William A. Adkins, Mark G. Davidson

ORDINARY DIFFERENTIAL
EQUATIONS

Solution Manual

August 15, 2009

Springer

Berlin Heidelberg New York
Hong Kong London
Milan Paris Tokyo






1

Solutions

SECTION 1.1

1.

The rate of change in the population P(t) is the derivative P’(t). The
Malthusian Growth Law states that the rate of change in the population is
proportional to P(t). Thus P’(t) = kP(t), where k is the proportionality
constant. Without reference to the ¢ variable, the differential equation
becomes P’ = kP

a. This statement mathematically is b(t) = boP(t) where we have used
bo to represent the proportionality constant.

b. This statement translates as d(t) = do P%(t) where we have used dj to
represent the proportionality constant.

c. The overall growth rate is P’(t). Thus the Logistic Growth Law is

P'(t) = b(t) — d(t)
= boP(t) — doP%(t)
= (bo — doP(1))P(t).

. Torricelli’s law states that the change in helght h'( 1s proportlonal to

the square root of the height, 1/h(t). Thus h'(t) = /\«/ ), where A is the
proportionality constant.

The highest order derivative is 3’ so the order is 1 and the standard form
is y' = t3/y%

. The highest order derivative is ¢ so the order is 2. The standard form is

y// — t3/y’.
The highest order derivative is " so the order is 1 and the standard form
is y' = (e — ty)/t2.
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The highest order derivative is y” so the order is 2. The standard form is
"= By +ty) /2

. The highest order derivative is y” so the order is 2 and the standard form

is y"" =12 — 3y’ — 2y.

. The highest order derivative is ¥ so the order is 4. Solving for y*) gives

the standard form: y(* = { (1= (y")*)/t.

The highest order derivative is 3’ so the order is 1 and the standard form
is y' = ty* — t2y.

The highest order derivative is ¥’ so the order is 3. Solving for y"” gives
the standard form: v = 2y — 3y’ +v.

The following table summarizes the needed calculations:

Function y'(t) 2y(t)

yi(t) =0 y1(t) =0 21(t) =0
ya(t) = 12 ya(t) =2t 2a(t) = 2t
y3(t) = 3e?t yh(t) = 6e? 2y3(t) = 6e?
ya(t) =2e*  yi(t) =6e*  2yu(t) = e’

Thus y; and ys are the only solutions.

The following table summarizes the needed calculations:

Function ty (t) y(t)
yi(t) =0 tyr(t) = yi(t) =0
y2(t) = 3t tys(t) = ya(t) = 3t
ys(t) = =5t tys(t) = ys(t) = —5t
ya(t) =t tyy(t) = ya(t) =t

Thus y1, y2, and ys are solutions.

We first write the differential equation in standard form: y”’ = —4y. The
following table summarizes the needed calculations:

Function y"(t) —4y( )

yi(t) = e* yi(t) = 4e* —dy(t) =

yo(t) = sin 2t Yo (t) = —4sin2t —dyy(t) = —4sin 2t
ys3(t) = cos(2t — 1) y4(t) —4cos(2t —1) —dys(t) = —4cos(2t — 1)
ya(t) =t yi(t) =2 —dya(t) = —4¢?
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Thus y2 and ys are solutions.

The following table summarizes the needed calculations:

Function y'(t) 2y(t)(y(t) — 1)

yi(t) =0 yi(t) =0 21t (a(t) —1)=2-0-(=1) =0

y2(t) = Yp(t) =0 2y2(t)(y2(t) 1) =2-1-0=

ys(t) =2 ys(t) =0 2ys(t)(ys(t) —1) =2-2-1=

ull) = o v = 2 2O — 1) = 2 (L 1)
- 21—1e2f 132;% = (136:)21)2

Thus y1, y2, and y4 are solutions.

The following table summarizes the needed calculations:
Function 2y(t)y'(t) 1
yi(t) =1 2y1(H)y1(8) = 0 1
Yo (t) = 2y2()ya(t) =2t 1
ys(t) = Int 2u3(t)y (1) = 2§ Int = 2Lt 1
va) = VE—1  2gu(tya() =2vF— A= =1 1

Thus y4 is the only solution.

