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Solutions

Section 1.1

1. The rate of change in the population P (t) is the derivative P ′(t). The
Malthusian Growth Law states that the rate of change in the population is
proportional to P (t). Thus P ′(t) = kP (t), where k is the proportionality
constant. Without reference to the t variable, the differential equation
becomes P ′ = kP

2. a. This statement mathematically is b(t) = b0P (t) where we have used
b0 to represent the proportionality constant.

b. This statement translates as d(t) = d0P
2(t) where we have used d0 to

represent the proportionality constant.
c. The overall growth rate is P ′(t). Thus the Logistic Growth Law is

P ′(t) = b(t)− d(t)

= b0P (t)− d0P
2(t)

= (b0 − d0P (t))P (t).

3. Torricelli’s law states that the change in height, ℎ′(t) is proportional to
the square root of the height,

√

ℎ(t). Thus ℎ′(t) = �
√

ℎ(t), where � is the
proportionality constant.

4. The highest order derivative is y′ so the order is 1 and the standard form
is y′ = t3/y2.

5. The highest order derivative is y′′ so the order is 2. The standard form is
y′′ = t3/y′.

6. The highest order derivative is y′ so the order is 1 and the standard form
is y′ = (et − ty)/t2.
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7. The highest order derivative is y′′ so the order is 2. The standard form is
y′′ = (3y + ty′)/t2.

8. The highest order derivative is y′′ so the order is 2 and the standard form
is y′′ = t2 − 3y′ − 2y.

9. The highest order derivative is y(4) so the order is 4. Solving for y(4) gives
the standard form: y(4) = 3

√

(1− (y′′′)4)/t.

10. The highest order derivative is y′ so the order is 1 and the standard form
is y′ = ty4 − t2y.

11. The highest order derivative is y′′′ so the order is 3. Solving for y′′′ gives
the standard form: y′′′ = 2y′′ − 3y′ + y.

12. The following table summarizes the needed calculations:

Function y′(t) 2y(t)

y1(t) = 0 y′1(t) = 0 2y1(t) = 0

y2(t) = t2 y′2(t) = 2t 2y2(t) = 2t2

y3(t) = 3e2t y′3(t) = 6e2t 2y3(t) = 6e2t

y4(t) = 2e3t y′4(t) = 6e3t 2y4(t) = 4e3t

Thus y1 and y3 are the only solutions.

13. The following table summarizes the needed calculations:

Function ty′(t) y(t)

y1(t) = 0 ty′1(t) = 0 y1(t) = 0

y2(t) = 3t ty′2(t) = 3t y2(t) = 3t

y3(t) = −5t ty′3(t) = −5t y3(t) = −5t

y4(t) = t3 ty′4(t) = 3t3 y4(t) = t3

Thus y1, y2, and y3 are solutions.

14. We first write the differential equation in standard form: y′′ = −4y. The
following table summarizes the needed calculations:

Function y′′(t) −4y(t)

y1(t) = e2t y′′1 (t) = 4e2t −4y1(t) = −4e2t

y2(t) = sin 2t y′′2 (t) = −4 sin 2t −4y2(t) = −4 sin 2t

y3(t) = cos(2t− 1) y′′3 (t)− 4 cos(2t− 1) −4y3(t) = −4 cos(2t− 1)

y4(t) = t2 y′′4 (t) = 2 −4y4(t) = −4t2
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Thus y2 and y3 are solutions.

15. The following table summarizes the needed calculations:

Function y′(t) 2y(t)(y(t)− 1)

y1(t) = 0 y′1(t) = 0 2y1(t)(y1(t)− 1) = 2 ⋅ 0 ⋅ (−1) = 0

y2(t) = 1 y′2(t) = 0 2y2(t)(y2(t)− 1) = 2 ⋅ 1 ⋅ 0 = 0

y3(t) = 2 y′3(t) = 0 2y3(t)(y3(t)− 1) = 2 ⋅ 2 ⋅ 1 = 4

y4(t) =
1

1−e2t y′4(t) =
2e2t

(1−e2t)2 2y4(t)(y4(t)− 1) = 2 1
1−e2t

(

1
1−e2t − 1

)

= 2 1
1−e2t

e2t

1−e2t = 2e2t

(1−e2t)2

Thus y1, y2, and y4 are solutions.

