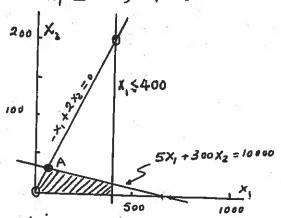

120 X2 120 X1 = 200 200 300 X1

Ophimum: X,= 200, X2 = 50 , Z = \$267.50

Area allocation: 67% grano, 33% Whentie

 $X_1 = play kours per day$ $X_2 = work kours per day$ $Maximize Z = 2X_1 + X_2$ S.t. $X_1 + X_2 \le 0$ $X_1 - X_2 \le 0$ $X_1 \times X_2 \ge 0$

continued.


X1 = radio minutes X2 = TV minutes

Maximize Z = x, +25X2

S.t. 15x, +300x2 ≤ 10,000

 $\frac{X_1}{X_2} \ge z$ or $-x_1 + zx_2 \le 0$

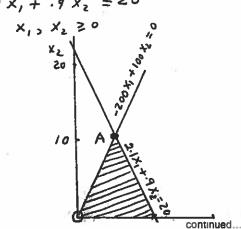
X, ≤ 400, X,, X, ≥0

Optimum occurs at A:

X, = 60.61 minules

x. = 30.3 minutes

z = 8/8.18


x, = tons of C, consumed per hour Xz = tons of Cz consumed per Rour

Maximize Z = 12000x, + 9000 Xz S.t.

1800 X, + 2100 X2 ≤ 2000 (X,+X2)

- 200 X, + 100 X2 50

2.1 x, + .9 x2 = 20

(a) Optimum occurs at A:

X = 5.128 tons per hour

X2 = 10.256 tons per Low

Z = 153,846 16 of Steam

Ophimal ratio = 5.128 = .5

(6) $2.1x_1 + .9x_2 \le (20+1) = 21$

Optimum Z = 161538 16 of Steam 12 = 161538 - 153846 = 7692 16

X, = Nbr. of radio commercials

beyond the first X2 = Nbr. of TV ands beyond the first

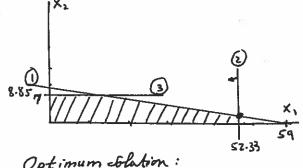
Maximize Z = 2000 X, + 300 0 X2 + 5000 + 2000

5.t. 300(X,+1) +2000(X,+1) ≤ 20,000

300 (X,+1) 5.8x20,000

2000 (X2+1) 6.8×20,000

 $X_1, X_2 \geqslant 0$


Maximize Z = 2000x, +3000x2+7000

300 X, + 2000 X2 = 17700

300 X = 15700

2000x2 = 14000

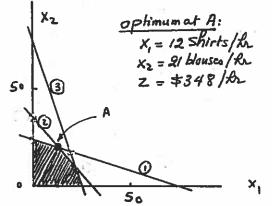
X, , X, ≥0

Optimum colation:

Radio Commercials = 52.33+1 = 53.33

TV ads = 1+1 = 2

Z = 107666.67+7000 = 114666.67

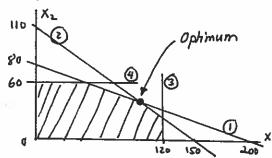

X,= number of shirts per hour X2= number of blouses you hour

Maximize Z = 8x, + 12x2 S.E.

$$20X_1 + 60X_2 \le 25 \times 60 = 1500$$
 (1)

$$70x_1 + 60x_2 \le 35x60 = 2100$$
 (2)
 $12x_1 + 4x_2 \le 5x60 = 300$ (3)

X1, X1 20


X, = Nbr. of desks per day X2 = Nbr. of Chairs per day

MAXIMIZE Z = 50 X, + 100 X2

$$\frac{\chi_{l}}{2aa} + \frac{\chi_{L}}{8a} \leq l \tag{1}$$

$$\frac{X_1}{150} + \frac{X_2}{110} \le 1$$
 (2)

 $x, \le 120, x, \le 60$

Optimum:

20 X, = number of HiFil units
X= number of HiFil units

Constraints:

$$6x_1 + 4x_2 \le 480x \cdot 9 = 432$$

 $5x_1 + 5x_2 \le 480x \cdot 86 = 412.8$

$$6X_1 + 4X_2 + 5_1 = 432$$

$$5X_1 + 5X_2 + 5_2 = 412.8$$

$$4X_1 + 6X_2 + 5_3 = 422.4$$

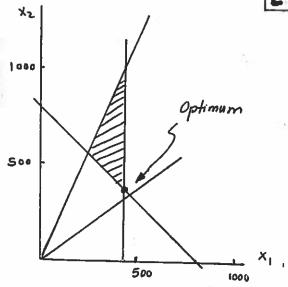
Objective function:

Minimize 5, +5, +53 = 1267.2-15x,-15x,

Than, min S,+Sz+S3 = max 15x,+15xz

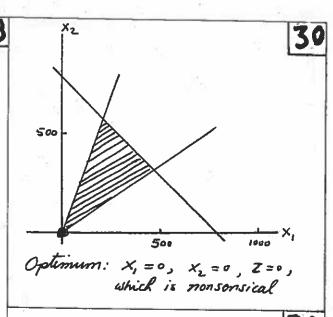
Maximize Z = 15x,+15x2

5.7.


 $6x_{1} + 4x_{2} \leq 432 \quad 0$ $x_{2} \quad 5x_{1} + 5x_{2} \leq 412.8 \quad 0$ $4x_{1} + 6x_{2} \leq 422.4 \quad 3$ $x_{1}, x_{2} \geqslant 0$

(Alternative optima exist) X1 = 50.88 units xz = 31 .68 units Z=/238.4 min

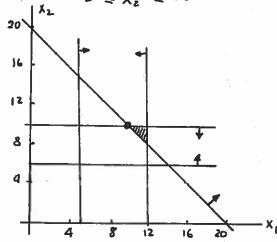
Corner point	(x_1, x_2)	Z
A	(0,0)	0
\boldsymbol{B}	(4,0)	20
C	(3, 1.5)	21 (OPTIMUM)
D	(2,2)	18
E =	(1,2)	13
F	(0, 1)	4


28 (a) (b) (c)

additional constraint: X1 = 450 29

Optimum Solution: x, = 450 16

continued...



X, = number of hours / week in store 1 Xz = number of hours / week in store 2

Minimize $Z = 8X_1 + 6X_2$

$$X_1 + X_2 \ge 20$$

$$5 \le X_1 \le 12$$

Optimum:

32 L X₁ = 10 bb1/day from I ran

X₂ = 10 bb1/day from Dubai

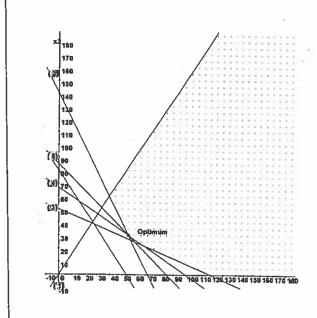
X₂ = 10 bb1/day from Dubai

X₃ = 10 # invested in blue chip stock

X₄ = 10 # invested in bigh-tech stocks

Refinery capacily = X₁+X₂ 10 bb1/day

Minimize Z = X + X₄ Minimize $Z = X_1 + X_2$


Subject to or $-.6 \times_{i} + .4 \times_{i} \times_{i}$

.2x, +.1x2 = 14 ·25x, + ·6x2 ≥ 30 $.1X_{1} + .1X_{2} \ge 8$ X, x, 20

Ophmum Solution from TORA:

LINEAR PROGRAMMING - GRAPHICAL SOLUTION

#1 = 55.00 #2 = 30.00

Minimize Z = X1 + X2 Subject to

> .1x, +.25x, ≥ 10 .6x, -.4x, 20 X1, X2 30

TORA optimin solution:

LINEAR PROGRAMMING - GRAPHICAL SOLUTION

नार्ध

V Pi	of scrap i	9 in alloy 3 in alloy					3
X2=Karis	t scrape	***					
Minimi Subjec	ze ct to	x1 100.00	x2 80.00		β. %:		
(1) (2) (3) (4) (5) (6) (7)		0.06 0.06 0.03 0.03 0.04 0.04 1.00	0.03 0.03 0.06 0.06 0.03 0.03 1.00	>= <= >= <= >= <=	0.03 0.06 0.03 0.05 0.03 0.07		
					č.		
	(5) (7) (4)	2			nmary of Optimal Objective Value = x1 = 0.33 x2 = 0.67	Solution: 86.67	
			Optim	um			245
-1		0		1	1	2 x1	3

(a) X = Undutaken portion of project i 40 Maximize Z = 32.4x, +35.8x2+17.75x3+14.8x4+18.2x5 + 12-35 X6 Subject to 10.5x,+8.3x2+10.2x3+7.2xy+12.3x5+9.2x,≤60 $14.4x_1 + 12.6x_2 + 14.2x_3 + 10.5x_4 + 10.1x_5 + 7.8x_6 \le 70$ 2.2x, + 9.5x, +5.6x, +7.5x, + 8.3x, + 6.9x, <35 2.4x, +3.1x2+4.2x3+5.0x4+6.3x5+5.1x6 = 20 05x, 51, j=13,...6 TORA optimum solution: $X_1 = X_2 = X_3 = X_4 = 1, Y_5 = .84, X_6 = 0, Z = 1/6.06$ (b) Add the constraint X, ≤ X6 TORA optimum Solution: $X_1 = X_2 = X_3 = X_4 = X_6 = 1, X_5 = .03, Z = 113.68$ (C) Let 5. be the unused funds at the end of year i and change the right-hand Sides of constraints 2, 3, and 4 to 70+5, 35+52, and 20+53, respectively. TORA optimum solution: $X_1 = X_2 = X_3 = X_4 = X_5 = 1$, $X_6 = .71$ Z = 127.72 (thousand) The Solution is interpreted as follows: Si Si-Si-1 Decision 4.96 7.62 +2.66 Don't borrow from yr 1 4.62 -3.00 Borrow \$3 from year 2 4 Borrow \$4.62 from yr 2 -4.62The effect of availing excess money

The effect of availing excess money for use in later years is Hat obe first five projected are completed and 71% of project 6 is undertaken. The total revenue increases from \$116,060 to 127,720.

(d) The elack S: in specied i is.

Treated as an <u>unrestricted</u> variable.

TORA optimum Solution: 2=*131.30

S; = 2.3, S2=.4, S3=-5, Sy=-6.1

This means that additional funds are needed in years 3 and 4.

Increase in return = 131.30-116.06

= \$ 15.24

Ignoring the time value of money,

The amount borrowed 5+6.1-(2.3+.4)

=\$ 8.4. Thuo,

rete 6) return = \frac{15.24-8.4}{8.4} \approx 81%

Xi = dollar investment in project i, i=1,2,3,4 of = dollar investment in bank in year j, j=1,2,3,4,5 Maximize Z = 7 Subject to $X_1 + X_2$ + x4 + J, ·5x, +.6x2 -x3 +.4x4 +1.0657, -y = 0 $-3x_1 + .2x_2 + .8x_3 + .6x_4 + 1.065 + -\tilde{y}_2 = 0$ 1.8x,+1.5x2+1.9x3+1.8xy+1.06573-74y=0 1.2x,+1.3x2+.8x3+.95x4+1.06x4-45== all variables ≥0 TORA optimal solution: $X_1=0$, $X_2={}^{$10,000}$, $X_2={}^{$6000}$, $X_Y=0$ 4,=0, 4=0, 43=+6800, 44=\$33,642

Z = \$53,628.73 at the start of year 5

continued.

Pi = fraction undertaken of project 42 6, 6=1,2 Bi= million dollars borrowed in quarter j, j=1, 2, 3, 4 S; = surplus million dollars at the start of quarter j, j = 1, 2, 3, 4, 5 1+82 1+ B₃ 181+38 3-181+2-582 1-581-1-582 -1-681-1-182 -581-2-882 (a) Maximize Z = S5 Subject to P+3P2+5,-B, 3.1 P+2.5 B-1.025, +52+1.025 B, -B=1 1.5 P-1.5B-1.02 5,+5,+1.025 B2-B3=1 -1.8 P -1.8 P -1.02 53 + 54+1.025 B3 - B4 = 1 -5P-2.8 P2-1.02 S4+55+1.025B4 0 = P, = 1, 0 = P2 = 1 0 = B: =1, j=1,2,3,4 Optimim Solution: P= .7113 P= 0 Z = 5.8366 million dollars B, = 0, B2 = .9104 million dellars B3 = 1 million dollars, B4 = 0 (b) B,=0, S, = . 2887 million \$ $B_2 = .9/04, S_2 = 0$ B3=1, S3=0 B4=0, S4 = 1.2553 The solution shows that Bi. Si = 0, meaning Hat you can't forrow and also end up with surplus in any quarter. The result makes sense fecause He coat of borrowing (2.5%) is higher then

the return on surplus funds (2%)

Assume that the investment program ends at the start of year 11.

This, the 6-year bond option can be exercised in years 1,2,3,4, and 5 only. Similarly, the 9-year bond can be used in years 1 and 2 only. Hence, from year 6 on, the only option available is moured savings at 7.5%.

Let

It = insured savings involvents in

Ji = consumed savings introcliment in

year i, i=1,2,...,10

Gi = 6-year bond investment in

year i, i=1,2,...,5

Mi = 9-year bond investment in

year i, i=1,2

The objective is to maximize total

accumulation at the end of year 10; that is, maximize $Z = 1.075 I_{10} + 1.079 G_5 + 1.085 M_2$ The constraints represent the balance equation for each year's cash flow.

 $I_{1} + .98G_{1} + 1.02M_{1} = 2$ $I_{2} + .98G_{2} + 1.02M_{2}$ $= 2 + 1.075I_{1} + .079G_{1} + .085M_{1}$ $I_{3} + .98G_{3}$ $= 2.5 + 1.075I_{2} + .079(G_{1} + G_{2})$ $+ .085(M_{1} + M_{2})$ $I_{4} + .98G_{4} = 2.5 + 1.075I_{3} + .079(G_{1} + G_{2} + G_{3}) + .085(M_{1} + M_{2})$ $I_{5} + .98G_{5} = 3 + 1.075I_{4} + .079(G_{1} + G_{2} + G_{3} + G_{4}) + .085(M_{1} + M_{2})$

I6=3.5+1.075 I5 +.079(G,+G2+G3+G4+G5) +.085(M,+M2)

continued.