The following table summarizes the needed calculations:

Function 2y(t)y' () y 4+t —1

() = V=1 2\/—7% - (VD2 +t—1=-1
yo(t) = —Vet — ¢ —zm;(eT/;_lt)zet—l (—Vet —t)? +t—1=¢"—1
ys(t) = Vit 2\/52%/5:1 VO +t—1=2t—1
n)=—vT A== (VD +y-1=-1

Thus y1, y2, and y4 are solutions.

The following table summarizes the needed calculations for the first three
functions:
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y2(t) — dy(t)t + 6t2

Function y'(t) 2
2 — 4t% + 6t2
42 — 8t? + 6t>
ya(t) = 2t 2 — =2
9t2 — 122 + 6t2
ys(t) = 3t 3 —— =3
t42t2 ot 2t
For yu(t) = 3 1—:_ = (?i _:_ ; ) the quotient rule and simplifying gives
2t2 + 4t + 3
1) = 223 60 the other hand,
Ya (1 +t)2
t2(3+2t)%  4t2(3 +2t) 62
yi(t) —dys(t)t + 6t (1+1) (1+¢)
2 - 2
(34 2t)2 —4(B3+2t)(1+ 1) +6(1+1¢)?
(141)2
2244t +3
(1t

It follows that y2, y3, and y4 are solutions.

y'(t) = 3ce®
3y +12 = 3(ce® —4) + 12 = 3ce® — 12 4 12 = 3ce®'.

Note that y(t) is defined for all ¢ € R.

y'(t) = —ce " +3
—y(t) +3t =—ce " —3t+3+3t=—ce " +3.

Note that y(t) is defined for all ¢ € R.

t

y(t) = A= ce?
1 1 1—(1—cet cet
yH() —y(t) = (1—cet)2  1—cel - (1 (— cet)? : B (1—cet)?”

If ¢ < 0 then the denominator 1 — ce’ > 0 and y(¢) has domain R. If ¢ > 0
then 1 —ce! = 0if t = Inl = —Inc. Thus y(t) is defined either on the
interval (—oo, —Inc) or (—1Ine, 00).
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y'(t) = cet 2t = 2cte’”
2ty(t) = 2tce!” .

, —ce
t) =
yt) =
. 1 —cet
_y_l__—ln(ce—l)_l_ 1=
€ ¢ cet —1 cet —1
We first calculate y/(t) = —c(t +1)72 so
—c c —c c
t+ 1)y (¢ H=(t+1 = =0.
E+Dy O +y) =+ D 751 ~ 151 T e

Observe that y(t) is not defined at ¢ = —1 so the two intervals where y is
defined are (—oo, —1) and (—1, c0).

The denominator of y(t) is 0 when ¢t = ¢. Thus the two intervals where
y(t) is defined are (—oo, ¢) and (¢, o).

This is a differential equation we can solve by simple integration: We get
2
yt) =5 +3t+ec

. . 2t
Integration gives y(t) = 5 —t +c.
Integration (by parts) gives y(t) = —te™ ' — e~ + ¢.
Observe that £+2 =1 + 1. Integration gives y(t) =t + In[t| + c.

We integrate two times. First, y'(t) = t2 +t+c1. Second, y(t) = % + % +
Clt + ca.

We integrate two times. First, y/(t) = —2cos3t + ¢;. Second, y(t) =
%2 sin 3t 4+ ¢t + co.

From Problem 19 the general solution is y(t) = ce3t — 4. At t = 0 we get
—2=y(0) = ce® —4 = ¢ — 4. It follows that ¢ = 2 and y(t) = 23 — 4.
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. From Problem 20 the general solution is y(t) = ce " + 3t — 3. At t =0
we get 0 = y(0) = ce® + 3(0) — 3 = ¢ — 3. It follows that ¢ = 3 and
y(t) =3e "+ 3t — 3.

