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SOLUTIONS TO PROBLEMS - Instructors’ version (all problems)

PROBLEMS 1

1.1

1.2

1.3

()7 +e" =7 +e'5 (b)p+n—p+n (c)p+p—e +e +7.

From (A),
0 o 0 —0o
a (= ! L = o,
' o 0 0 —1 o 0
and similarly
0 o 0 o
Ba = 10 = '
o —1)o 0 - 0

Hence [ai,ﬂ] =afB+ fa, =0, for i =1,2,3. Using the same relations,

and likewise aq =o001. But it is straightforward to verify from (B)

thatalaj =—0,0, for i = j. So, [ai,aj]: 0, fori=j;=123.
Substituting the explicit forms of the Dirac matrices into (1.13) gives

u, —cpu, —c(pz —z'py)u4 =0,

2
E—mec
_ 2

E—mc)u, —c(p, +1p, Ju, +cpu, =0,

( )
( )
(E+ mc?)u3 —cp.u, —c(p, — z'py)u2 =0,
( )

2

E+mc)u, —c(p, + ipy)u1 +cpu, =0.

Case I: u =1, u, =0, u, =a, u, =

In this case, the third and fourth of equations (A) give the values

_cop, +1p,)

cp,
w, =b = .
E+mec

uza:E+m627 4 1

3 1

(B)
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For p=0, the first equation in (A) with u =1 clearly requires E = mc®, while

substituting the relations (B) in the first equation of (A) leads to the requirement

Taken together, these are satisfied by E=FE = (c’p* + m204)]/2, but not by
E=E =—(’p>+m’c")"”.

The other solutions are dealt with in a similar way, where the first two require

E=F >0 and the second two require £ =F <0. All four solutions are tabulated

below.

1 2 3 4
1 O cpz C(pp‘f'lpy)
( i - (E, +mc”) (E, +mc?)

c c 7 ‘
(B _pzmc?) Epz py? v, —p,) —°p,

o E=m) B vme) || & 1 me)

r.-w) || - 1 :

(E —mc?) (E —mc?) 0 1
14 The topologically distinct diagrams for reactions (a) are given below.
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and those for (c) are shown below.

Those for (b) are



1.5

1.6 For a spherically symmetric static solution we can set ¥(r,t)= ¢(r), where 7“:|r ,
and use
V= o° 22
or*  ror’
giving

oy 00 200 _[me|
V¢_8r2+r8r [h](b'

Substituting ¢ = u(r)/r gives

and the result follows by solving for u, and imposing ¢ — 0 as r — 0.
1.7 Using spherical polar co-ordinates, we have
q-r= |q‘rcos«9 and d’r =r’drdcosfde.
Thus, from (1.32),

e*T/R _92h2

|q‘2—{—M)2(CQ ’

2 2 00 +1
,/l/[(qz):ﬁ{dqﬁ[drr2 . i[dcos@exp(iqrcos@/h) =



1.8

1.9

1.10

1.11

1.12

where we have used (1.26).

If we impose momentum conservation and neglect the momenta of the initial e, we
have

e’ (m,0)+ e (m,0) — (B, k) + (B, —k),
where E, = |k| =m . Hence in Figure 1.9(a), the initial virtual process is

e_(m, 0) - 6_(E7k) + 7(m7 _k) )
where the energy of the virtual electron is

k’2—|—m 2 \/_m m.

Hence AE = FE &~ m and from the uncertainty principle, r & 1/ AFE =~ 1/ m . Restoring

factors of  and c gives r~ hc/mc2 =368 fm .
The distance between the two vertices is given by
raecr ~he/ AE=1/AE

where AF is the energy violation at the first vertex. On evaluating AFE in each
case, one obtains (a) r~m ™" and (b) ' ~ E™', respectively, where E is the initial
electron energy in the centre-of-mass frame. These are related by a Lorentz
contraction 7’ = 7’/ v, where = E/ m. (A resumé of special relativity is given in
Appendix A.)

Set 7':(2/ ma’)hc’ and demand that 7 has the dimensions of time. This gives
a=1and b=—2 and hence 7=1.245x10"" s

Substituting the values for £ and G, , gives o= 3.60x107""GeV™? , and using the
conversion factor 1GeV™?=0.389m, given on the inside of the back cover, to

convert from nu to SI units, we obtain ¢ =1.40x10"""mb = 0.14 pb.

(a) In natural units a = 62/ 4me, , so we can write 1 = a/ m,_ . Restoring factors of h

and ¢, we have

—13
r = e G LIT3XI0 TMeVim ) oco 107 1 = 2.8 fm.
¢ mﬁc2 0.51MeV




(b) The electrostatic energy is
E=1[psdv,
where ¢ is the potential energy and the charge density for r <R and zero for

r>R. On a spherical shell of radius r < R, the potential energy is just the
electrostatic potential due to the enclosed charge (). Hence

o) -2 L
dme, v Adme, R*
and
R o 2
E:l 3 1 fﬂélm“?dr:3 c :ig in nu.
2 47R’ 4me, < R? 10 4me, B 10 R

Setting F = m then gives

R _3n :

10 m

where 7 is the ‘classical radius’ defined in (a) above.