$I_7 = 3.5 + 1.075 I_6 + 1.079 G_1$
+·079 (Gz+G3+G4+G5)
+.085 (M, + Mz)
Ig = 4+1.075 I7 +1.079 G2
+ .079 (G3 + G4 + G5)
+·085 (M,+M2)
Ig = 4 + 1.075 Ig + 1.079 G3
+ ·079 (G4+G5)
+ .085 (M, + Mz)
-10 = 5 + 1.075 Iq + 1.079 Gy
+.079 G5 +1.085 M, +.085 M,
all variables = 0

*** OPTIMAN SOLUTION SURVEY *** Title: Problem 26a-14 Final iteration No: 14 Objective value (max) = Value Obj Val Contrib #1 17 #2 12 #3 13 #4 14 #5 15 #5 16 #7 17 #6 18 #7 17 #6 18 #7 17 #6 18 #7 17 #1 12 #2 #1 13 #1 12 #2 #1 13 #1 14 12 #2 #1 15 #1 15 #1 15 #1 16 #1 16 #1 16 #1 16 #1 16 #1 16 #1 16 #1 16 #1 #1 16 #1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0790 0.0000 3,1399 3.9028 1.9608 2.1242 x17 H2 Constraint Slack(+)/Surplus(+) RHS 1 (=) 2 (=) 3 (=) 4 (=) 5 (=) 6 (=) 7 (=) 8 (=) 9 (=) 10 (=) 2.0000 2.0000 2.5000 2.5000

Jear	Recommendation
1	Invest all in 9-yr bond
2	Invest all in q-yr. bond
3	bowest all in 6-yr bond
4	Investall in 6-yr bond
5	Invest all in 6-yr bond
7	Invest all in insured savings
8	Invest all in incured savings
9	Invest all in insured sames
10	Innet all in mound savings

XiA = amount invested in year; (plan A (1000\$) XiB = amount invested in year i, plan B (1000\$) Maximize Z = 3 X2B + 1.7 X3A Subject to XIA + XIB -1.7 X1A + X2A + X28 $-3 \times_{18} -1.7 \times_{2A} + \times_{3A} = 0$ XiA, XiB ≥0 for i=1, 2,3 OPTIMUM SOLUTION SUBBLIRY *** Title: Problem 2.6e-15
Final iteration No: 4
Chjective usius (Ran) = \$10,0000
mm ALTERNATIVE solution detected #1 #1A #2 #19 #3 #2A #4 #28 #5 #3A 100,0000 0,0000 0,0000 0.0000 5.0000 0.0000 510.0000 0.0000 Constraint RHS 0.0000 0.0000 0.0000 Optimum solution: Invest \$100,000 in A in yr I and \$170,000 in B in yr 2. Alternative optimum: Invest \$100,000 in B in yr 1 and \$300,000 in A in yr 3.

1,20,204
Xi = dollars allocated to choice i, 45 i = 1, 2, 3, 4
y = minimum return
(-3x ₁ +4x ₂ -7x ₃ +15x _y
Maximize $Z = min \left\{ 5x_1 - 3x_2 + 9x_3 + 4x_4 \right\}$
Maximize $Z = min \begin{cases} 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 3x_1 - 9x_2 + 10x_3 - 8x_4 \end{cases}$ Subject to
$X_1 + X_2 + X_3 + X_4 \leq 500$
$X_1, X_2, X_3, X_y \geq 0$
The problem can be converted to
a linear program as
continued

Maximize Z = y
subject to
$-3x_1 + 4x_2 - 7x_3 + 15x_4 \ge y$
$5x_1 - 3x_2 + 9x_3 + 4x_4 \ge y$
Andrew Control of the
3x, -9x2+10x3-8x4 >y
$X_1 + X_2 + X_3 + X_4 \le 500$
X1, X2, X3, X4 ≥0
of unrestricted
*** OPTIMUM SOLUTION SUMMARY ***

Title: Final iteration No: 5 Objective value (max) = 1175.0000

Variable	Value	Obj Coeff	Obj Val Contrib
x1	0.0000	0.0000	0.0000
x2	0.0000	0.0000	0.0000
x3	287.5000	0.0000	0.0000
x4	212.5000	0.0000	0.0000
х5 у	1175.0000	1.0000	1175.0000

Constraint	RHS	Slack(-)/Surplus(+)
1 (>)	0.0000	0.0000+
2 (>)	0.0000	2262.5000+
3 (>)	0.0000	0.0000+
4 (<)	500.0000	0.0000-

Allocate \$287.50 to choice 3 and \$ 212.50 to choice 4. Return = \$1175.00

Xit = Deposit in plani at start of month t

$$t = \begin{cases} 1, 2, \dots, 12 & \text{if } i = 1 \\ 1, 2, \dots, 10 & \text{if } i = 2 \\ 1, 2, \dots, 7 & \text{if } i = 3 \end{cases}$$

 $t = \begin{cases} 1, 2, \dots, 12 & \text{if } i = 1 \\ 1, 2, \dots, 10 & \text{if } i = 2 \\ 1, 2, \dots, 7 & \text{if } i = 3 \end{cases}$ $y'_{i} = \text{initial amount on kand to}$ insure a feasible Solution: $y'_{i} = \text{interest rate for plan } i = 1, 2, 3$ $J'_{i} = \begin{cases} 12, i = 1 \\ 10, i = 2 \\ 7, i = 3 \end{cases}$

$$J_{i} = \begin{cases} 10, & i=2\\ 7, & i=3 \end{cases}$$

continued

Charles Control Control Control	$P_{i} = \begin{cases} 1, & i=1 \\ 3, & i=2 \end{cases} d_{t} = $demand for period t$ $6, & i=3 \end{cases}$
	Maximize $Z = \sum_{t=1}^{12} \sum_{i=1}^{3} Y_i \cdot X_{i,t-p_i} - y_i$
	t-P;>0 5.t. y-x-x-≥d1

xit , y, ≥0

12

Solution: (see file ampl 2-46.txt)

J = \$1200, Z = -1136.29

Interest amount = 1200-1136.29 = 63.71

Deposits: 200 286.48 313.53 587.43 0 314.37 Z89.30 734-69 0 98.20 294.60 848.16 10 11

XWI = # wrenches / wk using regular time XW2 = # wrenches /wk using overtime.
XW3 = # wrenches /wk very subcontracting XC1 = # Chesilo/Wk using regular time XC = # chiels/wk using overtime XC3 = # chiels/wh using subcontracting Minimize Z = 2x +2.8x 12+3x 13+2.1x 1 + 3.2 XC2 + 4.2 XC3 Subject to XW, \$550 , XWZ \$250 Xc, ≤620, Xc, ≤280 Xc, + Xc2 + Xc3 > 2 XWI + XWZ + XW3 2 Xw, +2 Xwz +2 Xw3 - xc, -xc2 - xc2 = 0 XWI+ XWZ + XW3 = 1500 $X_{C_1} + X_{C_2} + X_{C_3} \ge 1200$ all variables >0 (a) Optimum from TORA: XWI = 550, XWI = 250, XW3 = 700 Xc, = 620, Xc1 = 280, Xc3 = 2100 Z = #14,918(b) Increasing marginal cost ensures Kat regular time capacity is used before that of occitime, and that overtime capacity is used before

that of subcontracting. If the

marginal cost function is not

satisfied.

monotonically increasing, additional constraints are needed to ensure that the capacity restriction is

 $X_j = number of unity - produced of product <math>j$, j = 1, 2, 3, 4Profit per unit:

Product $l = 75 - 2 \times 10 - 3 \times 5 - 7 \times 4 = 512$ Product $a = 70 - 3 \times 10 - 2 \times 5 - 3 \times 4 = 58$ Product $a = 55 - 4 \times 10 - 1 \times 5 - 2 \times 4 = 52$ Product $a = 55 - 4 \times 10 - 2 \times 5 - 1 \times 4 = 51$ Maximize $a = 12 \times 1 + 18 \times 2 + 2 \times 3 + 11 \times 4$ S.t. $a = 12 \times 1 + 3 \times 2 + 4 \times 3 + 2 \times 4 \le 380$ $a = 12 \times 1 + 3 \times 2 + 2 \times 3 + 2 \times 4 \le 450$ TORA Solution: a = 133.33, a = 10, a = 10 a = 133.33, a = 10, a = 10 a = 10

X; = number of units of model ;

49

Maximize $Z = 30X_1 + 20X_2 + 50X_3$ Subject to

- ① $2X_1 + 3X_2 + 5X_3 \le 4000$ ② $4X_1 + 2X_2 + 7X_3 \le 6000$
- $\frac{X_1}{3} = \frac{X_2}{2}, \text{ of } 2X_1 3X_2 = 0$
- (s) $\frac{X_2}{2} = \frac{X_3}{5}$, or $5X_2 2X_3 = 0$ $X_1 \ge 200$, $X_2 \ge 200$, $X_3 \ge 150$

POP OPTIMEN SOLUTION SUPPLIES ***

First | Front | Front

continued...