From Problem 21 the general solution is y(t) = 1/(1 — ce'). At t =0 we
get 1/2 =y(0) = t&. It follows that ¢ = —1 and y(¢) = 1/(1 + €*).

From Problem 24 the general solution is y(t) = c(t +1)71. At t = 1
we get —9 = y(1) = ¢(1 4+ 1)~! = ¢/2. It follows that ¢ = —18 and
y(t) = —18(t+ 1)~ L.

From Problem 27 the general solution is y(t) = €?!/2 — t + c. Evaluation
at t =0 gives 4 = €°/2 — 0+ c = 1/2+ ¢. Hence ¢ = 7/2 and
From Problem 28 the general solution is y(t) = —te~!—e~'+c. Evaluation

at t =0 gives —1 = y(0) = —1 + ¢ so ¢ = 0. Hence y(t) = —te t —e™".

From Problem 31 the general solution is y(t) = %2 sin3t + c1t + c2 and
a y'(t) = —2cos3t + ¢1. Evaluation at ¢ = 0 gives 1 = y(0) = ¢2 and
2 = y/(0) = =2 + ¢1. If follows that ¢; = 4 and ¢o = 1. Thus y(t) =
%2 sin 3t + 4.

Implicit differentiation with respect to ¢ gives 6t + 8yy’ = 0.
Implicit differentiation with respect to t gives 2yy’ — 2t — 3t2 = 0.

Differentiation gives ' = 2ce?" + 1. However, from the given function we
have ce?! = y — t. Substitution gives ¢/ = 2(y —t) +1 =2y — 2t + 1.

Differentiation gives 3y’ = 3ct? + 2t. However, from the given function
2

we have ct® = y — t? and hence ct? = % Substitution gives y' =

gu=tl fop =38y
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equilibrium)

(

s the only constant

= 0 and see that y = 0 i

10. We set y?

solution.

0, and

11. We set y(y +t) = 0. We look for constant solutions to y(y + t)

we see that y = 0 is the only constant (= equilibrium) solution.
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The equation y — ¢ = 0 has no constant solution. Thus, there are no
equilibrium solutions.

The equation 1 — % = 0 has two constant solutions: y = 1 and y = —1

We substitute y = at + b into y' = y — t to get a = (a — 1)t + b. Equality
for all ¢ forces a — 1 =0 and @ = b. Thus a = 1 and b = 1 and the only
linear solution is y =t + 1.

We substitute y = at + b into y’ = cos(t + y) to get a = cos((a + 1)t +b).
Equality for all t means that cos((a+1)t+b) must be a constant function,
which can occur only if the coefficient of ¢ is 0. This forces a = —1 leaving
us with the equation —1 = cosb. This implies b = (2n+1)m, where n is an
integer. Hence y = —t + (2n + 1)m, n € Z is a family of linear solutions.

SECTION 1.3

-

10.

. First write in standard form: ¢y’ =

. In standard form we get: ¥’ = e~ (y> — y) It is separable; h(t) = e

. separable; h(t) =1 and ¢(y) = 2y(5 — y)

. In standard form we get ¢y’ = (1 — y)/y. This is separable; h(t) = 1 and

9g(y) =1 -y)/y.

1-2t 19t
=2. We cannot write —5%

product of a function of ¢ and a function of y. It is not separable.

as a

In standard form we get y' = y(y — t). We cannot write y(y — t) as a
product of a function of ¢ and a function of y. It is not separable.

. Write in standard form to get: y' = (y — 2yt)/y. Here we can write (y —

2ty)/y = 1 — 2t. It is separable; h(t) =1 — 2t and ¢(y) = 1.

. We can factor to get 3/ = y?(t—1)+t—1= (y?>+1)(t—1). It is separable;

h(t) =t —1 and g(y) = y* + 1.

/2ty . /2ty
In standard form we get y' = a7 We cannot write y' = 73,2 35 a

product of a function of ¢ and a function of y. It is not separable

. Tt is not separable as 2 + y? cannot be written as a product of a function

of t and a function of y.