PROBLEMS 2

2.1

2.2

Weak interactions conserve baryon number B, charge @ and lepton numbers L, L#

and L_. They need not conserve the quantum numbers S, C'or B. Of the decays
given, (a) violates L conservation and (d) violates both L and L_ conservation.

They are therefore both forbidden. Reactions (b) and (c) satisfy all the conservation
laws and are allowed.

The basic processes are p~ — Wfl/ﬂ and W~ — e v . The other time-ordered diagram

is shown below,

1%
w g
W™ e
7
e

and the basic processes are vacuum — W*eﬁ?ﬂ and u W' — v,



2.3 The lowest-order diagram involves the exchange of a single Z° boson, as shown

below.
U, v,
0
A
Y Y
2.4 The two diagrams are shown below.

2.5 The electron neutrino may interact with electrons via both Z° and W~ exchange:
L v, v, e
Z° W
e e e v

e

whereas, because of lepton number conservation, the muon neutrino can only

. . 0
interact via Z° exchange:

ZO

€ €

2.6 Firstly restore factors of i and c¢ by writing L = 4Eh“cb/AmZ, and find @ and b by

demanding that the right-hand side has the dimensions of a length. This gives a =1
and b= -3, so that [ = 4E(hc)/Am;c4 . Then if L is expressed in km, E in GeV

and Amf] in (eV/c*)’, we have



2.7

2.8

2.9

—-13 18
L0:4E><(1.97><10 )x10% _ F I
Am? 1.27Am;

ij
By energy conservation

E, :Ey—l—mp—mn — K =171MeV - K ,

n

where K =F —m_ is the kinetic energy of the recoil neutron. Since K >0, this

implies E <1.71MeV and hence ‘p+| <1.63MeV, using E*=p°+m’. By

momentum conservation P,=P,—P,,s0 that

p,|<|p,|+|p,| = 4.63MeV,

neglecting  the neutrino mass, and K = pi / 2m <0.011MeV .
E =E +m —m =171MeV to within 0.01 MeV, which is less than 1%.

From (2.30) and (2.31), the necessary condition is

026 N E
cos(20,) = A=———F——.
Am,
Since N, < N, this requires
B> _ Am? cos(20,,)
T 226N,

Hence

(1)

Using the conversion factor 1GeV ™' = 0.197fm, gives 1m ' = 0.197 x10 *MeV and

hence N, =23x 10 "MeV?® in natural units. In these
Am? =75x10""MeV*,G, =1.17x10""MeV™,  and  tan®6, =0.444

cos20, = 0.385. Substituting into (1) then gives £ >3.8MeV .

Using the results of Problem 2.6, together with the squared mass differences

‘Amm‘g ~2x107° (eV/cQ)2 and |Am2l|2 ~T7.5x107° ((3\7/02)2 ,

we have
L,~12km, L,~31.5km.

Hence the magnitudes of amplitudes of the associated transitions (2.30a) are

units,

gives



2.10

2.11

P, ~0.09sin*(L/1.2) and P, ~0.9sin*(L/32),

1

where L is in km and we have used sin®(26,,) ~0.08 and sin*(20,,)~ 0.9 .
For L of order 150-200 km the amplitude of the oscillations of P, is ten times

smaller than those of P_, so that the former may be neglected to a first

127

approximation. For an L of lkm, P, ~0.9%x10*, which is small compared to the

so that P_ can, to a good approximation, be

amplitude of the oscillation of P, .

neglected. For an L of 10 km, P_ = 0.09, which is comparable to the amplitude of the

12

oscillation of P, , so that a two-component mixing model would fail badly.

From the solution to Problem 2.6, we have, for maximal mixing (0= m/4),
P(176—>17x):sin2[1.27A(mQC4)L/E] where L is measured in metres, F in MeV,
A(m’c') in (eV)* and Am®* =m*(v)—m?(v,). If P(7. -7 )=0.9+0.1, then at 95%

confidence level, 0.3> P(, — 7 ) >0 and hence 0 < A(m’") <3.8x107° (eV).
From the data given, the total number of nucleons is given by

N = 2x107 —1.2x10"
(0.938x10°)(1.78 x107)

and hence n =8.4x10¥km®. Also the mean energy of the neutrinos from reaction
(2.35) is 0.26 MeV, so the cross-section is o =1.8x10""" m®. Thus, finally,

A~ 6.6x10" km , i.e. about 107 times the solar radius.

PROBLEMS 3

3.1

3.2

(a) forbidden — violates baryon number conservation; (b) forbidden — violates charge
conservation; (c) forbidden — violates muon lepton number conservation; (d) allowed

by the diagram:
n

g
ER

€
Z()
\d i
K

U

(a) Involves neutrinos and is therefore a weak interaction. (b) Involves photons and
is therefore electromagnetic. (c) Conserves all quantum numbers and is therefore a



3.3

3.4

3.5

3.6

3.7

strong interaction. (d) Violates both strangeness and charm and is therefore a weak
interaction. (e) Conserves all quantum numbers and is a strong interaction. (f)
Involves electrons and positrons and is therefore an electromagnetic interaction.