Chapter 2	
Xij = Nbr. Cartons in month i from supplier j 50	
Ii = End inventory in period i , I = 0	2 ~ 1,2, J = 1,2,3 N
Cij = Price per unit of xij.	I is = End inventory of product i in month j
h = Holding cost/unit/month	Minimize Z = 30 (x1+x2+x3)+28(x2+x2+x2)
C = Supplier capacity/month	$+ .9(I_{11} + I_{12} + I_{12}) + .7s(I_{21} + I_{22})$
$d_i = Demand$ for month i i = 1, 2, 3, j = 1, 2	S.A. (3000, j=1
1 3 =_ 0	$ (X_{jj}/1.75) + X_{2j} \leq \begin{cases} 3000, & j=1 \\ 3500, & j=2 \\ 3000, & j=3 \end{cases} $
Minimize $z = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \cdot x_{ij} +$	$I_{i,j-1} + X_{i,j} - I_{i,j} = \begin{cases} 5\infty, j=1 \\ 5\infty, j=1 \end{cases}$
$\frac{h}{2} \left(\sum_{i=1}^{3} \left(\sum_{j=1}^{2} x_{ij} + I_{i-1} + I_{i} \right) \right)$	$I_{j,j-1} + X_{j,j} - I_{j,j} = \begin{cases} 3800, & j = 3 \\ 3800, & j = 3 \end{cases}$ $I_{j,j-1} + X_{j,j} - I_{j,j} = \begin{cases} 500, & j = 1 \\ 5000, & j = 2 \end{cases}$ $\begin{cases} 750, & j = 3 \\ 1000, & j = 1 \end{cases}$ $I_{j,j-1} + X_{j,j} - I_{j,j-1} = \begin{cases} 1000, & j = 1 \\ 1000, & j = 1 \end{cases}$
	$I_{z,j-1} + x_{zj} - I_{zj} = \begin{cases} 1000, & j=1 \\ 1200, & j=2 \\ 1200, & j=3 \end{cases}$ $x_{cj}, I_{cj} \ge 0$
S.f. $X_{ij} \leq C$, all i and j	2,3-1 23 23 - (1200, 3-3)
$\frac{2}{T}$, $T - T_i = d_i$, all i	(Coti, 15 0 \$284.050
$\sum_{j=1}^{2} X_{ij} + I_{i-1} - \underline{T}_{i} = d_{i}, \text{ all } i$	Optimum solution: Cost = \$284,050
Optimum solution:	Product 1: 1000 4500 750
$; \times_{i_1} \times_{i_2} I$	5000
i Xi1 Xi2 I 1 400 100 0	Product 2: 500 5000 750
2 400 400 200	2200 0 1200
3 200 0 0	1540
Total cost = \$167,450.	100 1200 1200
Xc = Production amount in guarter i 51	Xij = Qty by operation i in month j 53
Ii = Erd inventory for quarter i	L=1,2, J=1,2,3 3
Minimize Z = 20x, + 22x2 + 24x3 + 26x4+	Minimize Z=-2 = Ij + 4 = Izj + 10 x, + 12x, z
$3.5(I_1+I_2+I_3)$	+ 11×13+ 15×21+18×22+16×23
$X_{i} = 300 + I_{i}$ $X_{i} \leq 400, i = 1,234$	· 6x ₁₁ ≤800, · 6x ₁₂ ≤ 700 , · 6x ₁₃ ≤ 550
$T_{\perp}X_{-} = 400 + I_{2}$ $I_{1} \leq 100, \ l=1,33$	·8× ₂₁ ≤ 1000, ·8× ₂₂ ≤ 850, ·8× ₂₃ ≤ 700
$ I_{2} + x_{3} = 450 + \overline{I}_{3} $	$X_{ij} + I_{i,i-1} = X_{2j} + I_{ij}$
Optimum solution:	$X_{2j} + I_{2,j-1} = I_{2j} + d_{j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \int_$
X= 350 400 400 250	Iio = 0, i=1,2 <u>Solution</u> : Cost = \$39,720
	1333.33 0 216.67
50 \$ 50 \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
demand # # # # # 300 400 450 250	1250 300
Total cost = \$32,250	750 300
10,000 com - 1 - 1 - 1	500 450 600
	730 870

h = Regular pay Low 55	Solution: Z = 32 volunteers
8-hr pay = 8h	X=9, X=2, Xy=6, X1=2, X=4, X1=6x=8
12-hr poay = 12h+4h=14h	all other Xi = 0
	Same formulation as in Palitima 1 19
X' = Nbr 8-hr bruces starting in penali	
OL = Nor. 1/12-hr Duces atenting in period i	remains the same
Minimize $Z = h(8 \stackrel{6}{\underset{i=1}{\sum}} x_i + 14 \stackrel{6}{\underset{i=1}{\sum}} j_i)$	Xi=Nor. ocasuels starting on days: [2
	(121: Monday, 1=7: Sunday)
x, x, x, x, x, x, x, y,	Minimize $Z = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7$ 5.4.
1 11 11 ≥ 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
// / ≥8	M 1 1 1 1 20
1 1 1 27	7 / 1
1 1 1 1 2/2	W 1 1 1
/ / / / / 24	Th / 1 1 = 10
Solution: Z = 196h	F 1, 1 ≥15
$X_1 = 4$, $X_2 = 4$, $X_4 = 2$, $X_5 = 4$, $X_3 = X_6 = 0$	Sat > 18
73 = 6, 7, = 7, = 74 = 75 = 76 = 0	Sun / 1 / ≥10
9	Jun 1 1 1 1 2 12
For 8-hr only buses, Solution is	Solution: Z = 20 workers
Z = 208h	$X_1 = 8$, $X_4 = 6$, $X_5 = 4$, $X_6 = 1$, $X_7 = 1$
X1=X2=4, X3=6, Xy=1, X5=11, X6=0 (8-hr+12-hr) buses in cheaper.	$X_i=Nbr. Students starting at hour i$ $i=1(8:01), i=9(4:01), x_5=0$
	i=1 (8:01), i=9 (4:01), x5 = 0
Xi = Nbr. of volunteers Starting in Low i	Minimize $Z = X_1 + X_2 + X_3 + X_4 + X_6 + X_7 + X_8 + X_9$ S.1.
Minimize $Z = \sum_{i=1}^{n} X_i$	
(8:40) X,	X, X2 X3 X4 X6 X7 X8 X9
$(9:00) \times_1 + \times_2 = 4$	8:ol ≥Z
$\begin{array}{ll} (lazo) & X_1 + X_2 + X_3 \\ (lizo) & X_1 + X_2 + X_4 \end{array} \geq 6$	9:01 >2
$\begin{array}{ll} (li: 00) & X_1 + X_2 + X_3 \\ (l2: 00) & X_3 + X_4 + X_5 \end{array} \ge 8$	1000 1 33
$(1:00) \qquad \qquad x_3 + x_4 + x_5 \qquad \geq 8$ $(1:00) \qquad \qquad x_4 + x_5 + x_6 \qquad \geq 8$	1 1 1 34
$ (2:a_0) x_5 + x_6 + x_7 \ge 6$	1 ≥4
$ (3)(4) $ $X_1 + Y_2 + Y_4 = 1$	1:01 1 ≥3 2:4
$\begin{array}{ccc} (4:01) & & & & & & & & \\ (5:01) & & & & & & & & & \\ (5:01) & & & & & & & & & & \\ \end{array}$	3.4 33
$(6) 00) \qquad \qquad x_q + x_{l0} + x_{ll} \geq 6$	4:01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Solution: Z = 9 Students
117.00 MIL V. S.	X,=2, X3=1, X4=3, X7=3
MII NJ 20 continued	

Let $x_i = Nbr$, starting on day i and lasting for 7 days

 y_{ij} = Nbr. starting shift on day i and starting their 2 days off on day j, $i\neq j$