~t and

gy) =v* -y

The variables are already separated, so integrate both sides of the equa-
tion to get y?/2 = t2/2 + ¢, which we can rewrite as y* — t> = k where
k = 2c € R is a constant. Since y(2) = —1, substitute t = 2 and y = —1
to get that k = (—1)? — 22 = —3. Thus the solution is given implicitly by
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the equation y2 — 2 = —3 or we can solve explicitly to get y = —v/12 — 3,
where the negative square root is used since y(2) = —1 < 0.

1—qy? el s
In standard form we get 3y’ = t;’ . Clearly, y = =£1 are equilibrium

solutions. Separating the variables gives

1
dy = —dt.
1—y 4 t
Integrating both sides of this equation (using the substitution u = 1 — 2,
du = —2y dy for the integral on the left) gives

1
—§ln|1 — 9| =In|t| +c

Multiplying by —2, taking the exponential of both sides, and removing
the absolute values gives 1 — y? = kt~2 where k is a nonzero constant.
However, when k = 0 the equation becomes 1 — 32 = 0 and hence y = +1.
By considering an arbitrary constant (which we will call ¢), the implicit
equation t?(1 — y?) = ¢ includes the two equilibrium solutions for ¢ = 0.

The variables are already separated, so integrate both sides to get y*/4 =
t2/2 + ¢, ¢ a real constant. This can be simplified to y* = 2t + ¢. (where
we replace 4¢ by ¢) We leave the answer in implicit form.

The variables are already separated, so integrate both sides to get y°/5 =
t2/2 + 2t + ¢, c a real constant. Simplifying gives y° = 2¢2 + 10t + c. We
leave the answer in implicit form

There is an equilibrium solution iy = 0. Separating variables give y 2y’ =
t and integrating gives —y~! = t2/2 + ¢. Thus y = —2/(t*> + 2¢), ¢ a real
constant. This is equivalent to writing y = —2/(t% + ¢), ¢ a real constant,
since twice an arbitrary constant is still an arbitrary constant.

In standard form we get ¢y’ = (1 — y)tant so y = 1 is a solution. Sepa-
rating variables gives 1d_—yy = tant dt. The function tant is continuous on
the interval (—m/2, 7/2) and so has an antiderivative. Integration gives
—1In|1 — y| = —In|cost|+ k1. Multiplying by —1 and exponentiating gives
|1 — y| = ko |cost| where ks is a positive constant. Removing the absolute
value signs gives 1 —y = k3 cost, with k3 # 0. If we allow k3 = 0 we get the
equilibrium solution y = 1. Thus the solution can be written y = 1—ccost,

c any real constant.

An equilibrium solution is y = 0. Separating variables gives y~" dy =

t™ dt and integrating gives 1{_—7; = f:: + ¢, ¢ a real constant. Simplifying
gives y! =" = ﬁtmﬂ + ¢, and the equilibrium solution y = 0.
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There are two equilibrium solutions; y = 0 and y = 4. Separating vari-
ables and using partial fractions gives 3 ( + ﬂ) dy = dt. Integrating

= 4t + k1 which is equivalent to 74 = ce®,

and simplifying gives In |

¢ a nonzero constant. Solvmg for y gives y = %. When ¢ = 0 we get

the equilibrium solution y = 0. However, there is no ¢ which gives the
other equilibrium solution y = 4.

There are no equilibrium solutions. Separating variables gives dy =

y
y?+1
dt and integrating gives %ln(gf + 1) = t + k. Solving for y? gives y? =
ce? — 1, where ¢ > 0.

Separating variables gives = dt and integrating gives tan~!y = t+c.

dy
y2+1
Thus y = tan(t + ¢), ¢ a real constant.

Separatingzg variables gives y dy = (_Tl — t) dt and integrating gives % =
—In[t| — & + c. Simplifying gives y* 4+ 1% + Int? = ¢, ¢ a real constant.
In standard form we get 3’ 1(/'7”11) T _&tz from which we see that y =
—1is an equlhbrlum solution. Separatmg variables and simplifying gives

(m - 1) dy = t2+1 Integrating and simplifying gives In(y + 1) —y =

tan"1t + c.