16. The following table summarizes the needed calculations:

Function 2y(t)y′(t) 1

y1(t) = 1 2y1(t)y
′
1(t) = 0 1

y2(t) = t 2y2(t)y
′
2(t) = 2t 1

y3(t) = ln t 2y3(t)y
′
3(t) = 2 1

t ln t =
2 ln t
t 1

y4(t) =
√
t− 4 2y4(t)y

′
4(t) = 2

√
t− 4 1

2
√
t−4

= 1 1

Thus y4 is the only solution.

17. The following table summarizes the needed calculations:

Function 2y(t)y′(t) y
2 + t− 1

y1(t) =
√

−t 2
√

−t
−1

2
√

−t
= −1 (

√

−t)2 + t− 1 = −1

y2(t) = −

√

et − t −2
√

et − t
−(et − 1)

2
√

et − t
= e

t
− 1 (−

√

et − t)2 + t− 1 = e
t
− 1

y3(t) =
√

t 2
√

t
1

2
√

t
= 1 (

√

t)2 + t− 1 = 2t− 1

y4(t) = −

√

−t 2(−
√

−t)
1

2
√

−t
= −1 (−

√

−t))2 + y − 1 = −1

Thus y1, y2, and y4 are solutions.

18. The following table summarizes the needed calculations for the first three
functions:
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Function y′(t)
y2(t)− 4y(t)t+ 6t2

t2

y1(t) = t 1
t2 − 4t2 + 6t2

t2
= 3

y2(t) = 2t 2
4t2 − 8t2 + 6t2

t2
= 2

y3(t) = 3t 3
9t2 − 12t2 + 6t2

t2
= 3

For y4(t) =
3t+ 2t2

1 + t
=

t(3 + 2t)

1 + t
the quotient rule and simplifying gives

y′4(t) =
2t2 + 4t+ 3

(1 + t)2
. On the other hand,

y24(t)− 4y4(t)t+ 6t2

t2
=

t2(3 + 2t)2

(1 + t)2
− 4t2(3 + 2t)

(1 + t)
+ 6t2

t2

=
(3 + 2t)2 − 4(3 + 2t)(1 + t) + 6(1 + t)2

(1 + t)2

=
2t2 + 4t+ 3

(1 + t)2
.

It follows that y2, y3, and y4 are solutions.

19.

y′(t) = 3ce3t

3y + 12 = 3(ce3t − 4) + 12 = 3ce3t − 12 + 12 = 3ce3t.

Note that y(t) is defined for all t ∈ ℝ.

20.

y′(t) = −ce−t + 3

−y(t) + 3t = −ce−t − 3t+ 3 + 3t = −ce−t + 3.

Note that y(t) is defined for all t ∈ ℝ.

21.

y′(t) =
cet

(1− cet)2

y2(t)− y(t) =
1

(1− cet)2
− 1

1− cet
=

1− (1− cet)

(1− cet)2
=

cet

(1− cet)2
.

If c ≤ 0 then the denominator 1− cet > 0 and y(t) has domain ℝ. If c > 0
then 1 − cet = 0 if t = ln 1

c = − ln c. Thus y(t) is defined either on the
interval (−∞,− ln c) or (− ln c,∞).
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22.

y′(t) = cet
2

2t = 2ctet
2

2ty(t) = 2tcet
2

.

23.

y′(t) =
−cet

cet − 1

−ey − 1 = −e− ln(cet−1) − 1 =
−1

cet − 1
− 1 =

−cet

cet − 1
.

24. We first calculate y′(t) = −c(t+ 1)−2 so

(t+ 1)y′(t) + y(t) = (t+ 1)
−c

(t+ 1)2
+

c

t+ 1
=

−c

t+ 1
+

c

t+ 1
= 0.

Observe that y(t) is not defined at t = −1 so the two intervals where y is
defined are (−∞,−1) and (−1,∞).

25.

y′(t) = −(c− t)−2(−1) =
1

(c− t)2

y2(t) =
1

(c− t)2
.

The denominator of y(t) is 0 when t = c. Thus the two intervals where
y(t) is defined are (−∞, c) and (c,∞).

26. This is a differential equation we can solve by simple integration: We get

y(t) = t2

2 + 3t+ c.

27. Integration gives y(t) = e2t

2 − t+ c.

28. Integration (by parts) gives y(t) = −te−t − e−t + c.

29. Observe that t+1
t = 1 + 1

t . Integration gives y(t) = t+ ln ∣t∣+ c.

30. We integrate two times. First, y′(t) = t2+ t+ c1. Second, y(t) = t3

3 + t2

2 +
c1t+ c2.

