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 SOLUTIONS TO PROBLEMS – Instructors’ version (all problems) 
 
PROBLEMS 1 
 
1.1 

 

    (a) ν
e

+e+ → ν
e

+e+; (b) p +n→ p +n; (c) p + p → e+ +e− + γ.

 
 

1.2  From (A),  
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1.3 Substituting the explicit forms of the Dirac matrices into (1.13) gives  
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  (A) 

  
Case 1:    u1

= 1, u
2

= 0, u
3

= a
1
, u

4
= b

1
  

In this case, the third and fourth of equations (A) give the values 
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For   p = 0 , the first equation in (A) with    u1

= 1  clearly requires    E = mc2 , while 

 substituting the relations (B) in the first equation of (A) leads to the requirement 
 

    
E −mc2 =

c2p2

E +mc2
. 

 
Taken together, these are satisfied by 

   
E = E

+
≡ (c2p2 +m2c4)1/2 , but not by 

   E = E
−
≡−(c2p2 +m2c4)1/2 .  

 
The other solutions are dealt with in a similar way, where the first two require 

   
E = E

+
> 0  and the second two require    E = E

−
< 0 . All four solutions are tabulated 

below. 
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1.4   The topologically distinct diagrams for reactions (a) are given below. 
 

 
  Those for (b) are  
 

 
 
 and those for (c) are shown below. 
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1.5  Two possible diagrams are shown in below. There are others. 
 

 
 

1.6 For a spherically symmetric static solution we can set      Ψ(r,t) = φ(r) , where 
   
r = r , 
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 Substituting     φ = u(r) r  gives 
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 and the result follows by solving for u, and imposing    φ→ 0  as   r →∞ .  
 
1.7 Using spherical polar co-ordinates, we have  
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 Thus, from (1.32), 
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 where we have used (1.26). 
 
1.8   If we impose momentum conservation and neglect the momenta of the initial   e

± , we 
have 

     e
+(m,0)+e−(m,0)→ γ(E

k
,k)+ γ(E

k
,−k) , 

 

 where 
  
E

k
= k = m . Hence in Figure 1.9(a), the initial virtual process is 

 

     e
−(m,0)→ e−(E,k)+ γ(m,−k) , 

 
 where the energy of the virtual electron is 
 

   E = (k 2 +m2)1/2 ≈ 2m ≈m . 

 
  Hence   ΔE = E ≈m  and from the uncertainty principle,    r ≈ 1 ΔE ≈ 1 m . Restoring 

factors of � and c gives     r ≈ c mc2 = 368 fm .  
 
1.9   The distance between the two vertices is given by 
 

     r ≈ cτ ≈ c ΔE = 1 ΔE , 
 

  where   ΔE  is the energy violation at the first vertex. On evaluating   ΔE  in each 
case, one obtains (a)    r ≈m−1  and (b)    ′r ≈E−1 , respectively, where E is the initial 
electron energy in the centre-of-mass frame. These are related by a Lorentz 
contraction    ′r = r γ , where    γ = E m . (A resumé of special relativity is given in 
Appendix A.) 

 
1.10  Set      τ = (2 mα5)acb  and demand that  τ  has the dimensions of time. This gives 

   a = 1 and b =−2  and hence    τ = 1.245×10−10  s .  
 
1.11 Substituting the values for E and  GF

, gives    σ = 3.60×10−10 GeV−2  , and using the 

conversion factor   1GeV−2 = 0.389m , given on the inside of the back cover, to 

convert from nu to SI units, we obtain    σ = 1.40×10−10 mb = 0.14 pb . 
 
1.12 (a) In natural units     α = e2 4πε

0
, so we can write    rc = α m

e
. Restoring factors of    

and c, we have 
 

     
r
c
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m
e
c2

= α
1.973×10−13MeVm

0.51MeV
= 0.0282×10−13 m = 2.8 fm.  
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 (b) The electrostatic energy is  
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where  φ  is the potential energy and the charge density  for   r < R  and zero for 

  r > R . On a spherical shell of radius   r < R , the potential energy is just the 
electrostatic potential due to the enclosed charge Q. Hence  
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 Setting   E = m  then gives 
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 where  rc  is the ‘classical radius’ defined in (a) above. 