Separating variables gives 2y dy = e' dt and integrating gives y? = e? +c,
¢ a constant.

The equilibrium solution is y = 0. Separating variables gives y~2dy =
%. Integrating and simplifying gives y = m, c real constant.
In standard form we get y' = y(y+1) from which weseey = 0 and y = —1
are equilibrium solutions. The equilibrium solution y(t) = 0 satisfies the
initial condition y(0) = 0 so y(¢) = 0 is the required solution.

y = 0 is the only equilibrium solution. The equilibrium solution y(¢) = 0
satisfies the initial condition y(1) = 0 so y(¢) = 0 is the required solution.

dy
dz

an equilibrium solution. Separating variables gives % = (1 + %) dx and

Rewriting we get y' = = ””T”y from which we see that y = 0 is

integrating gives In|y| = x + In2? + k, k a constant. Solving for y by
taking the exponential of both sides gives y = cz?e®, and allowing ¢ = 0
gives the equilibrium solution. The initial condition gives e = y(1) = ce
so ¢ = 1. Thus y = 2%€”.

In standard form we get y' = —2ty so y = 0 is a solution. Separating Varl—
ables and integrating gives In |y| = —t? + k. Solving for y gives y = ce —t*



28.

29.

30.

31.

32.

33.

34.

35.

1 Solutions 15

and allowing ¢ = 0 gives the equilibrium solution. The initial condition
2
implies 4 = y(0) = ce® = ¢. Thus y = 4e™*".

Since coty = 0 at y = 5§ + mm for all integers m we have equilibrium
s

lines at y = 5 +mm, none of which satisfy the initial condition y(1) = 7.

Separating variables gives tany dy = % and integrating gives — In |cos y| =
Int + c¢. We can solve for ¢ here using the initial condition: we get ¢ =
—Incosf =—1In (ﬁ) . Solving for y gives y = cos™*

1
2 V2t

{—

Separating variables gives d? = 757 du and integrating gives In|yl =

Invu2 + 1 + k. Solving for y gives y = cv/u2 + 1, for ¢ # 0. The initial
condition gives 2 = y(0) = ¢. So y = 2vu2 + 1.

In standard form we get y' = H%y so y = 0 is an equilibrium solution.
Separating variables gives % = (1 — t%) dt. Integrating we get In |y| =
t —2In|t + 2| + k. Solving for y we get y = cﬁ, for ¢ # 0. However,

allowing ¢ = 0 gives the equilibrium solution.

We assume the decay model N(t) = N(0)e=*. If ¢ is the age of the
bone then N(t) = 2N (0). Thus & = e~*. Solving for ¢ gives ¢t = 183 =
57303 ~ 9082 years

Let m denote the number of Argon-40 atoms in the sample. Then 8m is
the number of Potassium-40 atoms. Let ¢ be the age of the rock. Then

t years ago there were m + 8m = 9m atoms of Potassium-40. Hence
N(0) = 9m. On the other hand, 8m = N(t) = N(0)e~* = 9me~*!. This
—In g _ 7

implies that & = ¢~ and hence t = 1/\ 2 = =2 In 3 ~ 212 million years
old.

— - _ In.3 __
We need only solve .3N(0) = N(0)e " for t. We get t = —B2 =
—%1;'3 = 9.15 years.

The ambient temperature is 32° F, the temperature of the ice water.
From Equation (12) we get T'(t) = 32 + ke™. At t = 0 we get 70 =
32+ k, so k = 38 and T(t) = 32 + 38e™. After 30 minutes we have
55 = T'(30) = 32 + 38¢3"" and solving for r gives r = 35 In 22. To find the
time ¢ when T'(t) = 45 we solve 45 = 32 4 38¢"!, with r as above. We get

_ In13—1n38 :
t = 3055135 ~ 64 minutes.