31. We integrate two times. First, y′(t) = −2 cos 3t + c1. Second, y(t) =
−2
3 sin 3t+ c1t+ c2.

32. From Problem 19 the general solution is y(t) = ce3t − 4. At t = 0 we get
−2 = y(0) = ce0 − 4 = c− 4. It follows that c = 2 and y(t) = 2e3t − 4.
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33. From Problem 20 the general solution is y(t) = ce−t + 3t − 3. At t = 0
we get 0 = y(0) = ce0 + 3(0) − 3 = c − 3. It follows that c = 3 and
y(t) = 3e−t + 3t− 3.

34. From Problem 21 the general solution is y(t) = 1/(1− cet). At t = 0 we
get 1/2 = y(0) = 1

1−c . It follows that c = −1 and y(t) = 1/(1 + et).

35. From Problem 24 the general solution is y(t) = c(t + 1)−1. At t = 1
we get −9 = y(1) = c(1 + 1)−1 = c/2. It follows that c = −18 and
y(t) = −18(t+ 1)−1.

36. From Problem 27 the general solution is y(t) = e2t/2− t+ c. Evaluation
at t = 0 gives 4 = e0/2− 0 + c = 1/2 + c. Hence c = 7/2 and

37. From Problem 28 the general solution is y(t) = −te−t−e−t+c. Evaluation
at t = 0 gives −1 = y(0) = −1 + c so c = 0. Hence y(t) = −te−t − e−t.

38. From Problem 31 the general solution is y(t) = −2
3 sin 3t + c1t + c2 and

a y′(t) = −2 cos3t + c1. Evaluation at t = 0 gives 1 = y(0) = c2 and
2 = y′(0) = −2 + c1. If follows that c1 = 4 and c2 = 1. Thus y(t) =
−2
3 sin 3t+ 4t.

39. Implicit differentiation with respect to t gives 6t+ 8yy′ = 0.

40. Implicit differentiation with respect to t gives 2yy′ − 2t− 3t2 = 0.

41. Differentiation gives y′ = 2ce2t +1. However, from the given function we
have ce2t = y − t. Substitution gives y′ = 2(y − t) + 1 = 2y − 2t+ 1.

42. Differentiation gives y′ = 3ct2 + 2t. However, from the given function

we have ct3 = y − t2 and hence ct2 = y−t2

t . Substitution gives y′ =

3y−t2

t + 2t = 3y
t − t.
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Section 1.2

1. y′ = t
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4.
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7.

−5 −4 −3 −2 −1 0 1 2 3 4 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y

8.
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9.
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10. We set y2 = 0 and see that y = 0 is the only constant (= equilibrium)
solution.

11. We set y(y + t) = 0. We look for constant solutions to y(y + t) = 0, and
we see that y = 0 is the only constant (= equilibrium) solution.
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12. The equation y − t = 0 has no constant solution. Thus, there are no
equilibrium solutions.

13. The equation 1− y2 = 0 has two constant solutions: y = 1 and y = −1

14. We substitute y = at+ b into y′ = y− t to get a = (a− 1)t+ b. Equality
for all t forces a − 1 = 0 and a = b. Thus a = 1 and b = 1 and the only
linear solution is y = t+ 1.

15. We substitute y = at+ b into y′ = cos(t+ y) to get a = cos((a+1)t+ b).
Equality for all t means that cos((a+1)t+b) must be a constant function,
which can occur only if the coefficient of t is 0. This forces a = −1 leaving
us with the equation −1 = cos b. This implies b = (2n+1)�, where n is an
integer. Hence y = −t+ (2n+ 1)�, n ∈ ℤ is a family of linear solutions.

Section 1.3

1. separable; ℎ(t) = 1 and g(y) = 2y(5− y)

2. In standard form we get y′ = (1 − y)/y. This is separable; ℎ(t) = 1 and
g(y) = (1− y)/y.

3. First write in standard form: y′ = 1−2ty
t2 . We cannot write 1−2ty

t2 as a
product of a function of t and a function of y. It is not separable.

4. In standard form we get y′ = y(y − t). We cannot write y(y − t) as a
product of a function of t and a function of y. It is not separable.

5. Write in standard form to get: y′ = (y − 2yt)/y. Here we can write (y −
2ty)/y = 1− 2t. It is separable; ℎ(t) = 1− 2t and g(y) = 1.