Thus, of the x_1 workers who start on Monday, y_{12} will take T and W off, y_{13} will take W and Th off, and so on, as the following table shows.

	x_l	<i>x</i> ₂	x_3	x ₄	<i>x</i> ₅	<i>x</i> ₆	x 7
1	siart on Mon	<i>y</i> 12	<i>y</i> 12 [‡] <i>y</i> 13	<i>y</i> 13 [†] <i>y</i> 14	<i>y</i> 14 ⁺ <i>y</i> 15	<i>y</i> 15 ⁺ <i>y</i> 16	<i>Y</i> 16
2	y27		y23	y23+y24	y24+y25	y25+y26	y26+y27
3	y31+y37	y31	Wed -	y34	y34+y35	y35+y36	y36+y37
4	y41+y47	y41+y42	y42	山	y45	y45+y46	y46+y47
5	y51+y57	y51+y52	y52+y53	y53	Fri	y:56	y56+y57
6	y61+y67	y61+y62	y62+y63	y63+y64	y64	Sat #	y67
7	y71	y71+y72	y72+y73	y73+y74	y74+y75	y75	Su 🛴

Minimize $z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

Each employee has 2 days off: $x_i = \text{sum}\{j \text{ in } 1...7, j \neq i\} y_{ij}$

Mon (1) constraint: s - (y27 + y31 + y37 + y41 + y47 + y51 + y57 + y61 + y67 + y71) >= 12

Tue (2) constraint: $s - (y_{12} + y_{31} + y_{41} + y_{42} + y_{51} + y_{52} + y_{61} + y_{62} + y_{71} + y_{72} = 18$

Wed (3) constraint: $s - (y_{12} + y_{13} + y_{23} + y_{42} + y_{52} + y_{53} + y_{62} + y_{63} + y_{72} + y_{73} = 20$

Th (4) constraint: $s - (y_{13} + y_{14} + y_{23} + y_{24} + y_{24} + y_{53} + y_{63} + y_{64} + y_{73} + y_{74} = 28$

Fri (5) constraint: s - (y14 + y15 + y24 + y25 + y34 + y35 + y45 + y64 + y74 + y75 >= 32

Sat(6) constraint: s - (y15 + y16 + y25 + y26 + y35 + y36 + y45 + y46 + y56 + y75 >= 40

Sun(7) constraint: s - (y16 + y26 + y27 + y36 + y37 + y46 + y47 + y56 + y57 + y67) >= 40

continued

Solution:	42	emp	lovees
-----------	----	-----	--------

Startin	ng				Nbr of	FIF .		
On	Nbr	М	Tu	Wed	Th	Fri	Sat	Sun
М	16		16	16			W 6	
Tu	8	10	1. 5001350.7		8	8		
Wed	8	8	8					
Th	0		The department					
Fri	6	23405.5		6	6			
Sat	2	2	54 53					2
Sun	2					_2	2	
Nbr off		10	24	22	14	10	2	2
Nbr at wor	·k	32	18	20	28	32	40	40
Surplus ab	ove	20	0	0	0	0	0	0

61 X = Nor. of efficiency apartments Xd = Nbr. of duplexes X5 = Nbr. of engle-family homes
X5 = hetalspace in ft = Maximize Z = 600 Xc + 750 X + 1200 X + 100 X S.t. X. < 500, X1 = 300, X = 250 X > 10X + 15Xd + 18Xs X = 10000 $X_d \ge \frac{X_c + X_s}{2}$ Xe, Xd, Xs, Xn ≥0 Optimal solution: Z = 1,595,714.29 Xe = 207.14, Xd = 228.57 $X_S = 250$, $X_D = 10,000$ LP does not guarantee integer Solition. Use rounded dolution or appely integer LP algorithm (Chapter 9).

X_i = Acquired portion of property i

Each site is represented by a separate LP.

The site that yields the smaller objective value is selected.

Site 1 LP:

Minimize Z = 25 + X₁ + 2.1 ×₂ + 2.35 ×₃ + 1.85 ×₄ + 295 ×₅

S.t. ×₄ ≥ .75, all ×_i ≤ 1, i=1, z, ..., 5

20×₁ + 50×₂ + 50×₃ + 30×₄ + 60×₅ ≥ 200

Optimum: Z = 34.6625 million ‡

×₁ = .875, ×₂ = ×₃ = 1, ×₄ = .75, ×₅ = 1

Site 2 LP:

Minimize Z = 27 + 2.8×₁ + 1.9×₂ + 2.8×₃ + 2.5×₄

S.t. ×₃ ≥ .5, ×₁, ×₂, ×₃, ×₄ ≤ 1

80×₁ + 60×₂ + 50×₃ + 70×₄ ≥ 200

Optimum: Z = 3435 million ‡

×₁ = ×₂ = 1, ×₃ = ×₄ = .5

Select Site 2.

Xi = portion of project i completed in year | 63 Maximize $Z = .05(4X_u + 3X_i + 2X_i) +$ ·07(3x₂₂+2x₂₃+x₂₄)+ ·15(4x₃₁+3x₃₂+2x₃₃+x₃₄)+ ·02(2 Xaz + Xau) 5.1. $\sum_{i=1}^{3} x_{ij} = 1, \sum_{i=2}^{4} x_{4j} = 1$.28 = \(\frac{5}{2} \times_{2j} \le 1 \), \(25 \le \frac{5}{2} \times_{3j} \le 1 \) $5 \times_{11} + 15 \times_{31} \le 3$ 5x12+8x22+15x3> = 6 5x13+8x23+15x33+1.2x42 =7 8x24+15x34+1.2x44 £7 8 x25 + 15 x35 £7 Optimum: Z = \$523,750 $x_{11} = .6, x_{12} = .4$ $x_{24} = .225$, $x_{25} = .025$ $x_{32} = .267$, $x_{33} = .387$, $x_{34} = .346$ 62 Xg = Nbr. 87 low income units 64

 $x_m = Nbr. of middle income units$ $x_u = Nbr. of uppor income units$ $x_p = Nbr. of public housing units$ $x_s = Nbr. of School rooms$ $x_n = Nbr. of retail units$ $x_c = Nbr. of condemned homes$ Maximize $z = 7x_s + /2x_m + 20x_u + 5x_p + 15x_n$ $-10x_s - 7x_c$ S.t. $10s \le x_s \le 200$, $12s \le x_m \le 190$ $7s \le x_u \le 260$, $300 \le x_p \le 600$ $0 \le x_s \le 2/045$ $0 \le x_s \le 2/045$

continued.

 $25X_{5} \ge 1.3 X_{1} + 1.2X_{m} + .5X_{u} + 1.4X_{p}$ Optimum: $Z = 8290.30 + 1.4X_{p}$ $X_{L} = 100, X_{m} = 125, X_{u} = 227.04$ $X_{p} = 300, X_{s} = 32.54, X_{L} = 25$ $X_{c} = 0$

 $X_1 = Nbr.$ of single-family hornes $X_2 = Nbr.$ of double-family hornes $X_3 = Nbr.$ of triple-family hornes $X_4 = Nbr.$ of recreation areas

Maximize $Z = 10,000 \, X_1 + 12000 \, X_2 + 15000 \, X_3$ S.f. $2X_1 + 3X_2 + 4X_3 + X_4 \le .85 \times 800$ $\frac{X_1}{X_1 + X_2 + X_3} \ge .5$ or $.5X_1 - .5X_2 - .5X_3 \ge 0$ $X_4 \ge \frac{X_1 + 2X_3 + 3X_3}{200}$ or $200 \, X_2 - X_1 - 2X_2 - 3X_3 \ge 0$ $1600 \, X_1 + 1200 \, X_2 + 1400 \, X_3 + 800 \, X_4 \ge 100,000$ $400 \, X_1 + 600 \, X_2 + 890 \, X_3 + 450 \, X_4 \le 200,000$ $X_1, X_2, X_2, X_3, X_4 \ge 0$

Optimum solution:

 $X_{2} = 0$ $X_{3} = 0$ $X_{4} = 1.69$ areas $Z = \frac{5}{3}391521.20$

X = 339.15 homes

New land use constraint:

2 X, + 3 X2 + 4 X3 + X4 ≤ .85 (800 + 100)

New Optimum Solutim:

2 = \$3815,461.35

X, = 381.54 tomes

X2 = X3 = 0

X4 = 1.91 areas

DZ = \$3,815,461.35 - 3,391,521.20

= \$423,940.35

DZ < \$450,000, the purchasing

cost of 100 acres. Hence, the

purchase of the new acres is

not recommended.

