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Preface 

This manual provides detailed solutions to all the end-of-chapter (b) Exercises, and to the odd-numbered 
Discussion Questions and Problems. Solutions to Exercises and Problems carried over from previous 
editions have been reworked, modified, or corrected when needed. 

The solutions to the Problems in this edition rely more heavily on the mathematical and molecular 
modelling software that is now generally accessible to physical chemistry students, and this is partic­
ularly true for many of the new Problems that request the use of such software for their solutions. But 
almost all of the Exercises and many of the Problems can still be solved with a modem hand-held sci­
entific calculator. When a quantum chemical calculation or molecular modelling process has been called 
for, we have usually provided the solution with PC Spartan pro™ because of its common availability. 

In general, we have adhered rigorously to the rules for significant figures in displaying the final 
answers. However, when intermediate answers are shown, they are often given with one more figure 
than would be justified by the data. These excess digits are indicated with an overline. 

We have carefully cross-checked the solutions for errors and expect that most have been eliminated. 
We would be grateful to any readers who bring any remaining errors to our attention. 

We warmly thank our publishers for their patience in guiding this complex, detailed project to 
completion. 

P. W. A. 

e.A.T. 

M. P.e. 

e. G. 
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PART 1 Equilibrium 



The properties of gases 

Answers to discussion questions 

01.1 An equation of state is an equation that relates the variables that define the state of a system to each other. 
Boyle, Charles, and Avogadro established these relations for gases at low pressures (perfect gases) by 
appropriate experiments. Boyle determined how volume varies with pressure (V ex lip), Charles how 
volume varies with temperature (V ex T), and Avogadro how volume varies with amount of gas (V ex n). 

Combining all of these proportionalities into one we find 

nT 
Vex -. 

p 

Inserting the constant of proportionality, R, yields the perfect gas equation 

RnT 
V = -- or pV = nRT. 

p 

01.3 Consider three temperature regions: 

(1) T < TB . At very low pressures, all gases show a compression factor, Z ~ I. At high pressures, all 
gases have Z > I , signifying that they have a molar volume greater than a perfect gas, which implies 
that repulsive forces are dominant. At intermediate pressures, most gases show Z < I, indicating 
that attractive forces reducing the molar volume below the perfect value are dominant. 

(2) T ~ TB . Z ~ I at low pressures, slightly greater than I at intermediate pressures, and significantly 
greater than I only at high pressures. There is a balance between the attractive and repulsive forces 
at low to intermediate pressures, but the repulsive forces predominate at high pressures where the 
molecules are very close to each other. 

(3) T > TB. Z > I at all pressures because the frequency of collisions between molecules increases 
with temperature. 

01.5 The van der Waals equation 'corrects ' the perfect gas equation for both attractive and repulsive 
interactions between the molecules in a real gas. See Justification 1.1 for a fuller explanation. 

The Bertholet equation accounts for the volume of the molecules in a manner similar to the van der 
Waals equation but the term representing molecular attractions is modified to account for the effect of 
temperature. Experimentally one finds that the van der Waals a decreases with increasing temperature. 
Theory (see Chapter 18) also suggests that intermolecular attractions can decrease with temperature. 
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This variation of the attractive interaction with temperature can be accounted for in the equation of state 
by replacing the van der Waals a with a/ T o 

Solutions to exercises 

(a) The perfect gas law is 

pV = nRT 

implying that the pressure would be 

nRT 
P=­

V 

All quantities on the right are given to us except n, which can be computed from the given mass 

of Ar. 

n = 25 g = 0.626 mol 
39.95 g mol- 1 

(0.626 mol) x (8.31 x 10- 2 dm3 bar K- 1 mol-I ) x (30 + 273 K) 1 - 1 

so P = 3 = . 10.5 bar . 
1.5dm 

not 2.0 bar. 

(b) The van der Waals equation is 

RT a 
P = V - b - V2 

m m 

(8 .31 X 10- 2 dm3 bar K- 1 mol-I ) x (30 + 273) K 
sop = 

(1.53 dm3 / 0.626 mol) - 3.20 x 10-2 dm3 mol - 1 

(1.337dm6atmmol-2
) x (1.013baratm- 1

) _I - 1 
- 3 - 10.4 bar . 

(1.5 dm / 0.626 mo1)2 

(a) Boyle's law applies: 

P V = constant so p f Vf = Pi Vi 

and 

prVr (1.97 bar) x (2.14dm3
) 1 1 

Pi = -- = = 1.07 bar 
Vi (2.14 + 1.80) dm3 

(b) The original pressure in bar is 

( 
1 atm) (760 TOrr) I I Pi = (1.07 bar) x x = 803 Torr 

1.013 bar I atm 

The relation between pressure and temperature at constant volume can be derived from the perfect 

gas law 

pV = nRT 
Pi 

so P ex: T and 
Ti 

Pr 
Tr 
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The final pressure, then, ought to be 

= pjTr = (125 kPa) x ( II + 273) K = 1120 kPa I 
Pr Tj (23 + 273) K 

According to the perfect gas law, one can compute the amount of gas from pressure, temperature, 
and volume. Once this is done, the mass of the gas can be computed from the amount and the molar 

mass using 

pV = nRT 

pV (1.00atm) x (1.013 x 105 Paatm- I) x (4.00 x 103 m3) 5 
so n - - - = 1.66 x 10 mol 

. - RT - (8 .3145J K- Imol - I) x (20+273) K 

and m = ( 1.66 x lOS mol) x (16.04 g mol-I) = 2.67 x 106g = 12.67 X 103 kg 1 

Identifying P ex in the equation P = Pex + pgh [1.3] as the pressure at the top of the straw and P as the 
atmospheric pressure on the liquid, the pressure difference is 

P - Pex = pgh = ( 1.0 x 103 kg m- 3) x (9.8 1 m s- 2) x (0.15 m) 

= 11.5 x 103 Pa 1(= 1.5 X 10-2 atm) 

The pressure in the apparatus is given by 

P = Palm + pgh [1.3] 

P alm = 760 Torr = I atm = 1.013 x 105 Pa 

pgh = 13.55 g cm-3 x (/o~gg) x (1O:~m3) x 0.100 m x 9.806 m s-2 = 1.33 X 104 Pa 

P = 1.013 X 105 Pa + 1.33 x 104 Pa = 1.146 x 105 Pa = 1115 kPa I 

All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVm/T will give 
the best value of R. 

m 
The molar mass is obtained from P V = nRT = - RT 

M 

. mRT RT 
which upon rearrangement gives M = - - = p-

V P P 

The best value of M is obtained from an extrapolation of p / P versus P to P = 0; the intercept is M / RT. 