6. We can factor to get y′ = y2(t−1)+ t−1 = (y2+1)(t−1). It is separable;
ℎ(t) = t− 1 and g(y) = y2 + 1.

7. In standard form we get y′ = −2ty
t2+3y2 . We cannot write y′ = −2ty

t2+3y2 as a
product of a function of t and a function of y. It is not separable

8. It is not separable as t2 + y2 cannot be written as a product of a function
of t and a function of y.

9. In standard form we get: y′ = e−t(y3 − y) It is separable; ℎ(t) = e−t and
g(y) = y3 − y

10. The variables are already separated, so integrate both sides of the equa-
tion to get y2/2 = t2/2 + c, which we can rewrite as y2 − t2 = k where
k = 2c ∈ ℝ is a constant. Since y(2) = −1, substitute t = 2 and y = −1
to get that k = (−1)2 − 22 = −3. Thus the solution is given implicitly by
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the equation y2 − t2 = −3 or we can solve explicitly to get y = −
√
t2 − 3,

where the negative square root is used since y(2) = −1 < 0.

11. In standard form we get y′ = 1−y2

ty . Clearly, y = ±1 are equilibrium
solutions. Separating the variables gives

y

1− y2
dy =

1

t
dt.

Integrating both sides of this equation (using the substitution u = 1− y2,
du = −2y dy for the integral on the left) gives

−1

2
ln ∣1− y2∣ = ln ∣t∣+ c.

Multiplying by −2, taking the exponential of both sides, and removing
the absolute values gives 1 − y2 = kt−2 where k is a nonzero constant.
However, when k = 0 the equation becomes 1−y2 = 0 and hence y = ±1.
By considering an arbitrary constant (which we will call c), the implicit
equation t2(1− y2) = c includes the two equilibrium solutions for c = 0.

12. The variables are already separated, so integrate both sides to get y4/4 =
t2/2 + c, c a real constant. This can be simplified to y4 = 2t2 + c. (where
we replace 4c by c) We leave the answer in implicit form.

13. The variables are already separated, so integrate both sides to get y5/5 =
t2/2 + 2t+ c, c a real constant. Simplifying gives y5 = 5

2 t
2 + 10t+ c. We

leave the answer in implicit form

14. There is an equilibrium solution y = 0. Separating variables give y−2y′ =
t and integrating gives −y−1 = t2/2 + c. Thus y = −2/(t2 + 2c), c a real
constant. This is equivalent to writing y = −2/(t2 + c), c a real constant,
since twice an arbitrary constant is still an arbitrary constant.

15. In standard form we get y′ = (1 − y) tan t so y = 1 is a solution. Sepa-
rating variables gives dy

1−y = tan t dt. The function tan t is continuous on

the interval (−�/2, �/2) and so has an antiderivative. Integration gives
− ln ∣1− y∣ = − ln ∣cos t∣+k1. Multiplying by −1 and exponentiating gives
∣1− y∣ = k2 ∣cos t∣ where k2 is a positive constant. Removing the absolute
value signs gives 1−y = k3 cos t, with k3 ∕= 0. If we allow k3 = 0 we get the
equilibrium solution y = 1. Thus the solution can be written y = 1−c cos t,
c any real constant.

16. An equilibrium solution is y = 0. Separating variables gives y−n dy =

tm dt and integrating gives y1−n

1−n = tm+1

m+1 + c, c a real constant. Simplifying

gives y1−n = 1−n
m+1 t

m+1 + c, and the equilibrium solution y = 0.
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17. There are two equilibrium solutions; y = 0 and y = 4. Separating vari-

ables and using partial fractions gives 1
4

(

1
y + 1

4−y

)

dy = dt. Integrating

and simplifying gives ln
∣

∣

∣

y
4−y

∣

∣

∣ = 4t+k1 which is equivalent to y
4−y = ce4t,

c a nonzero constant. Solving for y gives y = 4ce4t

1+ce4t . When c = 0 we get
the equilibrium solution y = 0. However, there is no c which gives the
other equilibrium solution y = 4.

18. There are no equilibrium solutions. Separating variables gives y
y2+1 dy =

dt and integrating gives 1
2 ln(y

2 + 1) = t + k. Solving for y2 gives y2 =
ce2t − 1, where c > 0.

19. Separating variables gives dy
y2+1 = dt and integrating gives tan−1 y = t+c.

Thus y = tan(t+ c), c a real constant.

20. Separating variables gives y dy =
(−1

t − t
)

dt and integrating gives y2

2 =

− ln ∣t∣ − t2

2 + c. Simplifying gives y2 + t2 + ln t2 = c, c a real constant.