 
PROBLEMS 2 

 

2.1  Weak interactions conserve baryon number B, charge Q and lepton numbers 
   
L

e
,  L

µ  

and   Lτ . They need not conserve the quantum numbers S, C or   B
 . Of the decays 

given, (a) violates 
  
L

µ  conservation and (d) violates both 
  
L

µ  and   Lτ  conservation. 

They are therefore both forbidden. Reactions (b) and (c) satisfy all the conservation 
laws and are allowed. 

 
2.2  The basic processes are 

   
µ− →W−ν

µ  and    W
− → e−ν

e
. The other time-ordered diagram 

is shown below, 
 

 
  
 and the basic processes are 

    
vacuum→W +e−ν

µ  and 
   
µ−W + → ν

µ .  
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2.3 The lowest-order diagram involves the exchange of a single   Z
0  boson, as shown 

below. 

 
 

2.4 The two diagrams are shown below. 
 

 
 

2.5  The electron neutrino may interact with electrons via both   Z
0  and   W

−  exchange: 
 

 
 

  whereas, because of lepton number conservation, the muon neutrino can only 
interact via   Z

0  exchange: 
 

 
 

2.6  Firstly restore factors of    and c by writing 
    
L

0
= 4Eacb Δm

ij
2  and find a and b by 

demanding that the right-hand side has the dimensions of a length. This gives    a = 1 
and    b =−3 , so that 

    
L

0
= 4E(c) Δm

ij
2c4 . Then if   L0

 is expressed in km, E in GeV 

and 
   
Δm

ij
2  in  (eV/c2)2 , we have 
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L
0

=
4E×(1.97×10−13)×1018

Δm
ij
2

=
E

1.27Δm
ij
2
 km . 

 
2.7  By energy conservation  
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  where   Kn

= E
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−m

n
 is the kinetic energy of the recoil neutron. Since    Kn

> 0 , this 

implies 
   
E

+
≤1.71MeV  and hence 

   
p
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2 = p2 +m2 . By 

momentum conservation 
    
p
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= p
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p
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  neglecting the neutrino mass, and     Kn

= p
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2 2m
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≤ 0.011MeV . Hence 

    
E

+
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2.8  From (2.30) and (2.31), the necessary condition is 
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 . 

 Since    Ne
≤N

0
, this requires  

 

    

E ≥−
Δm

12
2 cos(2θ

12
)

2 2G
F
N

0

. (1) 

 
 Using the conversion factor   1GeV−1 = 0.197fm , gives   1m

−1 = 0.197×10−12MeV  and 
hence    N0

= 2.3×10−7MeV3  in natural units. In these units, 

   Δm
12
2 = 7.5×10−17MeV2 ,   GF

= 1.17×10−11MeV−2 , and    tan
2 θ

12
= 0.444  gives 

   cos2θ
12

= 0.385 . Substituting into (1) then gives    E ≥ 3.8MeV . 

 
2.9  Using the results of Problem 2.6, together with the squared mass differences  

 

   
Δm

13

2
≈ 2×10−3 eV c2( )2

and Δm
21

2
≈ 7.5×10−5 eV c2( )2

 , 

  
 we have 

    L13
≈ 1.2km, L

12
≈ 31.5km.   

 
 Hence the magnitudes of amplitudes of the associated transitions (2.30a) are 
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    P13

≈ 0.09sin2(L 1.2) and P
12
≈ 0.9sin2(L 32),   

 
 where L is in km and we have used    sin

2(2θ
12
)≈ 0.08  and    sin

2(2θ
13
)≈ 0.9 . 