Draw up the following table 

0.750000 0.082 00 14 1.428 59 
0.500000 0.082 0227 1.428 22 
0.250000 0.082 0414 1.427 90 

From Figure l.l (a), (PVm) = I 0.082 0615 dm3 atm K- I mol-I I 
T p=O 
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... ~ ,, ;8.202, ";"';";"';";"';"' ;" ... i ... i ... i ... ! . 
... ............ . ! . .. ! ... ! . .. ··-!- ··!··-!- ·-!- ·· !···, ··· ,··!· ··.··! .. ·i .. ·! 
.. ~~ .. ~ ... ~ ... ~ .. .... ~ ... ~ ... ! ... ! ... j "! "'! "! "-!-". 'i"+" 
"M ,,!"' ! '''! . ... . ,',,' ! , .. !. ,, !',, ' ··i .. ·!· .. i .. ·!··· !··· .. 
". :2 ";8.200' ·; .. ·;·· ;· ·; .. ·; .. ·: .. Y·i ... : ... : ... : .. : 

::!:··!:.·!: ::!: :: !::i:::.::: · :::~ .~~ :·· :::: · ~.~~ ; .:: ::'.:~.~~: ... ; ... '1.0 

.:t::::ttt : :::: J:: :'::: ;: ::':::':: :: ::.f.!~ti:! :':::::::':::'::t : · :::i::: Figure 1.I(a) 

From Figure 1.l(b), (~) - 1.42755 g dm-3 atm- I 
p p=o-

.. 

i .4288 .. 
... : "': 
"': ·': .. ·1.4286' .. :. 

. ,,? .. ~ 

"f " '~ . 

.. , 
. ,: ... ~ .. ': 

.. , ... , .. ~ . ,! .. 'r"'~ 

..~ ... ~ ... ~ 
... ; .. ! .. ; .... : 

.. i . . i ... . : 
.. j ••. ~ 

Figure 1.I(b) 

M = RT (~) (0.0820615 dm3 atm mol-I K- 1) x (273.15 K) x (1.42755 g dm-3atm- l ) 
p p=o 

= 131.9987 g mol-II 

The value obtained for R deviates from the accepted value by 0.005 percent. The error results from the 
fact that only three data points are available and that a linear extrapolation was employed. The molar 
mass, however, agrees exactly with the accepted value, probably because of compensating plotting 
errors. 

The mass density p is related to the molar volume Vrn by 

M 

p 

where M is the molar mass. Putting this relation into the perfect gas law yields 

pVrn = RT so pM =RT 
p 
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Rearranging this result gives an expression for M; once we know the molar mass, we can divide by the 
molar mass of phosphorus atoms to determine the number of atoms per gas molecule 

RTp (8.314 Pa m3 mol-I) x [(100 + 273) K] x (0.6388kgm-3) 
M- --- - ----------------------~----------~----

- P - 1.60xl()4Pa 

= 0.124 kg mol- I = 124 g mol- I 

The number of atoms per molecule is 

124g mol - I 
----'------,- = 4.00 
31.0g mol- I 

suggesting a formula of ~ 

Use the perfect gas equation to compute the amount; then convert to mass. 

pV 
P V = nRT so n = RT 

We need the partial pressure of water, which is 53 percent of the equilibrium vapor pressure at the given 
temperature and standard pressure. 

p = (0.53) x (2.69 x 103 Pa) = 1.43 x 103 Pa 

(1.43 x 103 Pa) x (250 m3) - 2 
so n = = 1.45 x 10 mol 

(8.3145 J K- I mol-I) x (23 + 273) K 

or m = (l.45 x 102 mol) x (l8.0g mol-I) = 2.61 x 103 g = 12.61 kg 1 

E1.10(b) (a) The volume occupied by each gas is the same, since each completely fills the container. Thus solving 
for V we have (assuming a perfect gas) 

nJRT 0.225 g 
V = -- nNe = --------=-----,-

PJ 20.18 g mol- I 

= 1.115x 10-2 mol, PNe= 8.87kPa, T=300K 

(!.l15 x 10-2 mol) x (8.314 dm3 kPa K- I mol-I) x 300 K) - 3 
V= =3.137dm 

8.87 kPa 

=13.14dm3 1 

(b) The total pressure is determined from the total amount of gas, n = nCH4 + nAr + nNe. 

0.320 g - -2 0.175 g 
nCH4 = I = 1.995 x 10 mol nAr = = 4.38 x 1O-3mol 

16.04 g mol- 39.95 g mol- I 

n = (1.995 + 0.438 + 1.115) x 1O-2mol = 3.548 x 1O-2mol 

p = nRT [1.8] = (3.548 x 10-2 mol) x (8.314 d_m 3 kPa K- I mol-I) x (300 K) 

V 3.137dm3 

= 128.2 kPa 1 
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E1.11(b) This is similar to Exercise l.ll(a) with the exception that the density is first calculated. 

RT 
M = p- [Exercise 1.8(a)] 

p 

33.5mg -
p= ---3 =0.1340gdm-3, p= 152 Torr, T=298K 

250cm 

(0.1340gdm-3
) x (62.36dm3 TorrK- 1 mol-I) x (298K) I -II 

M= = 16.14gmol 
152 Torr 

E1.12(b) This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as that temperature 
at which the volume of a sample of gas would become zero if the substance remained a gas at low 
temperatures. The solution uses the experimental fact that the volume is a linear function of the Celsius 
temperature. 

Thus V = Vo + aVoO = Vo + bO , b = aVo 

At absolute zero, V = 0, or 0 = 20.oodm3 + 0.0741 dm3 °C- I x O(abs. zero) 

20.00 dm
3 

t °C t O(abs. zero) = - 3 I = -270 
0.0741 dm °C-

which is close to the accepted value of -273°C. 

nRT 
E1.13(b) (a) P = V 

n = 1.0mol 

T = (i) 273.15K; (ii) 500K 

V = (i) 22.414dm3; (ii) 150cm3 

(1.0 mol) x (8.206 x 10-2 dm3 atmK- I mol-I) x (273.15K) 
(i) P= 22.414dm3 

= t 1.0 atm t 

(1.0mol) x (8.206 x 10-2 dm3 atmK- I mol-I) x (5OOK) 
(ii) P = 0.150dm3 

= t 270 atm t (2 significant figures) 

(b) From Table (1.6) for H2S 

a = 4.484 dm6 atm mol- I b = 4.34 x 10-2 dm3 mol- I 

nRT an2 

P=V-nb-V2' 

(1.0 mol) x (8.206 x 10-2 dm3 atm K- I mol-I) x (273. 15 K) 

(i) P = 22.414 dm3 - (1.0 mol) x (4.34 x 10-2 dm3 mol I) 

(4.484 dm6 atm mol-I) x (1.0 mol)2 

(22.414 dm3)2 

= t 0.99 atm t 
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(ii) 
(1.0 mol) x (8.206 x 10-2 dm3 atm K- I mol-I) x (500K) 

p = 0.150dm3 - (1.0 mol) x (4.34 x 10- 2 dm3 mol I) 

(4A84dm6atmmor
1

) x (1.0mol)2 

(0.150 dm3)2 

= 185.6atm ~ 1190 atm 1 (2 significant figures). 