21. In standard form we get y′ = −(y+1)
y−1

1
1+t2 from which we see that y =

−1 is an equilibrium solution. Separating variables and simplifying gives
(

2
y+1 − 1

)

dy = dt
t2+1 . Integrating and simplifying gives ln(y + 1)2 − y =

tan−1 t+ c.

22. Separating variables gives 2y dy = et dt and integrating gives y2 = et + c,
c a constant.

23. The equilibrium solution is y = 0. Separating variables gives y−2 dy =
dt
1−t . Integrating and simplifying gives y = 1

ln∣1−t∣+c , c real constant.

24. In standard form we get y′ = y(y+1) from which we see y = 0 and y = −1
are equilibrium solutions. The equilibrium solution y(t) = 0 satisfies the
initial condition y(0) = 0 so y(t) = 0 is the required solution.

25. y = 0 is the only equilibrium solution. The equilibrium solution y(t) = 0
satisfies the initial condition y(1) = 0 so y(t) = 0 is the required solution.

26. Rewriting we get y′ = dy
dx = x+2

x y from which we see that y = 0 is

an equilibrium solution. Separating variables gives dy
y =

(

1 + 2
x

)

dx and

integrating gives ln ∣y∣ = x + lnx2 + k, k a constant. Solving for y by
taking the exponential of both sides gives y = cx2ex, and allowing c = 0
gives the equilibrium solution. The initial condition gives e = y(1) = ce
so c = 1. Thus y = x2ex.

27. In standard form we get y′ = −2ty so y = 0 is a solution. Separating vari-
ables and integrating gives ln ∣y∣ = −t2 + k. Solving for y gives y = ce−t2
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and allowing c = 0 gives the equilibrium solution. The initial condition
implies 4 = y(0) = ce0 = c. Thus y = 4e−t2 .

28. Since cot y = 0 at y = �
2 + m� for all integers m we have equilibrium

lines at y = �
2 +m�, none of which satisfy the initial condition y(1) = �

4 .

Separating variables gives tan y dy = dt
t and integrating gives − ln ∣cos y∣ =

ln t + c. We can solve for c here using the initial condition: we get c =

− ln cos �
4 = − ln

(√
2
2

)

. Solving for y gives y = cos−1 1√
2t

29. Separating variables gives dy
y = u

u2+1 du and integrating gives ln ∣y∣ =
ln
√
u2 + 1 + k. Solving for y gives y = c

√
u2 + 1, for c ∕= 0. The initial

condition gives 2 = y(0) = c. So y = 2
√
u2 + 1.

30. In standard form we get y′ = t
t+2y so y = 0 is an equilibrium solution.

Separating variables gives dy
y =

(

1− 2
t+2

)

dt. Integrating we get ln ∣y∣ =
t − 2 ln ∣t+ 2∣ + k. Solving for y we get y = c et

(t+2)2 , for c ∕= 0. However,

allowing c = 0 gives the equilibrium solution.

31. We assume the decay model N(t) = N(0)e−�t. If t is the age of the
bone then N(t) = 1

3N(0). Thus 1
3 = e−�t. Solving for t gives t = ln 3

� =
5730 ln 3

ln 2 ≈ 9082 years

32. Let m denote the number of Argon-40 atoms in the sample. Then 8m is
the number of Potassium-40 atoms. Let t be the age of the rock. Then
t years ago there were m + 8m = 9m atoms of Potassium-40. Hence
N(0) = 9m. On the other hand, 8m = N(t) = N(0)e−�t = 9me−�t. This

implies that 8
9 = e−�t and hence t =

− ln 8
9

� = −�
ln 2 ln

8
9 ≈ 212 million years

old.

33. We need only solve .3N(0) = N(0)e−�t for t. We get t = − ln .3
� =

− 5.27 ln .3
ln 2 = 9.15 years.

34. The ambient temperature is 32∘ F, the temperature of the ice water.
From Equation (12) we get T (t) = 32 + kert. At t = 0 we get 70 =
32 + k, so k = 38 and T (t) = 32 + 38ert. After 30 minutes we have
55 = T (30) = 32+ 38e30r and solving for r gives r = 1

30 ln
23
38 . To find the

time t when T (t) = 45 we solve 45 = 32 + 38ert, with r as above. We get
t = 30 ln 13−ln 38

ln 23−ln 38 ≈ 64 minutes.