10	
Xs = tono A strawberry / day 67	X5= 1607 ecreus pupackage 68
×g= tons of grapes / day	Xb = 16 of bolto per package
×a = tono of apples /day	Xn = 16 of muto per package
	Xw= 16 of wasters per package
A= cans of drink A /day) Each can	Minimise Z = 1.1 Xs +1.5 Xb + 70 Xn + 30 Xw
18 = cano of drink B/day holds one 16	5+1016+801n+301cm
XA = Cano of drink A / day Each can XB = cano of drink B / day holds one 16 Xc = cans of drink C / day	S.f. $Y = X_S + X_b + X_n + X_{US}$
15A 10 of strawborry need in drunk A / day	$X_{n} > AY$
XSB = 16 of stranberry used in drink B/day	$X_b \ge .25Y$, $\frac{X_b}{50} \le X_W$, $\frac{X_b}{10} \le X_D$
XgA = 16 of grapes used in drink A/day	x _n ≤ .15Y
XgB= 16 of grapes used in drink Blday	Xw = 17
I - IL of reaper every with of way	Y ≥ 1
The left advanta would be	all variables are nonnegative
Xa C = 16 of apples used in drink C/day	
Maximize Z = 1.15xA+1.25x +1.2x -200xs	Optimum dolution:
$-100x_9 - 90x_a$	Y=1, Xs=.5, X, = .25, X,=.15, Xw=.1
$X_{S} \leq 200, X_{g} \leq 100, X_{a} \leq 150$	Coat = \$1.12
XSA + XSB = 1500 XS	X = 16 of outs in cereals A,B,C 69
X94 + X98 + X9 = 1200X9	
$X_{\alpha\beta} + X_{\alpha\zeta} = 1000X_{\alpha}$	$X_{r,}(A,C) = 1b d$ rawins in certals A, C
$X_A = X_{SA} + X_{SA}$	X c, (B, C) = 16 of coconuts in cereals B, C X a, (A, B, C) = 16 of almost in cereals A, B, C
XB = XSB + X98 + X0B	Y - 1h Q almond in cereals A.B.C
Xc = Xgc + Xac	\(\begin{align*} \text{\alpha}, (A, B, C) \\ \end{align*}
$x_{SA} = x_{g_A}$,	Yo = XOA + XOB + YOC
X56 = X96, X96 = .5 X98	$Y_r = X_{rA} + X_{rC}$
3xgc = 2 xqc	1 A
all variables > 0	Yc = XcB + XcC
Optimum Solution:	$Y_{\alpha} = X_{\alpha A} + X_{\alpha B} + X_{\alpha C}$
XA = 90,000 Cans, Xg=300,000 Cans, Xc = 0	$W_A = X_A + X_{AA} + X_{AA}$
x_{ij} : j	WB = XB + XB + XB
	l '
S 45000 75 and 0	4C = XOC + XTC + XCC + XOC
9 45,000 75,000 0	
a 0 150,000 0	Maximize $Z = \frac{1}{5} \left(2W_A + 2.5W_B + 3W_C \right)$
90,000 300,000 0	- 100 (100 Yo + 120 Y + 110 Y + 200 Y)
$X_S = 80 \text{ tens}, X_g = 100 \text{ tens}, X_a = 150 \text{ tens}$	5.t. WA = 500 x 5 = 2500
z = \$439,000/day.	WB < 600 X5 = 3000
- 0	Wc ≤ 500×5 = 4000 continued
0	23

Y & 5x2000 = 10,000 XAI = XBI, XA = . 5 X , XAI = . 25 XDI 1/2 = 2 × 2000 = 4,000 Y = 1 x 2000 = 2,000 $X_{Az} = X_{Bz}, X_{Az} = 2X_{Cz}, X_{Az} = \frac{2}{3}X_{Dz}$ Y < 1 × 2000 = 2,000 YA = 1000, YB = 1200, Y = 900, Y = 1500 XOA = 50 X,A, XOA = 50 XAA F > 200, F > 400 Optimum delution: Z = \$ 495,416.67 X08 = 60 XB, XB = 60 XB YA = 958.33 bbl/day $X_{0C} = \frac{60}{3} X_{C}, X_{0C} = \frac{60}{4} X_{C}, X_{0C} = \frac{60}{2} X_{0C}$ Y = 958.33 bbl /day all variables are nonnegative. 1 = 516 67 bbl/day Optimum Solution: Z = \$5384.84/day YD = 1500 bbl /day Wa = 2500 16 or 500 boxes/day F1 = 200 161/day Wa = 3000 16 or 600 boxes F = 3733.33 661/day W = 5793.4516 or ~1158 boxes X = 10,000 16 or 5 tom / day A = bbl of crude A /day X = 471.19 16 or .236 ton B = 661 & crude B/day X = 428.16 16 or . 214 ton R = 661 of regular gasoline /day Xa = 394.11 16 or .197 ton P- bbl of premium gasoline / day X = bb1 of gasoline A si fuel i

X Bi = bb1 of gasoline B si fuel i

X = bb1 of gasoline C in fuel i

Ci

Ci 70 J = bbl of jet gasoline /day Maximize $Z = 50(R - R^{\dagger}) + 70(P - P^{\dagger})$ + 120(J-J+)- (10R+15P+20J) $-(2R^{+}+3P^{+}+4T^{+})-(30A+40B)$ XDi = bblof gasolni D in fuel i 5.E. A < 2500, B < 3000 R=.2A+.25B, R+R-R=500 $Y_{\alpha} = X_{AI} + X_{AZ}$ P= 1A+.3B, P+p-p+ = 700 J= .25A+.1B, J+J-J+ = 400 YR = XR, + XBZ Y = X + X CZ All variables = 0 Yn = XDI + XDZ Optimum dolution: $F_{i} = X_{Ai} + X_{Bi} + X_{Ci} + X_{Di}$ Z = \$21,852.94 A = 1176.47 bb1/day F= XAZ+XBZ+XCZ+XDZ B = 1058.82 661/day Maximize Z = 200 F1 + 250 F2 R = 500 bl/day P=435.29 661/day - (120 / +90/ +100/ +150/) T = 400 661 /day