E1.14(b) The conversions needed are as follows: 

Therefore, 

a = 1.32 atm dm6 mol-2 becomes, after substitution of the conversions 

a = 11.34 x 10- 1 kg m5s-2 mol-2 ~ and 

b = 0.0436 dm3 mol - I becomes 

b = 14.36 X 10- 5 m3mol- 1 I 

E1.1S(b) The compression factor is 

pVm Vm 
z=-=-

RT V;:' 

(a) Because Vm = V;:' + 0.12 V;:' = (I. 12)V;:', we have Z = [Iill I Repulsive I forces dominate. 

(b) The molar volume is 

V = (1.12)V~ = (1.12) x (R;) 

(
0.08206dm3 atmK- I mol-I ) x (350K») 127 d 3 I-I 1 

V=(1.12)x 12atm =.' m mo . 

E1.16(b) (a) o RT (8.314JK- I mol-I) x (298.15 K) 
V - - - --------------~----~-

m - p - (200 bar) x (l05Pabar- l ) 

= 1.24 x 10-4 m3 mol- I = I 0.124 dm3 mol- I I 

(b) The van der Waals equation is a cubic equation in Vm. The most direct way of obtaining the molar 
volume would be to solve the cubic analytically. However, this approach is cumbersome, so we 
proceed as in Example 104. The van der Waals equation is rearranged to the cubic form 

3 ( RT) 2 (a) ab 3 ( RT) 2 (a) ab V m - b + P V m + p V m - p = 0 or x - b + P x + p x - p = 0 
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The coefficients in the equation are evaluated as 

b + RT = (3.183 x 1O-2 dm3 mol - I) + (8.206 x 1O-
2

dm
3 

mol- I) x (298.15 K) 
P (200 bar) x (1.013 atm bar-I) 

a 

P 

= (3.183 X 10-2 + 0.1208) dm3 mol- I = 0.1526 dm3mol - 1 

1.360 dm6 atm mol-2 3 3 I 2 -----------::- = 6.71 x 10- (dm mol - ) 
(200 bar) x (1.013 atm bar-I) 

ab (1.360 dm6 atmmol-2) x (3.183 x 1O-2dm3 mol- I) - 4 3 I 3 

P 
-------~--.:......---__;_------.:. = 2.137 x 10- (dm mol- ) 

(200 bar) x (1.013 atmbar- I) 

Thus, the equation to be solved is x3 - 0.1526x2 + (6.71 x 1O-3)x - (2.137 x 10-4) = O. 

Calculators and computer software for the solution of polynomials are readily available. In this case 

we find 

x = 0.112 or Vrn = 1 0.112 dm3 mol-II 

The difference is about 15 percent. 

E1.17(b) The molar volume is obtained by solving Z = pVrn / RT [1.17] , for Vrn , which yields 

ZRT (0.86) x (0.08206dm3 atmK- l mol- l
) x (300K) - 3 -I 

Vrn = -- = = 1.059dm mol 
p 20atm 

(a) Then, V = n Vrn = (8.2 x 10-3 mol) x (1.059 dm3 mol- I) = 8.7 x 10-3 dm3 = 18.7 cm3 1 

(b) An approximate value of B can be obtained from eqn 1.19 by truncation of the series expansion after 

the second term, B/Vrn , in the series. Then, 

B = Vrn (p;; - I) = Vrn X (Z - I) 

= (1.059 dm3 mol- I) x (0.86 - I) = \ -0.15 dm3mol- 1 \ 

E1.18(b) (a) Mole fractions are 

nN 2.5 mol ~6 
XN=-= =~ 

ntotal (2.5 + 1.5) mol 

Similarly, XH = 1 0.371 

(c) According to the perfect gas law 

Ptotal V = ntotal RT 

ntotalRT 
so Ptotal = --V-

_ (4.0 mol) x (0.08206 dm3 atm mol- I K- I) x (273.15 K) -140 1 
- 22.4dm3 - .. atm. 



THE PROPERTIES OF GASES 11 

(b) The partial pressures are 

PN = XNPtot = (0.63) x (4.0 atm) = 12.5 atm 1 

and PH = (0.37) x (4.0 atm) = 11.5 atm 1 

E1.19(b) The critical volume of a van der Waals gas is 

Vc = 3b 

so b = 1 Vc = 1( 148cm3 mol - I) = 49.3cm3 mol- I = I 0.0493 dm3 mol- I I 
By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an estimate 
of molecular size. The centers of spherical particles are excluded from a sphere whose radius is the 
diameter of those spherical particles (i.e. twice their radius); that volume times the Avogadro constant 

is the molar excluded volume b 

(
4n(2r)3 ) 

b=NA ---
3 

so r = ~ (~)1/3 
2 4nNA 

( )

IP 
I 3(49.3cm3 mol- l ) 

r=- I =1.94 xlO-S cm =11.94 xlO- IOml 
2 4n(6.022 x 1023 mol- ) 

The critical pressure is 

a 
Pc = 27b2 

so a = 27Pcb2 = 27(48.20 atm) x (0.0493 dm3 mol- I)2 = 13.16 dm6 atm mol- 2 1 

But this problem is overdetermined. We have another piece of information 

8a 
T. --­

c - 27Rb 

According to the constants we have already determined, Tc should be 

However, the reported Tc is 305.4 K, suggesting our computed alb is about 25 percent lower than it 
should be. 