35. The ambient temperature is Ta = 70∘. Equation (12) gives T (t) =
70 + kert for the temperature of the coffee at time t. Since the initial
temperature of the coffee is T (0) = 180 we get 180 = T (0) = 70 + k.
Thus k = 110. The constant r is determined from the temperature at a
second time: 140 = T (3) = 70 + 110e3r so r = 1

3 ln
7
11 ≈ −.1507. Thus
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T (t) = 70 + 110ert, with r as calculated. The temperature requested is

T (5) = 70 + 110
(

7
11

)
5
3 ≈ 121.8∘.

36. The ambient temperature is Ta = 65∘. Equation (12) gives T (t) = 65 +
kert for the temperature at time t. Since the initial temperature of the
thermometer is T (0) = 90 we get 90 = T (0) = 65 + k. Thus k = 25. The
constant r is determined from the temperature at a second time: 85 =
T (2) = 65 + 25e2r so r = 1

2 ln
4
5 . Thus T (t) = 65 + 25ert, with r = 1

2 ln
4
5 .

To answer the first question we solve the equation 75 = T (t) = 65+25ert

for t. We get t = 2 ln 2−ln 5
ln 4−ln 5 ≈ 8.2 minutes. The temperature at t = 20 is

T (20) = 65 + 25
(

4
5

)10 ≈ 67.7∘.

37. The ambient temperature is Ta = 70∘. Equation (12) gives T (t) = 70 +
kert for the temperature of the soda at time t. Since the initial temperature
of the soda is T (0) = 40 we get 40 = T (0) = 70 + k. Thus k = −30. The
constant r is determined from the temperature at a second time: 60 =
T (2) = 70− 30e2r so r = 1

2 ln
1
3 . Thus T (t) = 70− 30ert, with r = 1

2 ln
1
3 .

The temperature at t = 1 is T (1) = 70− 30e
1
2
ln 1

3 = 70− 30√
3
≈ 52.7∘.

38. The ambient temperature is Ta = 70∘. Equation (12) gives T (t) = 70 +
kert for the temperature of the coffee at time t. We are asked to determine
the initial temperature of the coffee so T (0) is unknown. However, we have
the equations

150 = T (5) = 70 + ke5r

142 = T (6) = 70 + ke6r

or

80 = ke5r

72 = ke4r.

Dividing the second equation by the first gives 72
80 = er so r = ln 0.9.

From the first equation we get k = 80e−5r ≈ 135.5. We now calculate
T (0) = 70 + k ≈ 205.5∘

39. The ambient temperature is Ta = 40∘. Equation (12) gives T (t) = 40 +
kert for the temperature of the beer at time t. Since the initial temperature
of the beer is T (0) = 80 we get 80 = T (0) = 40 + k. Thus k = 40.
The constant r is determined from the temperature at a second time:
60 = T (1) = 40 + 40er so r = − ln 2. Thus T (t) = 40 + 40ert, with
r = − ln 2. We now solve the equation 50 = T (t) = 40 + 40ert for t and
get t = − ln 4

− ln 2 = 2. She should therefore put the beer in the refrigerator at
2 p.m.

40. Let us start time t = 0 at 1980. Then P (0) = 290. The Malthusian growth
model gives P (t) = 290ert. At t = 10 (1990) we have 370 = 290e10r



1 Solutions 17

and hence r = 1
10 ln

37
29 . At t = 30 (2010) we have P (30) = 290e30r =

290
(

37
29

)3 ≈ 602.

41. The initial population is 40 = P (0). Since the population doubles in 3
hours we have P (3) = 80 or 80 = 40e3r. Hence r = ln 2

3 . Now we can
compute the population after 30 hours: P (30) = 40e30r = 40(210) =
40, 960.

42. We have 3P (0) = P (5) = P (0)e3r. So r = ln 3
5 . Now we solve the equation

2P (0) = P (t) = P (0)ert for t. We get t = ln 2
r = 5 ln 2

ln 3 ≈ 3.15 years.

43. In the logistic growth equation m = 800 and P (0) = 290. Thus P (t) =
800⋅290

290+510e−rt . To determine r we use P (10) = 370 to get 370 = 800⋅290
290+510e−10r .