  For L of order 150–200 km the amplitude of the oscillations of   P13
 is ten times 

smaller than those of   P12
, so that the former may be neglected to a first 

approximation. For an L of 1km,    P12
≈ 0.9×10−3 , which is small compared to the 

amplitude of the oscillation of   P13
, so that   P12

 can, to a good approximation, be 

neglected. For an L of 10 km,    P12
≈ 0.09 , which is comparable to the amplitude of the 

oscillation of   P13
, so that a two-component mixing model would fail badly. 

 
2.10 From the solution to Problem 2.6, we have, for maximal mixing (   θ = π 4 ), 

    P(ν
e
→ ν

x
) = sin2[1.27Δ(m2c4)L E ]  where L is measured in metres, E in MeV, 

   Δ(m2c4) in  (eV)2  and    Δm2 ≡m2(v
e
)−m2(v

x
) . If     P(ν

e
→ ν

e
) = 0.9 ± 0.1 , then at 95% 

confidence level,     0.3≥P(ν
e
→ ν

x
)≥ 0  and hence    0≤Δ(m2c4)≤ 3.8×10−3  (eV)2 . 

 
2.11  From the data given, the total number of nucleons is given by  

 

   
N =

2×1030

(0.938×109)(1.78×10−36)
= 1.2×1057  

 
  and hence    n = 8.4×1038km−3 . Also the mean energy of the neutrinos from reaction 

(2.35) is 0.26 MeV, so the cross-section is    σ = 1.8×10−46  m2 . Thus, finally, 

   λ ≈ 6.6×1012  km , i.e. about  107  times the solar radius. 
 
PROBLEMS 3 
 
3.1 (a) forbidden – violates baryon number conservation; (b) forbidden – violates charge 

conservation; (c) forbidden – violates muon lepton number conservation; (d) allowed 
by the diagram: 

 
 
3.2  (a) Involves neutrinos and is therefore a weak interaction. (b) Involves photons and 

is therefore electromagnetic. (c) Conserves all quantum numbers and is therefore a 



 9 

strong interaction. (d) Violates both strangeness and charm and is therefore a weak 
interaction. (e) Conserves all quantum numbers and is a strong interaction. (f) 
Involves electrons and positrons and is therefore an electromagnetic interaction. 

 
3.3 The final-state pions have equal energies     Eπ = E

K
2 = 247MeV  and 

    γ = E
π

m
π
c2 = 1.76 . Hence the lifetime in flight is    τ = γτ

0
= 4.6×10−8 s  and the   π

+  

velocity is     υ = c(1−1 γ2)−1/2 = 1.21c . The mean distance travelled is thus    τυ = 17m .  
 
3.4  The quantum numbers are:  
 

    X
0 :  B = 1,  S =−1,  C = 0,  B = 0 ;  Y − :  B = 1,  S =−2,  C = 0,  B = 0 . 

 

From their charges, and the definitions of   B
 , S, C and B, it follows that    X

0 = uds  
and   Y

− = dss . The decay    Y
− → Λ+ π−  violates strangeness conservation and is a 

weak interaction, so we expect    τ = 10−6 −10−13  s . (The   Y
−  is in fact the so-called 

  Ξ
−(1321)  state with a lifetime   1.6×10−10 s )  

3.5  The quantum number combination (2, 1, 0, 1, 0) corresponds to a baryon qqq. It has 

   S = 0,  C = 1 and B = 0 , so must be of the form cxy, where x and y are u or d 

quarks. The charge    Q = 2  requires both x and y to be u quarks, i.e. cuu. The others 

are established by similar arguments and so the full set is:  

   

(2,1,0,1,0) = cuu, (0,1,−2,1,0) = css,        (0,0,1,0,−1) = bs ,
(0,−1,1,0,0) = sdu,       (0,1,−1,1,0) = csd,       (−1,1,−3,0,0) = sss.

 

 
   They are called     Σc

++,  Ω
c
0,  B

s
0,  Λ,  Σ

c
0  and Ω− , respectively.  

