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Chapter 1

Gases and the Zeroth Law of Thermodynamics

1.2. A system is any part of the universe under observation. The “surroundings” includes 
everything else in the universe. Consider a solution calorimeter in which two aqueous 
solutions are mixed and temperature changes are recorded. In this case the solutes 
(reactants and products) would be considered the “system”. The water, calorimeter, and 
rest of the lab and world would be the “surroundings”. 

1.4. (a)

(b) 45ºC + 273.15 = 318 K

(c)

(d)

(e)

(f) 4.2 K – 273.15 = –269.0°C

(g)

1.6. patm = pmouth + hg, where hg correspond to the pressure exerted by the liquid

patm - pmounth = hg = (1.0x103 kg/m3)(0.23m)(9.80m/s2) = 2254 N/m2 = 2.3 x103 Pa

1.8. In terms of the zeroth law of thermodynamics, heat will flow from the (hot) burner or 
flame on the stove into the (cold) water, which gets hotter. Then heat will move from the 
hot water into the (colder) egg.

1.10. For this sample of gas under these conditions, F(T) = 2.97 L  0.0553 atm = 0.164 Latm. 
If the pressure were increased to 1.00 atm: 0.164 Latm = (1.00 atm)  V; therefore V = 
0.164 L.

1.12. , which rearranges to . 
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Therefore: 

1.14. V1=67 L, p1=1.04 atm.

; x = 6.34 atm. Therefore p2 = 1.04 atm + 6.34 atm = 7.38 atm.

p1V1 = p2V2; so V2 = 

1.16.

1.18. 

1.20. Calculations using STP and SATP use different numerical values of R because the sets of 
conditions are defined using different units. It’s still the same R, but it’s expressed in 
different units of pressure, atm for STP and bar for SATP. 

1.22. The partial pressure of N2 = 

The partial pressure of O2 = 

1.24.

1.26. Using the ideal gas law, the number of moles of CO2 =
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1.28. Following the normal rules of derivation: (a)  (b)  (c) 

 (d) Using the answer from part a, we get  (e)  (f) 

Using the answer from part e, we get .
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1.36. (a) Z=1 for an ideal gas. (b) If the gas truly follows the ideal gas law, Z will always be 1 
regardless of the pressure, temperature, or molar volume. 

1.38. Using equation 1.23, , and using data from Table 1.6, we have:

for CO2: 

for O2: 

for N2: 

1.40. The C term is . In order for the term to be unitless, C should have units of 
(volume)2/(moles)2, or L2/mol2. The C’ term is C’p2, and in order for this term to have the 

same units as p
V

 (which would be Latm/mol), C’ would need units of 

L·mol
atm . (The unit 

bar could also be substituted for atm if bar units are used for pressure.)

1.42. Gases that have lower Boyle temperatures will be most ideal (at least at high 
temperatures). Therefore, they should be ordered as He, H2, Ne, N2, O2, Ar, CH4, and 
CO2.

1.44. (a) He: b=

Å

(b) H2O: b=  ; using a similar method to part a, r = 2.30 Å
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(c) C2H6: b= ; using a similar method to part a, r = 2.94 Åmole

L0638.0
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1.46. Let us assume standard conditions of temperature and pressure, so T = 273.15 K and p = 
1.00 atm. Also, let us assume a molar volume of 22.412 L = 2.2412  104 cm3. Second 
virial coefficient terms can be calculated using values in Table 1.6. 

Therefore, we have for hydrogen:
pV
RT

=1+ B
V

=1+15 .7 cm3 /mol
2.2412×104 cm3 /mol

=1.00070
, which is a 0.070% increase in the 

compressibility. 

For H2O, we have:
pV
RT

=1+ B
V

=1+ −213 .3 cm3 /mol
2.2412×104 cm3 /mol

=0 .9905
, which is a 0.95% decrease in the 

compressibility with respect to an ideal gas.

1.48. By comparing the two expressions from the text

 and 

it seems straightforward to suggest that, at the first approximation, C = b2. Additional 

terms involving  may occur in later terms of the first expression, necessitating 
additional corrections to this approximation for C.

1.50. The Redlich-Kwong equation of state: 

1.52. The van der Waals equation of state: ; As V approaches ∞, the 
an2/V2 term goes to 0 and the nb term becomes negligible. The equation then reduces to 
pV=nRT.

1.54. The Redlich-Kwong equation of state: 

As T approaches infinity, the second term on the right side goes to 0. The molar volume 
of a gas at high temperature will generally be high so the correction factor, b, is 

negligible. The equation reduces to 
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1.56. Using the ideal gas law, 

Using the Dieterici equation of state: 

; It varies 
by ~2%.

1.58. In terms of p, V, and T, we can also write the following two expressions using the cyclic 
rule:

 and . There are other constructions possible that 
would be reciprocals of these relationships or the one given in Figure 1.11.

1.60. Since the expansion coefficient is defined as ,  will have units of 

, so it will have units of K-1. Similarly, the 

isothermal compressibility is defined as , so  will have units of 

, or atm-1 or bar-1.

1.62

. For an ideal gas, 

This is equal to 1 bar-1 at STP and SATP

1.64. For an ideal gas, . Since , this last 

expression becomes  for an ideal gas. The expression  is evaluated as
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. For an ideal gas, the ideal gas law can be 

rearranged to give , so we substitute to get that this last expression is 

. Thus, the two sides of the equation ultimately yield the same 
expression and so are equal.

1.66. For an ideal gas, . Therefore, the expression for density becomes, substituting 

for the molar volume, . The derivative of this expression with respect 

to temperature is . Using the definition of , this can be rewritten as 

.

1.68. ; If we convert g to kg and recognize that a J=

, . All of the units cancel and the exponent is unitless.

1.70. If we assume that the average molecular weight of air is 28.967 g/mole, =e-X

1.72. N=7 

1.74. The probability that the particle is in the higher state = .
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(a) At 200K, probability = =0.548

(b) At 500K, probability = =0.786

(c) At 1000K, probability = =0.887

To calculate ratios we can use the equation: . For the three temperatures 
these ratios equal: 1.21, 3.67, and 7.85; as the temperature goes up. 

1.76. (a) (CN)2 is a linear molecule. 
⟨E trans⟩=

3
2
RT ; ⟨Erot ⟩=RT

(b) H2O is a non-linear molecule. 
⟨E trans⟩=

3
2
RT ; ⟨Erot ⟩=

3
2
RT

 

(c) Kr is an atom. 
⟨E trans⟩=

3
2
RT ; ⟨Erot ⟩=0

 

(d) C6H6 is a non-linear molecule. 
⟨E trans⟩=

3
2
RT ; ⟨Erot ⟩=

3
2
RT

 

 
















 K200

moleK

J
314.8/J1000

e

 
















 K500

moleK

J
314.8/J1000

e

 
















 K100

moleK

J
314.8/J1000

e

yprobabilit1

yprobabilit