A simple calculation give r = 1
10 ln

1887
1247 . Now the population in 2010 is

P (30) = 800⋅290
290+510( 1247

1887 )
3 ≈ 530

44. In the logistics equation m = 5000 and P0 = 2000. Thus P (t) =
10,000,000

2,000+3,000e−rt = 10,000
2+3e−rt . Since P (2) = 3000 we get 3000 = 10,000

2+3e−rt . Solv-

ing this equation for r gives r = ln 3
2 . Now P (4) = 10,000

2+3e−4r = 10,000

2+3( 2
3 )

4 ≈
3857

45. Let x = e−rt0 . Then x2 = e−2rt. The equation P (t0) = P1 implies that

x = P0(m−P1)
P1(m−P0)

. The equation P (2t0) = P2 implies x2 = P0(m−P2)
P2(m−P0)

. These

equation together imply
P 2

0 (m−P1)
2

P 2
1
(m−P0)2

= P0(m−P2)
P2(m−P0)

. Cross multiplying and

simplifying leads to (P0P2−P 2
1 )m+(P 2

1 P0+P 2
1 P2−2P0P1P2) = 0. Solving

for m gives the result. Now replace the formula for m into e−rt0 = x =
P0(m−P1)
P1(m−P0)

. Simplifying gives e−rt0 = P0

P2

P2−P1

P1−P0
. The formula for r follows

after taking the natural log of both sides.

46. We have P (0) = P0 = 400, P (3) = P1 = 700, and P (6) = P2 = 1000. Us-

ing the result of the previous problem we get m = 700(700(400+1000)−2⋅400⋅1000)
(700)2−400⋅1000 =

1, 400

Section 1.4

1. This equation is already in standard form with p(t) = 3. An antiderivative
of p(t) is P (t) =

∫

3 dt = 3t so the integrating factor is �(t) = e3t. If we
multiply the differential equation y′+3y = et by �(t), we get the equation

e3ty′ + 3e3ty = e4t,

and the left hand side of this equation is a perfect derivative, namely,
(e3ty)′. Thus, (e3ty)′ = e4t. Now take antiderivatives of both sides and
multiply by e−3t. This gives
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y =
1

4
et + ce−3t

for the general solution of the equation. To find the constant c to satisfy
the initial condition y(0) = −2, substitute t = 0 into the general solution
to get −2 = y(0) = 1

4 + c. Hence c = − 9
4 , and the solution of the initial

value problem is

y =
1

4
et − 9

4
e−3t.

2. Divide by cos t to put the equation in the standard form

y′ + (tan t)y = sec t.

In this case p(t) = tan t, an antiderivative is P (t) = ln(sec t), and the
integrating factor is �(t) = sec t. (We do not need ∣ sec t∣ since we are
working near t = 0 where sec t > 0.) Now multiply by the integrating
factor to get (sec t)y′ + (sec t tan t)y = sec2 t, the left hand side of which
is a perfect derivative. Thus ((sec t)y)′ = sec2 t and taking antiderivatives
of both sides gives (sec t)y = tan t + c where c ∈ ℝ is a constant. Now
multiply by 1/ sec t = cos t to get y = sin t+c cos t for the general solution.
Letting t = 0 gives 5 = y(0) = sin 0 + c cos 0 = c so c = 5 and

y = sin t+ 5 cos t.

3. This equation is already in standard form. In this case p(t) = −2, an
antiderivative is P (t) = −2t, and the integrating factor is �(t) = e−2t.
Now multiply by the integrating factor to get

e−2ty′ − 2e−2ty = 1,

the left hand side of which is a perfect derivative ((e−2t)y)′. Thus ((e−2t)y)′ =
1 and taking antiderivatives of both sides gives

(e−2t)y = t+ c,

where c ∈ ℝ is a constant. Now multiply by e2t to get y = te2t + ce2t for
the general solution. Letting t = 0 gives 4 = y(0) = c so

y = te2t + 4e2t.

4. Divide by t to put the equation in the standard form

y′ +
1

t
y =

et

t

In this case p(t) = 1/t, an antiderivative is P (t) = ln t, and the integrating
factor is �(t) = t. Now multiply the standard form equation by the inte-
grating factor to get ty′ + y = et, the left hand side of which is a perfect
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derivative (ty)′. (Note that this is just the original left hand side of the
equation. Thus if we had recognized that the left hand side was already a
perfect derivative, the preliminary steps could have been skipped for this
problem, and we could have proceeded directly to the next step.) Thus
the equation can be written as (ty)′ = et and taking antiderivatives of
both sides gives ty = et + c where c ∈ ℝ is a constant. Now divide by t to
get

y =
et

t
+

c

t

for the general solution.