E1.20(b) (a) The Boyle temperature is the temperature at which Iim vm~oo dZ /(d(l I Vm» vanishes. According 
to the van der Waals equation 

( 
RT a ) 

Z = pVm = v:-=-h - ~ Vm Vm a 
--- - --

RT RT Vm -b VmRT 
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so dZ ( dZ) ( dVrn ) 
d(l/Vrn ) = dVrn x d(l/Vrn ) 

= -V~ Cd:rn ) = -V~ CV:~rnb)2 + Vrnl-b + vtRT) 

V~b a 

(Vrn - b)2 RT 

In the limit of large molar volume, we have 

I
. dZ a a 
1m = b - - = 0 so - = b 

Vm ..... OO dO/Vrn ) RT RT 

a (4.484 dm6 atm mol-2) 
and T = - = = 11259 K I 

Rb (O.08206dm3 atmK- I mol-I) x (O.0434dm3 mol-I) 

(b) By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an estimate 

of molecular size. The centres of spherical particles are excluded from a sphere whose radius is the 

diameter ofthose spherical particles (i.e. twice their radius); the Avogadro constant times the volume 

is the molar excluded volume b 

(
47r(2r)3 ) 

b=NA ---
3 

so r = ~ (~)1/3 
2 47rNA 

( )
1/3 

1 3(0.0434 dm3 mol-I) 
r = - I = 1.286 x 10-9 dm = 1.29 x 10- 10 m = I 0.129 nm I 

2 47r(6.022 x 1023 mol- ) 

E1.21 (b) States that have the same reduced pressure, temperature, and volume are said to correspond. The reduced 

pressure and temperature for N2 at 1.0 atm and 25°C are 

P 1.0 atm Tr __ _ T __ (25 + 273) K __ 2.36 
Pr = - = = 0.030 and I, 

Pc 33.54 atm Tc 126.3 K 

The corresponding states are 

(a) For H2S 

P = PrPc = (0.030) x (88.3 atm) = 12.6 atm I 
T = TrTc = (2.36) x (373.2K) = 1881 K I 

(Critical constants of H2S obtained from Handbook of Chemistry and Physics.) 

(b) ForC02 

P = PrPc = (0.030) x (12.85 atm) = 12.2 atm I 
T = TrTc = (2.36) x (304.2 K) = 1718 K I 

(c) For Ar 

P = PrPc = (0.030) x (48.00atm) = 11.4 attn I 
T = TrTc = (2.36) x (l50.12K) = 1356 K I 
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E1.22(b) The van der Waals equation is 

which can be solved for b 

RT - 4 3 _, (8.3145JK-' mol-' ) x (288K) 
b = Vm - --a- = 4.00 x 10 m mol - ( 6 2 ) 

P+V2 4.0xI06 Pa+ 0.76m Pamol-
m (4.00 X 10- 4 m3 mol-')2 

= 11.3 x 10-4 m3 mol-' I 
The compression factor is 

z = pVm = (4.0 x 106 Pa) x (4.00 x 10-
4 

m
3 

mol- i) = 1 0.671 
RT (8.3145 J K-' mol-') x (288 K) 

Solutions to problems 

Solutions to numerical problems 

P1.1 Since the Neptunians know about perfect gas behavior. we may assume that they will write p V = nRT 
at both temperatures. We may also assume that they will establish the size of their absolute unit to be 

the same as the oN. just as we write 1 K = 1°C. Thus 

pV(T,) = 28.0dm3 atm = nRT, = nR x (T, + OON) . 

pV(T2) = 40.0dm3 atm = nRT2 = nR x (T, + 1000N). 

28.0dm3 atm 
orT, =----­

nR 

° 40.0 dm3 atm 
T, + 100 N= ---­

nR 

T, + 1000N 40.0dm3 atm - ° - . 
Dividing. = 3 = 1.429 or T[ + 100 N = 1.429T,. T, = 233 absolute UOltS. 

T, 28.0 dm atm 
As in the relationshi between our Kelvin scale and Celsius scale T = () - absolute zero(ON) so absolute 

zero (ON) = -233°N . 

COMMENT. To facilitate communication with Earth students we have converted the Neptunians' units of 

the pV product to units familiar to humans, which are dm3 atm. However, we see from the solution that only 

the ratio of pV products is required , and that will be the same in any civilization. 

Question. If the Neptunians' unit of volume is the lagoon (L). their unit of pressure is the poseidon (P). 
their unit of amount is the nereid (n). and their unit of absolute temperature is the titan (T). what is the 
value of the Neptunians' gas constant (R) in units of L. p. n. and T? 

P1.3 The value of absolute zero can be expressed in terms of a by using the requirement that the volume of 
a perfect gas becomes zero at the absolute zero of temperature. Hence 

0= Vo[l + a(}(abs. zero)]. 
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1 
Then () (abs. zero) = --. 

ex 

All gases become perfect in the limit of zero pressure, so the best value of ex and, hence, () (abs. zero) 
is obtained by extrapolating ex to zero pressure. This is done in Fig. 1.2. Using the extrapolated value, 
ex = 3.6637 x 1O-3°C- I, or 

()(abs.zero)=- I 3 I =1-272.95°cl, 
3.6637 x 10- °C- · . 

which is close to the accepted value of -273.15°C. 

3.672·· 
. i··~·· .; ..... ; .. i···;'··; . . . ... . 

. . . . . . . . . 
', .. !' .~ ... ~ ..... ~ .. : .. . ~ .. : ... : .. ,! .. ~ .. ,! . . ~ 

:··" 3.670' 

. .; .. . ! .. -: ... ~ .. . . . ~ . . ! ...... ! .. -: .. ! .. ~ .. ~ •. ~ ... ~ .! .. : .. .. ,. '., . ... ~ .. : .. ';' .. : .. ':' .. : .. ~ .. . ~ ... " ... _." 
;f'3.~$ · .;.: .. ~ .. ; .. ; ... ; . . . . 
'U i •• ···;···i···; .. ·j· ··;···i.·,: .. i.·{·····I···:···I·· 
~ G:~::rT: .~ .. : .. ':' .. ; .. ':' .. ; .. ; ... ~ 
! ~.: .. ~ ... ; ..... ~ .. : ... : .. : .. : ... : .. ~ .. . ; 
~o 3.666· .~ .. ~ .. ~ .. : .. ~ ... " 
: - .: .. : ... ~ .. · ··~ ··:··7·· : 

'''3 .664 ' 
. . . . . . . . . . 

. - ..•. • ~ •. .• ••• . ~ "!"':- ":"~' ' : .. ~ . . ': .. ~ ••. ~ 

.... _ .... ........ .... . · . . . . . . . . . . . . .. ~ .. ~ ... ~ .. : .. -:- .. : .. ~ 
.. ; .. , .. , "! 
. .~ .. : .. ': .. : .. .:.. .. :. · ..... 
.. ~ ... , ................. , · . . . . . . 
.. ~ .. ; .. . ~ .. : .. ~ ... ; .. ~ . 