The ambient temperature is T, = 70°. Equation (12) gives T'(¢t) =
70 + ke for the temperature of the coffee at time t. Since the initial
temperature of the coffee is T'(0) = 180 we get 180 = T'(0) = 70 + k.
Thus k£ = 110. The constant 7 is determined from the temperature at a
second time: 140 = T'(3) = 70 + 110e*" so r = $In & ~ —.1507. Thus
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T(t) = 70 + 110e", with r as calculated. The temperature requested is
T(5) = 70+ 110 (%) ~ 121.8°.

The ambient temperature is T, = 65°. Equation (12) gives T'(t) = 65 +
ke™t for the temperature at time ¢. Since the initial temperature of the
thermometer is T(0) = 90 we get 90 = T'(0) = 65 + k. Thus k = 25. The
constant 7 is determined from the temperature at a second time: 85 =
T(2) =65+ 25¢?" so r = $In2. Thus T'(t) = 65 + 25¢"", with r = $In 2.
To answer the first question we solve the equation 75 = T'(t) = 65 + 25e™

for t. We get t = 2}2 i:}ﬁg ~ 8.2 minutes. The temperature at t = 20 is

T(20) = 65+ 25 ()" ~ 67.7°.

The ambient temperature is T, = 70°. Equation (12) gives T'(t) = 70 +
ke for the temperature of the soda at time t. Since the initial temperature
of the soda is T'(0) = 40 we get 40 = T'(0) = 70 + k. Thus k = —30. The
constant 7 is determined from the temperature at a second time: 60 =
T(2) =70 — 30€?" so 7 = 1 In 3. Thus T(t) = 70 — 30e™, with 7 = 1 In 1.

The temperature at ¢ = 1 is T(1) = 70 — 30ez 25 = 70 — B~ 5270,

The ambient temperature is T, = 70°. Equation (12) gives T'(t) = 70 +
ke™ for the temperature of the coffee at time t. We are asked to determine
the initial temperature of the coffee so T'(0) is unknown. However, we have
the equations

150 = T'(5) = 70 + ke®"
142 = T(6) = 70 + ke"

or
80 = ke5”
72 = ke'".

Dividing the second equation by the first gives % =e€" sor = 1n0.9.

From the first equation we get k& = 80e~®" =~ 135.5. We now calculate
T(0) =70+ k ~ 205.5°

The ambient temperature is T, = 40°. Equation (12) gives T'(t) = 40 +
ke for the temperature of the beer at time ¢. Since the initial temperature
of the beer is T(0) = 80 we get 80 = T(0) = 40 + k. Thus k£ = 40.
The constant 7 is determined from the temperature at a second time:
60 = T(1) = 40 + 40e” so r = —In2. Thus T'(t) = 40 + 40e™, with
r = —In2. We now solve the equation 50 = T'(t) = 40 + 40e" for ¢ and
get t = — }E;" = 2. She should therefore put the beer in the refrigerator at
2 p.m.

Let us start time ¢ = 0 at 1980. Then P(0) = 290. The Malthusian growth
model gives P(t) = 290e™. At t = 10 (1990) we have 370 = 290e!°"
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and hence r = In3l. At ¢t = 30 (2010) we have P(30) = 29030 =
200 (22)° ~ 602.

The initial population is 40 = P(0). Since the population doubles in 3
hours we have P(3) = 80 or 80 = 40e®". Hence r = 11272 Now we can
compute the population after 30 hours: P(30) = 40e3°" = 40(210) =
40, 960.