 
3.6   From their quark compositions, the   Σ

+, Σ0  and  Σ
−  have    B = 1, S =−1 . We need to 

check the reactions for   B, Q  and S conservation. Reactions (b) and (d) conserve all 

three quantum numbers and so are allowed in strong interactions. Reactions (a) and 
(c) violate S and Q conservation respectively, and are forbidden in strong 
interactions. 

 
3.7  The   Σ

0(1193)  has    B = 1, Q = 0, S =−1 , which must all be conserved in a strong 

interaction. The lightest two-body hadron state with these quantum numbers is    Λπ
0 , 

but     m(Σ0) < m(Λ)+m(π0) . Hence strong interaction decays are forbidden by energy 

conservation. The decay    Σ
0 →Λγ  conserves all three quantum numbers and is first-

order in the electromagnetic interaction. Other electromagnetic decays, such as 

   Σ
0 →Λe+e− , are higher order , and suppressed by higher powers of  α . For strong 

decays     τ  10−22−10−24 s  from Table 3.4. Hence for the decay    Σ
0 →Λγ , 



 10 

    τ(Λγ) τ α  10−19 −10−22 s , with     α  10−2−10−3 . (The measured value is 

  7.4×10−20s .) 
 
3.8  The   Σ

+(1189) has    B = 1, Q = 1 , which must be conserved in all interactions. The 

only possible hadron final states with these quantum numbers are     nπ
+, pπ0 , i.e the 

decay modes are    Σ
+ → nπ+, pπ0 . Since   Σ

+(1189) has    S =−1  and the final states 
have    S = 0 , strangeness is violated and the decays must be via the weak interaction. 
From Table 3.4, the lifetime is expected to be in the range   (10−7 −10−13)s . (The 

actual value is   8×10−11 s .) 
 
3.9    (a) The quark compositions are:     D

− = dc ; K 0 = ds ; π− = du  and since the 
dominant decay of a c-quark is   c→ s , we can have either of the diagrams shown 
below. 

 
 

(b) The quark compositions are:    Λ = sud ; p = uud  and since the dominant decay of 
an s-quark is   s → u , we have the diagram: 

 

 
 

3.10  For     γ ≈ 10,  τ ≈ c  and the average distance     d ≈ cγτ ≈ 3×10−14  m = 30 fm , if we 

assume a lifetime for the particle at rest of   10−23  s . This is much smaller than the 
best experimental resolution given, but larger than the range of the strong 
interaction. This is important if the decay of, for example, the   X

−  produced in 
reaction (3.26a) is to be treated as the decay of a free particle, since this requires 
that it should be sufficiently far from any other hadrons that are present (e.g. the 
proton in (3.26a)).  
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3.11  (a) The decay    Δ
++ → π+p  in terms of quarks is   uuu→ ud +uud , so a  dd  is created 

and the quark diagram is 

 
 
 (b) The corresponding diagrams for     π

−p→Δ0 → π0n  are 

 

 
 
3.12   An argument similar to that given in Section 3.6 gives the following allowed 

combinations: 
 

   

Baryons                              Mesons
C      Q                                 C      Q
3     2                                  1      1,0
2     2,1                               0      1,0,−1
1     2,1,0                        −1         0,−1
0     2,1,0,−1

 

 
3.13   The first two quantum number combinations are compatible with the assignments 
 

   (1,0,0,1,1) = cb ,     (−1,1,−2,0,−1) = ssb  
 
  and can exist within the simple quark model. There are no combinations  qq  or  qqq  

which are compatible with the second two combinations, so these cannot exist within 
the quark model. The combination  (0,0,1,0,1)  must be a meson  qq  because   B = 0 , 

but must contain both an  s   antiquark and a  b  antiquark since     S = B = 1 . These 
are incompatible requirements. The combination   (−1,1,0,1,−1)  must be a baryon 

 qqq  of the form xcb (where    x = u  or d ) since   B = 1 ,     S = 0,  C = 1 and B =−1 . The 