. ,',. ,! .. ~ 

...... 

.: .. ; ... ~ .. ~ .. : 

Figure 1.2 

p nR. p P3 . 
- = constant, If n and V are constant. Hence, - = - , where P IS the measured pressure at 

T V T T3 
temperature, T, and P3 and T3 are the triple point pressure and temperature, respectively. Rearranging, 

P=(~~)T. 
~ ~~ I ... 

The ratio - is a constant = = 0.0245 kPa K- . Thus the change III P, t.p, IS proportIOnal to 
T3 273.16K 

the change in temperature, t.T : t.p = (0.0245 kPaK-I) x (t.T) . 

(a) t.p = (0.0245 kPaK-I) x (LOOK) = I 0.0245 kPa I· 
(b) Rearranging,p= (!.-)P3 = (373.16K) x (6.69kPa) =19.14kPal. 

T3 273.16K 

(c) Since f is a constant at constant n and V, it always has the value 0.0245 kPa K -I ; hence 
T 

t.p = P374.15K - P373.15K = (0.0245 kPa K- 1
) x (1.00 K) = I 0.0245 kPa I· 

_ RT _ (8.206 x 10-2 dm3 atm K- I mol-I) x (350 K) -1125 d 3 I-I I 
(a) Vrn - - - . . m mo . 

P 2.30atm 
RT a RT 

(b) Fromp = -- - 2 [1.2Ib], we obtain Vrn = ( ) + b [rearrangeI.21b]. 
Vrn -b Vrn + a 

p V2 
rn 
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Then, with a and b from Table 1.6, 

(8.206 x 1O- 2 dm3 atmK- I mol - l ) x (350K) 2 3 I 
Vm "'" 2 + (5.42 x 10- dm mol - ) 

(2.30 atm) + (6.260dm6 atm mol - 2)/ (12.5 dm3 mol- I) ) 

28 .72dm
3 

mol-
I 

( 2 3 ) I I "'" + 5.42 x 10- dm mol- I "'" 12.3dm3 mol-I . 
2.34 

Substitution of 12.3 dm3 mol- I into the denominator of the first expression again results in 

Vrn = 12.3 dm3 mol- I, so the cycle of approximation may be terminated. 

P1.9 As indicated by eqns 1.18 and 1.19 the compression factor of a gas may be expressed as either a virial 

expansion in p or in ( :m ). The virial form of the van der Waals equation is derived in Exercise 1.20(a) 

and is p = ~: { 1 + (b - RaT) x ( : m) + ... } 

Rearranging Z = pV
m 

= I + (b - ~) x (_1_) + ... 
' RT RT Vm 

On the assumption that the perfect gas expression for V m is adequate for the second term in this expansion, 

we can readily obtain Z as a function of p. 

(a) Tc = 126.3 K. 

V m = (R;) x Z = R; + (b - :T) + ... 

(0.08206dm3 atm K- I mol - I) x (126.3 K) 

1O.Oatm 

+ {(0.0387 dm3 mol - I) _ ( 1.352 dm
6 

atm mol-
2 

) } 

(0.08206 dm3 atm K- I mol- I) x ( 126.3 K) 

= (1.036 -0.092) dm3 mol - 1 =10.944dm3 mol - l l. 
Z 

_ (l!...-) (V) _ (1O.0atm) x (0.944dm3 mol-I) 
- x m - =0.911. 

RT (0.08206dm3 atm K-I mol-I) x (126.3 K) 

(b) The Boyle temperature corresponds to the temperature at which the second virial coefficient is zero, 

hence correct to the first power in p, Z = 1, and the gas is close to perfect. However, if we assume 

that N2 is a van der Waals gas, when the second virial coefficient is zero, 

(b-~) =0 
RTB ' 

a 
or TB =-. 

bR 

T 
1.352 dm6 atm mol- 2 

B = = 426K. 
(0.0387dm3 mol I) x (0.08206dm3atrnK-I mol-I ) 
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The experimental value (Table 1.5) is 327.2 K. The discrepancy may be explained by two 
considerations. 

1. Terms beyond the first power in p should not be dropped in the expansion for Z. 
2. Nitrogen is only approximately a van der Waals gas. 

RT 
WhenZ = I , Vrn = -, and using TB = 327.2K 

p 

(0.08206 dm3 atm K- I mol-I) x 327.2 K 

10.Oatm 

= 12.69dm3 mol-II 

and this is the ideal value of Vm . Using the experimental value of TB and inserting this value into 

the expansion for V rn above, we have 

0.08206 dm3 atm K-1mol- 1 x 327.2 K 
Vrn = ----------------------------

10.Oatm 

{ 

3 I ( 1.352 dm
6
atm mol-

2 
) } + 0.0387 dm mol- -

0.08206dm3 atmK-l mol- 1 x 327.2K 

= (2.685 - 0.012) dm3mol- 1 = 12.67 dm3 mol-II 

Vrn 2.67 dm3 mol-I 
and Z = - = = 0.992 ~ I . 

V;;' 2.69dm3 mol-I 

(c) TI = 621 K [Table 2.9]. 

0.08206dm3atm K-Imol- I x 621 K 
Vrn = ----------~~------------

1O.Oatm 

{ 

3 I ( 1.352 dm
6
atm mol-

2 
) } + 0.0387 dm mol - -

0.08206 dm3 atm K -I mol-I x 621 K 

= (5.096 + 0.012) dm3 mol-I = 15.11 dm3 mol-II 

5.11 dm3mol- 1 

and Z = = 1.002 ~ I. 
5.lOdm3 mol-I 

Based on the values of TB and TJ given in Tables 1.4 and 2.9 and assuming that N2 is a van der Waals 

gas, the calculated value of Z is closest to I at I!i], but the difference from the value at T B is less 

than the accuracy of the method. 

_ molar mass _ M _ 18.02g mol-I -10 353 d 3 I-I 1 
(a)Vm - . - - - .. 1 mmo . 

densIty p 1.332 x \02 gdm-3 

_pVm _ (327.6atm) x (0.1353dm
3

mol-
l
) -1069571 

(b) Z - [1.l7b] - I -. , 
RT (0.08206 dm3 atm K-I mol- ) x (776.4 K) 
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(e) Two expansions for Z based on the van der Waals equation are given in Problem 1.9. They are 

{ 

3 ( 5.464dm
6 

atmmol-
2 

)} = 1 + (0.0305dm mol- I)-
(0.08206dm3 atm K-I mol-I) x (776.4 K) 

J 
x 0.J353dm3 mol- 1 = 1-0.4084=0.5916~0.59. 