2-24

NR = bb /day of nophta word in regular MAXIMIZE Z = 150 X, +200 X2 + 230 X2 + 35 X, NP= bliftey of naphta used in premium X4 4 4000 x . 1 N.T = 661/day of raphta weed mi Jet X4 = 400 LR = bb1/day of light used in regular LP = bb1/day of light used in premium $x_1 + \left(\frac{x_2 + \frac{x_3}{.95}}{.95}\right) \le .3 \times 4000$ LJ = bbl/day of light need in jet Using the other notation in Problem 5, $.76 \times_{1} + .95 \times_{2} + \times_{3} \leq 9/2$ Maximize Z = 50(R-R)+70(P-P)+12(J-J) X, ≥ 25, X, ≥ 25 -(10R+15P+20J)-(2R+3P+4J+) x 3 ≥ 25, xy ≥0 - (30A+40B) Optimum solution from TORA: S.J. A < 2500, B < 3000 x, = 25 tons per week X, = 25 tons for week R+R-R+ = 500 X3 = 869.25 tons per week P+P-P+ = 700 Z = \$222,677.50 J+ J- T = 400 ·35A+.45B=NR+NP+NJ A = 661/An of Stock A 74 · 6 A + · 5 B = LR + LP + LJ B= 661/h of stock B YAi = bblfhr of A used in gosdini i? i=1, Z.
YBi = bbl/hr of B word in gostini i? i=1, Z. R=NR+LR P=NP+LP T = NJ + LTMaximize Z = 7(1/4,+1/2,)+10(1/Az+1/82) all variables are nonnegative 5.4. A = YAI + YAZ , A < 450 B=/B1+YB2, B = 700 Ophmum dolution: 2 = \$71,473.68 984A,+894, > 91 (4,+1/61) A=1684.21 , B=0 R= 500, P=700, J=400 98 /2 + 89 /BZ = 93 (YAZ + YBZ) X1 = tons of brown sugar per week 73 10/A1+8 YB, = 12(YA1+YBI) X = tons of white engar per check 10 YAz + 8 YB, = 12 (YAz+YBZ) X3 = tons of powdered angar per week X4 = tons of molasses per week all variables are nonnegative Optimum Solution: Z = \$10,675 A= 450 661/2 B=700 661/2 Gusdini 1 production = 1 Ai 181 = 61.11+213-89=27566/14 Gastarie 2 production = YAZ+YBZ = 388.89+486.11=875 60/hr continued.

Shapter 2	
S = tons of steel scrap / day 75	76
A = tons of alum. scrap /day	
C = tons of Cost iron scrap /day	Xij = tons of one i allocated to alloy &
Ab = tono of alum. briquettes /day	Xij = tons of one i allocated to alloy & whe = tons of alloy & peroduced
Sb = tono silicon briquettes /day	Maximize Z = 200 WA + 300 WB
a = tons of alum. I day	- 30 (XIA+ XIB)
g = tone of graphete / day	-40 (X2A+X2R)
d = tono of alicon / day	-50 (X3A + X3B)
aI = tons of alum in ingot I / day	Subject to
aIl = tons falum. in ingot II /day	Specification constraints:
gI - tons of graphetin ingot I /day	
gI = tone of graphite in ingot II /day	·2 XIA + · 1 XZA + · 05 X3A = · 8 WA (1)
SI = tono of silien in ingot I / day	1 XIA + .2 X2A + .05 X3A ≤ .3 WA (2)
SII = tono of Silicon in ingot I /day	·3 X,A +·3 X2A +·2 X3A ≥ ·5 WA 3
I, = tons of inget I / day	·1 x1B + ·2 x2B + ·05 x3B ≥ ·4 WB @
Iz= tons of ingot II/day.	1 1 ×18 + · Z X28 + · 05 X38 & .6 W2 3
Minimize Z = 100 S+150 A+75 C+900 A6+380 36	13 X18 + .3 X18 + .7 X3R = .3 Wb (6)
s.f. S < 1000, A < 500, C < 2500	·3 ×18 + ·3 ×2B + ·2 ×38 ≤ ·7 ×8 7
a = .15 + .95A + Ab	Ore constraints.
3 = .05 S +.01 A +.15 C 3 = .44 S +.02 A +.08 C + S	
$I_{r} = qI + gI + \delta I$	X1A + X1B ≤ 1000
$T_{-} = Q\Pi + g\Pi + dA$	X2A + X2B ≤ 2000
$q_I + q_{\overline{I}} \leq 35$, $3I + 34 \leq 3$, $3I + 34 \leq 3$	X3A + K38 ≤ 3000
.081 I, & a I & . 108 I,	*** OPTIMAN SOLUTION SUMMAY ***
·015 I, ≤ 8 I ≤ ·03 I,	Title: Problem 26e-17 Final Iteration No: 12
.025I, \le \delta I < \infty \cdots 025I, \le \delta I \le \infty \cdots 089I_2	Objective value (sax) =400000.0000
·04/Iz = 8T = a	Value Obj Coeff Obj Val Contrib RT wA 1799.9999 200.0000 339999.9688
·028 I2 < 0 II < .04/Iz	A3 X/A 1000.0001 300.0000 300000.0312 A4 X1B 0.0000 -30.0000 -30000.0000
I, ≥ 130, I2 ≥ 250	## #28
Optimum solution:	88 x38 0.0000 -50,0000 -8,0000
	1 (<) 0.0000 1090,0000-
Z = \$ 117,435.65	3 (>) 0.0000 0.0000- 4 (>) 0.0000 0.0000-
S=0, A=38.2, C= 1489.41	6 (>) 0.0000 200,0003- 7 (+3) 0.0000 300,0002- 100,0000-
Ab = Sb = 0	9 (<) 1000,0000 0,0000- 10 (≤) 3000,0000 0,0000- 10 (≤) 3000,0000 0,0000-
$I_{1} = 130$, $I_{2} = 250$	Solution:
a = 36.29, g = 223.79, d= 119.92	Produce 1800 tons of alloy A
	and 1000 tons of alloy B.
	/ 7 7 .

X:= Nbr. of ads for issue i, i= 1,234 78 Minimize Z = 5, + 5, + 5, + 5, + 54 (-30,000+60,000+30,000)X, + 5, -5, =-51x 400,000 (10,000+30,000-45,000) X2+5-5+=·51x400,000 (40,000+10,000) X3+53-5+=·51x400,000 (90,000 -25,000) xy +5, -5, += 51 x 400,000 $1500(X_1+X_2+X_2+X_4) \le 100,000$ $X_1, X_2, X_3, X_4 \geqslant 0$ Solution: $X_1 = 3.4$, $X_2 = 3.14$, $X_3 = 4.08$, $X_4 = 3.14$ X = Units of part i produced by department i, i=1,2 j=1,2,3 Maximize Z = min { X11+ 121 > X12+ 122 > X13+ 123 } Maximize Z = > 5.4. 7 = X1 + X21 7 = X12+ X22 A = X13 + X23 $\frac{X_{11}}{R} + \frac{X_{12}}{C} + \frac{X_{13}}{10} \le 100$ $\frac{x_{21}}{6} + \frac{x_{12}}{12} + \frac{x_{23}}{4} \le 80$ Solution: Nbr. of assembly units = y = 556.2 ~ 557 X: = Space (in2) allocated to cereal c $x_{11} = 354.78, x_{21} = 201.79$ $x_{12} = 0$, $x_{21} = 556.52$ $x_{.13} = 556.52$, $x_{23} = 0$ MAX/mizez=1.1x,+1.3x,+1.08x3+1.25x4+1.2x5 $16x_1 + 2yx_1 + 18x_3 + 22x_4 + 20x_5 \le 5000$ Xi = tens of coal is i=1,2,3 X, <100, X2 < 85, X3 < 140, Xy < 80, X5 < 90 Minimize $z = 30X_1 + 35X_2$ 5.4. $2500 \times_1 + 1500 \times_2 + 1600 \times_3 \le 2000 (X_1 + X_2 + X_3)$ $X_1 \le 30$, $X_2 \le 30$, $X_3 \le 30$ X, ≥0 for all i=1,2,..., 5 Solution: Z = \$ 314 /day_ X,+X2+X3 ≥ 50 Solution: Z= \$1361.11 X,=100, X3=140, X5=44 x, = 27.22 tono, X2 = 0, X3 = 27.78 tons.