The final-state pions have equal energies FE =FE_ / 2=247MeV  and
v = E'Tr/mwc2 =1.76. Hence the lifetime in flight is 7=~7 = 4.6 x10°s and the 7"

~1/2

velocity is v =¢(1— 1/72) =1.21c. The mean distance travelled is thus 7v =17m.

The quantum numbers are:
X": B=18=-1,C=0,B=0: Y : B=1, §=-2 C=0, B=0.

From their charges, and the definitions of E, S, C and B, it follows that X" = uds
and Y~ =dss. The decay Y~ — A+ violates strangeness conservation and is a
weak interaction, so we expect 7=10"—-10""s. (The Y~ is in fact the so-called
=7(1321) state with a lifetime 1.6 x107"s)

The quantum number combination (2, 1, 0, 1, 0) corresponds to a baryon ¢qq. It has
S=0, C=1and B=0, so must be of the form czy, where z and y are u or d
quarks. The charge () =2 requires both z and y to be u quarks, i.e. cuu. The others

are established by similar arguments and so the full set is:

(2,1,0,1,0) = cuu, (0,1,—2,1,0) = css, (0,0,1,0,—1) = b5,
(0,~1,1,0,0) =333,  (0,,—L1,0)=csd,  (—11,—3,0,0) = sss.

They are called X', Q°, B’, A, ¥” and Q, respectively.

From their quark compositions, the X, ¥’ and ¥~ have B=1, 5 = —1. We need to
check the reactions for B, ) and S conservation. Reactions (b) and (d) conserve all

three quantum numbers and so are allowed in strong interactions. Reactions (a) and
(c) violate S and @ conservation respectively, and are forbidden in strong
interactions.

The ¥’(1193) has B=1,Q=0,5 =—1, which must all be conserved in a strong
interaction. The lightest two-body hadron state with these quantum numbers is An’,
but m(X") < m(A)+ m(7"). Hence strong interaction decays are forbidden by energy
conservation. The decay X’ — Ay conserves all three quantum numbers and is first-
order in the electromagnetic interaction. Other electromagnetic decays, such as
¥’ — Ae'e, are higher order , and suppressed by higher powers of a. For strong
decays 7 ~10—10"'s from Table 3.4. Hence for the decay X’ — Avy,



3.8

3.9

3.10

T(Ay) ~ 7/ ~107° =105, with a~10%—-10". (The measured value is
7.4%x107%s.)

The X"(1189) has B=1,Q =1, which must be conserved in all interactions. The
only possible hadron final states with these quantum numbers are nr’™, pr”, i.e the

decay modes are ©* — nr", pr’. Since ¥7(1189) has S =—1 and the final states
have S =0, strangeness is violated and the decays must be via the weak interaction.
From Table 3.4, the lifetime is expected to be in the range (107" —107")s. (The

actual value is 8 x10™"'s.)

(a) The quark compositions are: D =dc; K'=ds; nm =du and since the

dominant decay of a c-quark is ¢ — s, we can have either of the diagrams shown

below.
KO
§\
d

(b) The quark compositions are: A = sud ; p =wuud and since the dominant decay of

an s-quark is s — u, we have the diagram:

u
u
ulp

For 7~10, T~c and the average distance d~cyT~3x10"" m =30 fm, if we

assume a lifetime for the particle at rest of 107 s. This is much smaller than the
best experimental resolution given, but larger than the range of the strong
interaction. This is important if the decay of, for example, the X~ produced in
reaction (3.26a) is to be treated as the decay of a free particle, since this requires
that it should be sufficiently far from any other hadrons that are present (e.g. the
proton in (3.26a)).

10



3.11 (a) The decay A™" — 7'p in terms of quarks is wuu — ud + uud , so a dd is created

and the quark diagram is

Ul _+

™

(==

AT "

A

(b) The corresponding diagrams for 7 p — A’ — 7’n are

_|d d| .o _|d
-~ |4 = = [8 qlm
A A -
u dn u ﬂ 0
ol R ik

3.12  An argument similar to that given in Section 3.6 gives the following allowed

combinations:
Baryons Mesons
c @ C Q
3 2 1 1,0
2 2,1 0 1,0,—1
1 2,1,0 -1 0,—1
0 2,1,0,—1

3.13  The first two quantum number combinations are compatible with the assignments
(1,0,0,1,1)=cb, (—1,1,—2,0,—1) = ssb

and can exist within the simple quark model. There are no combinations ¢q or qqq
which are compatible with the second two combinations, so these cannot exist within
the quark model. The combination (0,0,1,0,1) must be a meson ¢g because B =0,

but must contain both an 5 antiquark and a b antiquark since S = B =1. These
are incompatible requirements. The combination (—1,1,0,1,—1) must be a baryon

qqq of the form xcb (where z=wu or d) sinceB=1, §=0, C=1and B=—1. The