Z = 1+ (RIT) x (b - :T) x (P) + ... 

I = I + -----,;--------;-----­
(0.08206dm3 atmK-1 mol-I) x (776.4K) 

x (0.0305 dm mol-I) - x 327.6 atm 
{ 

3 ( 5.464 dm
6 

atm mol-
2 

)} 

(0.08206dm3 atm K-I mol-I) x (776.4 K) 

= 1- 0.2842 ~ lo.nl. 

I 
In this case the expansion in p gives a value close to the experimental value; the expansion in -

Vrn 
is not as good. However, when terms beyond the second are included the results from the two 
expansions for Z converge. 

a 
Vc = 2b, Tc = 4bR [Table 1.7] 

Hence, with Vc and Tc from Table 1.5, b = ~ Vc = ~ x (118.8 cm3 mol-I) = 159.4 cm3 mol-I I. 
a = 4bRTc = 2RTc Vc 

Hence 

= (2) x (8.206 x 10-2 dm3 atmK- 1 mol-I) x (289.75K) x (118.8 x 10-3 dm3 mol-I) 

= 15 .649 dm6 atm mol-2 1. 

(1.0 mol) x (8.206 x 10- 2 dm3 atm K- I mol-I) x (298 K) 

(1.0dm3) - (1.0 mol) x (59.4 x 10-3 dm3 mol-I) 

x exp 
( 

-(l.Omol) x (5.649dm6 atmmol-2) ) 

(8.206 x 10- 2 dm3 atmK-1 mol-I) x (298K) x (1.0dm6 atmmol- l ) 

= 26.0atm x e-O.23T = 121 atm I. 
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Solutions to theoretical problems 

PU5 This expansion has already been given in the solutions to Exercise 1.20(a) and Problem 1.14; the 
result is 

C h· .. RT ( B C ) ompare t IS expansion wlthp = - 1+ - + - + ... [1.19] 
Vm Vm Vm2 

and hence find I B = b - iT I and Ie = b2 1. 

Since C = 1200 cm6 mol-2 , b = C I/2 = 134.6 cm3 mol - II 

a = RT(b - B) = (8.206 x 10-2) x (273 dm3 atm mol-I) x (34.6 + 21.7) cm3 mol-I 

= (22.40 dm3 atm mol- I) x (56.3 x 10- 3 dm3 mol - I) = 11.26 dm6 atm mol-2 1. 

P1.17 The critical point corresponds to a point of zero slope that is simultaneously a point of inflection in a 
plot of pressure versus molar volume. A critical point exists if there are values of p, V, and T that result 
in a point that satisfies these conditions. 

I " th, ,ri,kal poiOl. 

Th
. -RTc V; + 2BVc - 3C = 0 } 

at IS, 2 
RTcVc - 3BVc + 6C = 0 

~C~2 which solve to Vc = - , Tc = -- . 
B 3RC 

Now use the equation of state to find Pc 

RTc B C (RB2) (B) ( B )2 ( B)3 iB3l 
Pc = V; - V2 + vg = 3RC x 3C - B 3C + C 3C = ~. 

PcVc (B
3

) (3C) (I) (3RC) III It follows that Zc = RTc = 27C2 x Ii x R x fi2 = llJ· 

P1.19 For a real gas we may use the virial expansion in terms of p [1 .18] 

nRT RT I 
P = -(I + B'p + ... ) = p-(I + B P + . .. ) 

V M 
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P RT RTB' 
which rearranges to - = - + --p + .... 

p M M 

p . B'RT . 3 th limi·· I . Therefore, the limiting slope of a plot of p against p IS ~. From Fig. I. e tmg s ope IS 

B'RT 

M 

(5.84 - 5.44) x 104 m2 s-2 _ 44 10-2 k - I 3 
~----'--...,...,..----:,-;-:::-- - . X g m . 
(10.132 - 1.223) x IQ4Pa 

RT 
From Fig. 1.3, - = 5.40 x 104 m2 s-2 ; hence 

M 

, _4.4xlO-
2

kg-
l

m
3 

-081 10-6p-1 
B- 22- . x a, 

5.40 x IQ4 m s-

B' = (0.81 x 1O-6 Pa- l ) x (1.0133 x 105 Paatm- l
) =10.082atm- l l. 

B = RTB' [Problem 1.18] 

= (8.206 x 10-2 dm3 atm K- I mol-I) x (298 K) x (0.082 atm- I) 

= 12.0dm3 mol - I I. 

- y = 5.3963 + 0.046074x R = 0.99549 
5.9 

5.8 
~ 

I", 

E 5.7 
b 

:§: 5.6 
,::, 

5.5 

5.4 
0 2 4 6 8 10 12 

p/( 104 Pa) Figure 1.3 

P1.21 The critical temperature is that temperature above which the gas cannot be liquefied by the application 
of pressure alone. Below the critical temperature two phases, liquid and gas, may coexist at equilibrium, 

and in the two-phase region there is more than one molar volume corresponding to the same conditions 

of temperature and pressure. Therefore, any equation of state that can even approximately describe this 

situation must allow for more than one real root for the molar volume at some values of T and p, but 
as the temperature is increased above Te , allows only one real root. Thus, appropriate equations of state 

must be equations of odd degree in V m. 

The equation of state for gas A may be rewritten V~ - (RT / p) V m - (RTb / p) = 0, which is a quadratic 
and never has just one real root. Thus, this equation can never model critical behavior. It could possibly 
model in a very crude manner a two-phase situation, since there are some conditions under which a 

quadratic has two real positive roots, but not the process of liquefaction. 
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The equation of state of gas B is a first-degree equation in Vrn and therefore can never model critical 
behavior, the process of liquefaction, or the existence of a two-phase region. 

A cubic equation is the equation of lowest degree that can show a cross-over from more than one real 
root to just one real root as the temperature increases . The van der Waals equation is a cubic equation 
in Vrn . 

P1.23 The two masses represent the same volume of gas under identical conditions, and therefore, the same 
number of molecules (Avogadro's principle) and moles, n. Thus, the masses can be expressed as 

nMN = 2.2990 g 

for 'chemical nitrogen' and 

for 'atmospheric nitrogen ' . Dividing the latter expression by the former yields 

so XAr (MAr _ I) = 2.3102 - 1 
MN 2.2990 

(2.3102/ 2.2990) - 1 (2.3102/ 2.2990) - I ~ 
and XA - = I = L.2:2.!..!J . 

r - (MAr/MN) - 1 (39.95gmol 1)/ (28.013gmol - I) 

COMMENT. This value for the mole fraction of argon in air is close to the modem value. 