2-27

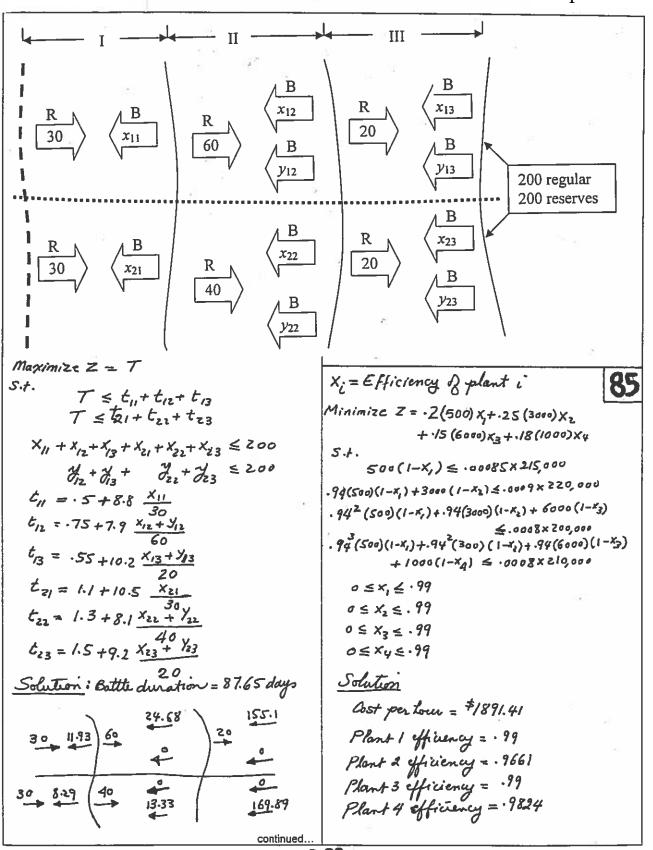
 $X_2 = X_0 = 0$

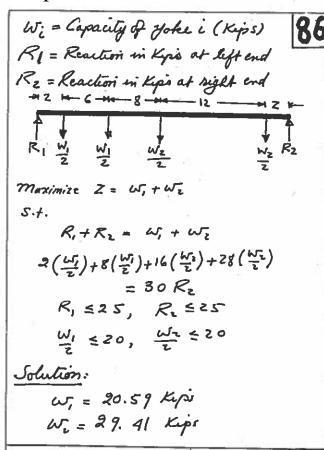
ti = Green time in secs for highway i, 8
Maximize $Z = 3\left(\frac{500}{3600}\right)t_1 + 4\left(\frac{600}{3600}\right)t_2 + 5\left(\frac{400}{3600}\right)t_3$
$\left(\frac{500}{3600}\right) \dot{t}_1 + \left(\frac{600}{3600}\right) \dot{t}_2 + \left(\frac{400}{3600}\right) \dot{t}_3 \le \frac{510}{3600} \left(7.2 \times 60 - 3 \times 10\right)$
£, + t2 + t3 +3×10 € 2.2×60, t, ≥ 25, t3≥25, t3≥
Solution: $Z = $58.04/\text{fi}$ $t_1 = 25$, $t_2 = 43.6$, $t_3 = 33.4$ Sec
di = observation i 8
Define Straight line as
$y_i = q + b$, a, b unrestricted Minimize $Z = \sum_{i=1}^{10} y_i - \hat{y}_i$
6-1
$= \sum_{i=1}^{6} \gamma_i - \alpha_i - b $
$det d_i = \left \frac{\partial}{\partial i} - ai - b \right $ $Minimize Z = d_i + d_i + \dots + d_{10}$
$S.+.$ $\beta_{i}-ai-b \leq di$
yai-b ≥-di
a, b, unrestricted
di ≥0 Solution: $\hat{\mathcal{Y}}_{i} = 2.85714 i + 6.42857$

Cost (\$) per cubic yd: 1.2+2x-15=-50 .20+7x-15= 1.25 1.70 + 3×15= 2-15 1.70+8×-15=2.90 (4) P3 \ 2.10+7x.15=3.15 2.10+2x.15=2.40 Using the corde A1=1, A3=2, P1=3, P2=4, 2 Az = 5, A4 = 6, let $x_{ij} = 10^3 \text{ yd}^3$ from source i to destination j i = 1,2,3,4, j = 5,6Minimize Z = 1000 (.5 X15 +1.25 X16+ .5 X25+ .65 X24 + 2.15 X35 + 2.9 X3 6 + 3.15 X47 2.4X X₁₅ + X₁₆ ≤ 1760 X₃₅ + X₃₆ ≤ 20,000 X₂₅ + X₂₆ ≤ 1760 X₄₅ + X₄₆ ≤ 15,000 x15+ x25+ x35+ x45 ≥ 3520 X16 + X26 + X36 + X46 = 3520 Al-AZ: X_{1S} = 1760 (1000 Cu Yd) Al-A4: X₁₆ = 0 A3-A2: X₂₅ = 0 A3 → A4: X₂₆ = 1760 P1 → A2: X₃₅ = 1760 PI -> A4: X36 = 0 $P2 \rightarrow A2 : \times_{45} = 0$ $P2 \rightarrow A4 : \times_{46} = 1760$ Coot = \$10,032,000

P) (A) (//A4///P2)

Al = 2x1760x10x50 = 1760 (thousand) Yd A2 = 3520, A3 = 1760, A4 = 3520 Distances (center to center) in miles: AZ A4


Xij = Blue regulars on front i m'
elefense line j, i=


Hij = Blue reserves on front i m'
defense line j.

tij = Delay days on front i m'
defense line j.

Maximize Z = min {t₁₁+t₂+t₃, t₃+t₂₂+t₂₃}

or

Xij = Nor. of aircraft of type i	87
allocated to route j (i=1,2,3,4, j=1,2,3,4)	
S; = Nbr. of passengers not served notice j, j=1,2,3,4	m
Minimize $Z = 1000(3x_{11}) + 1100(2x_{12}) + 1200(2x_{13}) + 1500(x_{14}) + 800(4x_{21}) + 900(3x_{22})$	Ŕ X
+ 1000 (3 x23) + 1000 (2 x24) + 600 (5 x31) + 800 (5 x32) + 800 (4 x33) + 900 (2 x34) + 405, + 5052 + 4553 + 7054	
Subject to $x_{2j} \le 8$, $x_{3j} \le 10$	
$50(3x_{11}) + 30(4x_{21}) + 20(5x_{31}) + 5_{1} = 50(2x_{12}) + 30(3x_{22}) + 20(5x_{32}) + 5_{2} =$	2000
$50 (2x_{13}) + 30(3x_{23}) + 20(4x_{33}) + 5_3 = 50(x_{14}) + 30(2x_{24}) + 50(2x_{34}) + 5_4 = 6$ $All \ x_{ij} \ and \ 5_j \ge 0$	/200
contir	1UEG

nrieble	Value	Obj Coeff	Obj Val Contrib	•
	***************************************		***************************************	-
1 <u>x11</u>	5.0000	3000.0000	14999.9990	
2 712	0.0000	2200,0000	0.0000	
3 x13	0.0000	2400,0000	0.0000	
4 x14	0.0000	1500.0000	0.0000	
5 x21	0.0000	3200,0000	0.0000	
6 x22	0.000	2700.0000	0.0000	
7 x23	0,000	3000.0000	0.0000	
# z24	8.0000	2000,0000	15999.9990	
<u>ग्रा</u>	2.5000	3000.0000	7500.0015	
10 232	7.5000	4000,0000	29999.9980	
११ च्यु	0.0000	3200,0000	0.0000	
12 x34	0.0000	1800.0000	0.0000	
13 s1 '	0,000	40.0000	0.0000	
16 a2	1250.0000	50,0000	62500.0000	
15 43	899.9998	45.0000	40499.9922	
16 s4	720,0001	70.0000	50400.0078	
enstraint	RHS	Sleck(-)	/Surplus(+)	
(<)	5,0000	0.0	000-	
(<)	8.0000	0.0	000-	
(4)	18.0000	9.0	990-	
(-)	1000,0000	0.0	000	
(-)	2000.0000	0.0	000	
(=)	900.0000	0.0	D00	
(=)	1200,0000	0.0		

Fractional solution must be rounded. Cost = \$ 221,900