We have 3P(0) = P(5) = P(0)e®". Sor = 1“73 Now we solve the equation
2P(0) = P(t) = P(0)e™ for t. We get t = 122 = 3In2 & 3 15 years.
In the logistic growth equation m = 800 and P(0) = 290. Thus P(t) =
%. To determine r we use P(10) = 370 to get 370 = m?&%.
A simple calculation give r = % In %ﬁ;. Now the population in 2010 is
P(30) = 0020 ~ 530

290+510( $247)

In the logistics equation m = 5000 and Py = 2000. Thus P(t) =

10,000,000 _ 10,000  q: _ _ 10,000
5000+3,000e=7 = T13e-7" Since P(2) = 3000 we get 3000 = Py Solv-

ing this equation for r gives r = In % Now P(4) = 2}&’29% = 2?3’?2(;4 ~
3857

Let x = e "%, Then 2% = e~ 2?"t. The equation P(to) = P; implies that
T = %. The equation P(2ty) = P, implies 2% = %. These
equation together imply i‘;gg:g;z = gggz:gzg. Cross multiplying and

simplifying leads to (PyPo— PE)m+ (P Py+ PE P, —2Py Py P,) = 0. Solving
for m gives the result. Now replace the formula for m into e = x =

Po(m—Py) : Shy s —rtg — Po Po—P1
m. Slmphfylng gives e = P, P—P,

after taking the natural log of both sides.

. The formula for r follows

We have P(0) = Py = 400, P(3) = P, = 700, and P(6) = P> = 1000. Us-
ing the result of the previous problem we get m =

700(700(400+1000)—2-400-1000) __

(700)2 —400-1000
1,400

SECTION 1.4

1.

This equation is already in standard form with p(¢) = 3. An antiderivative
of p(t) is P(t) = [3dt = 3t so the integrating factor is pu(t) = 3. If we
multiply the differential equation 3’ + 3y = e’ by u(t), we get the equation

3yl 4 363ty — X,

and the left hand side of this equation is a perfect derivative, namely,
(e3'y)’. Thus, (e3y)’ = e*. Now take antiderivatives of both sides and
multiply by e=3t. This gives
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. This equation is already in standard form. In this case p(t)

1 Solutions

Ly —3t
=-e"+ce
y=7 +
for the general solution of the equation. To find the constant ¢ to satisfy
the initial condition y(0) = —2, substitute ¢ = 0 into the general solution

to get —2 = y(0) = + + ¢. Hence ¢ = —2, and the solution of the initial
value problem is

. Divide by cost to put the equation in the standard form

y' + (tant)y = sect.

In this case p(t) = tant, an antiderivative is P(t) = In(sect), and the
integrating factor is u(t) = sect. (We do not need |sect| since we are
working near ¢ = 0 where sect > 0.) Now multiply by the integrating
factor to get (sect)y’ + (secttant)y = sec?t, the left hand side of which
is a perfect derivative. Thus ((sect)y)’ = sec?t and taking antiderivatives
of both sides gives (sect)y = tant + ¢ where ¢ € R is a constant. Now
multiply by 1/sect = cost to get y = sint+ccost for the general solution.
Letting ¢t = 0 gives 5 = y(0) = sin0 4 ccos0 = c so ¢ = 5 and

y =sint + 5cost.

= —2, an
antiderivative is P(t) = —2t, and the integrating factor is u(t) = e~2.
Now multiply by the integrating factor to get

€_2tyl _ 26—2ty — 17

the left hand side of which is a perfect derivative ((e=2%)y)’. Thus ((e~2%)y)’
1 and taking antiderivatives of both sides gives

(ef2t)y =t+ec,

where ¢ € R is a constant. Now multiply by e to get y = te? + ce?® for
the general solution. Letting ¢ = 0 gives 4 = y(0) = ¢ so

y = te?! 4+ 4e?t.

Divide by ¢ to put the equation in the standard form

'y 1 e
YRt h
In this case p(t) = 1/t, an antiderivative is P(¢) = Int, and the integrating
factor is u(t) = t. Now multiply the standard form equation by the inte-
grating factor to get ty’ +y = €f, the left hand side of which is a perfect
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derivative (ty)’. (Note that this is just the original left hand side of the
equation. Thus if we had recognized that the left hand side was already a
perfect derivative, the preliminary steps could have been skipped for this
problem, and we could have proceeded directly to the next step.) Thus
the equation can be written as (ty)’ = e' and taking antiderivatives of
both sides gives ty = e! + ¢ where ¢ € R is a constant. Now divide by ¢ to
get

~

e

—+

Sl et

y =
for the general solution.