Solutions to applications 

P1.25 I t = 103 kg. Assume 300 t per day. 

300 X 103 kg 
n(S02) = I = 4.7 x 106 mol. 

64 x 10- 3 kg mol 

V = nRT = (4.7 x 106 mol) x (0.082 dm
3
atm K-

1 
mol - I) x 1073 K = 14.1 x 108 dm3 1. 

p 1.0atrn 

P1.27 The pressure at the base of a column of height H is p = pgH (Example 1.1). But the pressure at any 
altitude h within the atmospheric column of height H depends only on the air above it; therefore 

p = pg(H - h) and dp = -pg dh . 

pM pMgdh . . dp Mgdh 
Since p = - [Problem 1.2], dp = ---, LmplYIng that - = --RT 

~ ~ p 

This relation integrates to p = poe- Mgh/RT 

For air M ~ 29 g mol- 1 and at 298 K 
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(a) h = 15 cm. 

P = Po x e( -O.15m)x( 1.l5 x lO-
4

m-
1
) = 0.99998 Po ; 

(b) h = II km = 1.1 X 104 m. 
P = Po x e(- l.l x 1O- 4)x(1.15 x IO-4m- l) = 0.28 Po; 

Refer to Fig. 1.4. 

F,op 

1 

~ T Air 
h . 
l (envlronment) 

1 
Fbottom 

Ground 

77777777777 

The buoyant force on the cylinder is 

F buoy = F bottom - FlOP 

= A(Pbottom - Ptop) 

according to the barometric formula. 

- Mgh / RT 
Ptop = Pbotlome 

Figure 1.4 
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where M is the molar mass of the environment (air). Since h is small, the exponential can be expanded 

in a Taylor series around h = 0 (e-x = 1 - x + ~x2 + .. -). Keeping the first-order term only yields 

( Mgh) 
Ptop = Pbottom I - RT . 

The buoyant force becomes 

( Mgh) (pbottomM) 
Fbuoy = APbottom I - I + RT = Ah RT g 

(
Pbottom VM) M 

= RT g = n g 

n is the number of moles of the environment (air) displaced by the balloon, and nM = m, the mass of 

the displaced environment. Thus Fbuoy = mg. The net force is the difference between the buoyant force 
and the weight of the balloon. Thus 

Fnet = mg - mballoon g = (m - mballoon)g 

This is Archimedes ' principle. 



The First Law 

Answers to discussion questions 

02.1 Work is a precisely defined mechanical concept. It is produced from the application of a force through a 
distance. The technical definition is based on the realization that both force and displacement are vector 
quantities and it is the component of the force acting in the direction of the displacement that is used in 
the calculation of the amount of work, that is, work is the scalar product of the two vectors. In vector 
notation w = - f . d = - fd cos e, where e is the angle between the force and the displacement. The 
negative sign is inserted to conform to the standard thermodynamic convention. 

Heat is associated with a non-adiabatic process and is defined as the difference between the adiabatic 
work and the non-adiabatic work associated with the same change in state of the system. This is the 
formal (and best) definition of heat and is based on the definition of work. A less precise definition of 
heat is the statement that heat is the form of energy that is transferred between bodies in thermal contact 
with each other by virtue of a difference in temperature. 

At the molecular level, work is a transfer of energy that results in orderly motion of the atoms and 
molecules in a system; heat is a transfer of energy that results in disorderly motion. See Molecular 

interpretation 2.1 for a more detailed discussion. 

02.3 The difference results from the definition H = U + PV; hence I'1.H = I'1.U + 1'1. (PV). As I'1.(PV) is 
not usually zero, except for isothermal processes in a perfect gas, the difference between I'1.H and I'1.U 

is a non-zero quantity. As shown in Sections 2.4 and 2.5 of the text, I'1.H can be interpreted as the heat 
associated with a process at constant pressure, and I'1.U as the heat at constant volume. 

02.5 In the louIe experiment, the change in internal energy of a gas at low pressures (a perfect gas) is zero. 
Hence in the calculation of energy changes for processes in a perfect gas one can ignore any effect due 
to a change in volume. This greatly simplifies the calculations involved because one can drop the first 
term of eqn 2.40 and need work only with dU = Cv dT. In a more sensitive apparatus, louie would 
have observed a small temperature change upon expansion of the ' real' gas. louie's result holds exactly 
only in the limit of zero pressure where all gases can be considered perfect. 

The solution to Problem 2.33 shows that the louie-Thomson coefficient can be expressed in terms of 
the parameters representing the attractive and repulsive interactions in a real gas. If the attractive forces 
predominate, then expanding the gas will reduce its energy and hence its temperature. This reduction 
in temperature could continue until the temperature of the gas falls below its condensation point. This 
is the principle underlying the liquefaction of gases with the Linde refrigerator, which utilizes the 
louIe-Thomson effect. See Section 2.12 for a more complete discussion. 
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02.7 The vertical axis of a thermogram represents Cp , and the baselines represent the heat capacity associated 
with simple heating in the absence of structural transformations or similar transitions. In the example 
shown in Fig. 2.16, the sample undergoes a structural change between TI and T2, so there is no reason to 
expect Cp after the transition to return to its value before the transition. Just as diamond and graphite have 
different heat capacities because of their different structures, the structural changes that occur during 
the measurement of a thermogram can also give rise to a change in heat capacity. 

E2.1(b) 

E2.2(b) 

E2.3(b) 

Solutions to exercises 

The physical definition of work is dw = -F dz [2.4] 

In a gravitational field the force is the weight of the object, which is F = mg 

If g is constant over the distance the mass moves, dw may be intergrated to give the total work 

1
Zf 1Zf 

W = - Fdz = - mg dz = -mg(Zf - Zi) = -mgh where h = (Zf - Zi) 
Zi Zi 

w = -(0.120 kg) x (9.81 m S- 2) x (50m) = -59 J = 159 J needed 1 

This is an expansion against a constant external pressure; hence w = -Pex l:!. V [2.8] 

The change in volume is the cross-sectional area times the linear displacement: 

l:!.V = (50.0cm2) x (15cm) x (~)3 = 7.5 x 1O-4m3, 
100 cm 

so w = -(121 x 103 Pa) x (7 .5 x 10-4 m3) = 1-91 J 1 as 1 Pa m3 = 1 J. 