5. The general solution from Problem 4 is y = et

t + c
t . Now let t = 1 to get

0 = e+ c. So c = −e and y = et

t − e
t .

6. Divide by t to put the equation in the standard form

y′ +
m

t
y = ln t.

In this case p(t) = m
t , an antiderivative is P (t) = m ln t = ln tm, and the

integrating factor is �(t) = tm. Now multiply the standard form equation
by the integrating factor to get tmy′ + mtm−1y = tm ln t, the left hand
side of which is a perfect derivative ((tm)y)′. Thus ((tm)y)′ = tm ln t. To
integrate tm ln t we consider the cases m = −1 and m ∕= −1 separately.

Case m = −1: A simple substitution gives
∫

t−1 ln t dt = (ln t)2

2 + c.

Hence, t−1y = (ln t)2

2 + c and so y = t(ln t)2

2 + ct

Case m ∕= −1: Use integration by parts to get
∫

tm ln t dt = tm+1 ln t
m+1 −

tm+1

(m+1)2 + c. Then y = t ln t
m+1 − t

(m+1)2 + c
tm .

7. We first put the equation in standard form and get

y′ +
1

t
y = cos(t2).

In this case p(t) = 1
t , an antiderivative is P (t) = ln t, and the integrating

factor is �(t) = t. Now multiply by the integrating factor to get

ty′ + y = t cos(t2),

the left hand side of which is a perfect derivative (ty)′. Thus (ty)′ =
t cos(t2) and taking antiderivatives of both sides gives ty = 1

2 sin(t
2) + c

where c ∈ ℝ is a constant. Now divide by t to get y = sin(t2)
2t + c

t . for the
general solution.

new: please check
8. In this case p(t) = 2 and the integrating factor is e

∫
2 dt = e2t. Now

multiply to get e2ty′ + 2e2ty = e2t sin t, which simplifies to (e2ty)′ =



20 1 Solutions

e2t sin t. Now integrate both sides to get e2ty =
1

5
(− cos t+ 2 sin t)e2t + c,

where we computed
∫

e2t sin t by parts two times. Dividing by e2t gives

y =
1

5
(2 sin t− cos t) + ce−2t.

9. In this case p(t) = −3 and the integrating factor is e
∫
−3 dt = e−3t.

Now multiply to get e−3ty′ + 2e−3ty = 25e−3t cos 4t, which simplifies
to (e−3ty)′ = 25e−3t cos 4t. Now integrate both sides to get e−3ty =
(4 sin 4t − 3 cos 4t)e−3t + c, where we computed

∫

25e−3t cos 4t by parts
twice. Dividing by e−3t gives y = 4 sin 4t− 3 cos 4t+ ce3t.

10. In standard form this equation becomes

y′ − 1

t(t+ 1)
y =

2

t(t+ 1)
.

Using partial fractions we get p(t) = −1
t(t+1) =

1
t+1 − 1

t , an antiderivative is

P (t) = ln(t+1)− ln t = ln
(

t+1
t

)

, and the integrating factor is �(t) = t+1
t .

Now multiply by the integrating factor to get

t+ 1

t
y′ − 1

t2
y =

2

t2
,

the left hand side of which is a perfect derivative ( t+1
t y)′. Thus

(
t+ 1

t
y)′ =

2

t2

and taking antiderivatives of both sides gives t+1
t y = −2

t + c where c ∈ ℝ

is a constant. Now multiply by t
t+1 to get y = −2

t+1 + ct
t+1 = ct−2

t+1 for the
general solution.

11. In standard form we get z′ − 2tz = −2t3. An integrating factor is
e
∫
−2t dt = e−t2 . Thus (e−t2z)′ = −2t3e−t2 . Integrating both sides gives

e−t2z = (t2 +1)e−t2 + c, where the integral of the right hand side is done

by parts. Now divide by the integrating factor e−t2 to get z = t2+1+cet
2

.

12. The given differential equation is in standard form, p(t) = a, an an-
tiderivative is P (t) = at, and the integrating factor is �(t) = eat. Now
multiply by the integrating factor to get

eaty′ + aeaty = beat,

the left hand side of which is a perfect derivative ((eat)y)′. Thus

((eat)y)′ = beat.

If a ∕= 0 then taking antiderivatives of both sides gives eaty = b
ae

at + c

where c ∈ ℝ is a constant. Now multiply by e−at to get y = b
a + ce−at for

the general solution. In the case a = 0 then y′ = b and y = bt+ c.