. The general solution from Problem 4 is y = %t + . Now let ¢ = 1 to get

e_t
t

O=e+c Soc=—-eandy= -

. Divide by ¢ to put the equation in the standard form

Y+ ; y =Int.
In this case p(t) = %, an antiderivative is P(t) = mInt = Int™, and the
integrating factor is p(t) = t™. Now multiply the standard form equation
by the integrating factor to get t™y’ + mt™ 'y = t™Int, the left hand
side of which is a perfect derivative (( ™)y)’. Thus ((t™)y) = t™Int. To

integrate t"* Int we consider the cases m = —1 and m # —1 separately.
Case m = —1: A simple substitution gives [t 'Intdt = (lnt) +ec.
Hence, t 1y = (lnt) +candsoy = (lnt) + ot

Case m # —1:  Use integration by parts to get [¢"Intdt = tmn:jrllnt _

tmtl _ tlnt t
sz +¢ Theny = 785 — oo + 7

. We first put the equation in standard form and get
/ 1 2
Yy + TY= cos(t?).
In this case p(t) = 1, an antiderivative is P(t) = Int, and the integrating
factor is p(t) = t. Now multiply by the integrating factor to get
ty' +y = tcos(t?),

the left hand side of which is a perfect derivative (ty)’. Thus (ty)’ =
tcos(t?) and taking antiderivatives of both sides gives ty = isin(t?) + ¢

where ¢ € R is a constant. Now divide by t to get y = Sm(t ) + ¢. for the
general solution.

. In this case p(t) = 2 and the integrating factor is e/ 29 = 2!, Now
multiply to get e?'y’ + 2e2'y = e%'sint, which simplifies to (e?'y) =

new: please check
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10.

11.

12.

. In this case p(t) = —3 and the integrating factor is el —3dt — -

1 Solutions

1
e?*sint. Now integrate both sides to get e?'y = g(— cost + 2sint)e? + ¢,
where we computed [ e* sint by parts two times. Dividing by e** gives

1
y= 3(2 sint — cost) + ce~ 2t

3t

Now multiply to get e 3%y’ 4+ 2e 73ty = 25e¢73! cos4t, which simplifies
to (e 3ty) = 25e73!cos4t. Now integrate both sides to get e 3y =
(4sin4t — 3cosdt)e 3" + ¢, where we computed | 25e¢! cos4¢ by parts
twice. Dividing by e 3! gives y = 4sin4t — 3 cos4t + ce>.

In standard form this equation becomes

;1 2
tt+ 0’ " tt+ 1)

Y

Using partial fractions we get p(t) = ﬁ = t%

P(t) =In(t+1)—Int = In (1), and the integrating factor is p(t) = L.
Now multiply by the integrating factor to get

t+1, 1 2

T?J - t_2y T2
the left hand side of which is a perfect derivative (“-ty)’. Thus

— %, an antiderivative is

t+1 2
(—v)' =3
t t
and taking antiderivatives of both sides gives %y = %2 + ¢ where c € R
is a constant. Now multiply by 5 to get y = ;—21 + 35 = =2 for the

T+1
general solution.

In standard form we get 2/ — 2tz = —2t3. An integrating factor is
ef ~2tdt — ¢=t" Thus (e="2) = —2t3%¢*". Integrating both sides gives
ez =(t2+1)e~"" + ¢, where the integral of the right hand side is done
by parts. Now divide by the integrating factor et to get z = t2+1+cet .

The given differential equation is in standard form, p(t) = a, an an-
tiderivative is P(t) = at, and the integrating factor is u(t) = e. Now
multiply by the integrating factor to get

eaty/ + aeaty — beat,
the left hand side of which is a perfect derivative ((e®)y)’. Thus
() = be™.

If a # 0 then taking antiderivatives of both sides gives e®y = 2e® 4 ¢

where ¢ € R is a constant. Now multiply by e~ to get y = 2 4 ce~* for
the general solution. In the case a = 0 then y' = b and y = bt + c.