For all cases l:!. U = 0, since the internal energy of a perfect gas depends only on temperature. (See 
Molecular interpretation 2.2 and Section 2. 11 (b) for a more complete discussion.) From the definition 

of enthalpy, H = U + pV, so l:!.H = l:!.U + l:!.(pV) = l:!.U + l:!. (nRT) (perfect gas). Hence, l:!.H = 0 as 
well, at constant temperature for all processes in a perfect gas. 

(a) 1 l:!.U = l:!.H = 0 1 

w = -nRT In (~) [2.11] 

= -(2.00 mol) x (8.3145 J K- 1 mol-I) x (22 + 273) K x In 31.7 dm: = 1-1.62 x 103 J 1 
22.8dm 

q = -w = 11.62 x 103 J 1 

(b) 1 l:!.U = l:!.H = 0 1 

w = -Pexl:!. V [2.8] 

where Pex in this case can be computed from the perfect gas law 

pV = nRT 



E2.4(b) 

E2.S(b) 

E2.6(b) 
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(2.00mol) x (8.3145J K- Imol- I) x (22 + 273) K I 3 
sop= 3 X (lOdmm- ) = 1.55 X 105 Pa 

31.7 dm 

- (1.55 X 105 Pa) X (31.7 - 22.8) dm 3 
_/_ 3 / 

and w = (lOdmm- I)3 _ . 1.38 x 10 J. 

q = -w = [ 1.38 X 103 J [ 

(C) / ~U = ~H = 0 1 

/ w = 0 1 [free expansion] q = ~U - w = 0 - 0 =@] 

COMMENT. An isothermal free expansion of a perfect gas is also adiabatic. 

The perfect gas law leads to 

PIV = nRTI or P2 = PI T2 = (111kPa) X (356K) =1 143kPai 
P2 V nRT2 TI 277 K 

There is no change in volume, so 1 w = 0 I. The heat flow is 

q = f Cy dT ~ Cy~T = (2.5) X (8.3145J K- I mol-I) X (2.00mol) X (356 - 277) K 

= [ 3.28 x 103 J [ 

~U = q + w = [ 3.28 X 103 J [ 

_ _ - (7.7 x 103 Pa) x (2.5 dm3) _ ~ 
(a) w--pex~V-(V) (lOdmm- I)3 -~ 
(b) w=-nRTln ~ [2.11] 

( 
6.56 g ) ( ) (2.5 + 18.5) dm3 

w=- I x 8.3145JK- l mol - 1 x (305K)x ln 3 
39.95 g mol- 18.5dm 

= /-52.8 J / 

~H = ~condH = - ~vapH = - (2.00 mol) x (35.3 kJ mol - I) = /-70.6 kJ / 

Since the condensation is done isothermally and reversibly, the external pressure is constant at 1.00 atm. 
Hence, 

q = qp = ~H = /-70.6 kJ / 

w = -Pex ~ V [2.8] where ~ V = Vliq - Vvap ~ - Vvap because Vliq « Vvap 

On the assumption that methanol vapor is a perfect gas, Vvap = nRT / p and P = Pex, since the 
condensation is done reversibly. Hence, 

w ~ nRT = (2.00 mol) x (8.3145 J K- I mol-I) x (64 + 273) K = [ 5.60 x 103 J [ 

and ~U = q + w = (-70.6 + 5.60) kJ = / -65.0kJ / 



E2.7(b) 

E2.8(b) 

E2.9(b) 
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The reaction is 

so it liberates 1 mol of H2(g) for every 1 mol Zn used. Work at constant pressure is 

w = -Pex~V = -pVgas = -nRT 

=-( 5.0g _I) X (8.3145JK- l mol- l ) x (23+273) K=I-188JI 
65.4 g mol 

(a) At constant pressure, q = ~H. 

f l
l°O+273K 

q= CpdT= [20.17+ (0.400I)T/K]dTJK- 1 

0+273 K 

[ 
I (T2)JI373K = (20.17) T + -(0.4001) x - J K- I 
2 K 273 K 

= [(20.17) x (373 - 273) + ~(0.4001) x (3732 - 2732)] J = 114.9 x 103 J 1 = ~H 

w = -p~V = -nR~T = - (1.00 mol) x (8.3145JK- 1 mol-I) x (lOOK) = 1-831 J I 

~U=q+w=(14.9-0.831)kJ=114.1 kJl 

(b) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, ~H = 114.9 kJ I and 

~U = 114.1 kJ I as above. At constant volume, w =@] and ~U = q, so q = 1+14.1 kJ I. 

For reversible adiabatic expansion 

(
V)I /C 

Tr = Tj V~ [2.28a] 

where 

CVm Cp,m- R 
c = - '- = --'-,-=--

R R 

so the final temperature is 

(37 .11 - 8.3145) J K-Imol- I 
---------:----;-1 -- = 3.463, 

8.3145J K-Imol-

( 
3 3) 1/ 3.463 500 x 10- dm 

Tr = (298.15 K) x 3 = 1200 K I 
2.00dm 

E2.10(b) Reversible adiabatic work is 

w = Cv~T [2.27] = n(Cp,m - R) x (Tr - Tj) 

where the temperatures are related by [solution to Exercise 2.15(b)] 

Tr = Tj (~~) lie [2.28a] where c = C~m = Cp,~ - R = 2.503 
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( )

1/ 2.503 
400 x 1O-3dm3 

So Tr = [(23.0 + 273.15) K] x 3 = 156 K 
2.00dm 

and w = ( 3.12 g -I) x (29.125 - 8.3145) J K- I mol- I x (156 - 296) K = 1-325 J 1 
28.0 gmol 

E2.11 (b) For reversible adiabatic expansion 

E2.12(b) 

E2.13(b) 

( 

3 3)1.3 (Vi) Y 500 x 10- dm 
so Pr = Pi - = (8.73 Torr) x 3 = 18.5 Torr I 

Vr 3.0dm 

qp = nCp,m!:!,.T [2 .24] 

C =~= 178J =153JK- I mol- I 1 
p,m n!:!"T 1.9 mol x 1.78K 

CV,m = Cp,m - R = (53 - 8.3) J K- I mol - I = 145 JK- I mol- II 

!:!"H = qp = Cp!:!"T [2.23b, 2.24] = nCp,m!:!,.T 

!:!"H = qp = (2.0 mol) x (37.1 I J K- I mol-I) x (277 - 250) K = 12.0 x 103 J mol-I I 

!:!"H = !:!,.U + !:!,.(pV) = !:!,.u + nR!:!"T so !:!,.U = !:!"H - nR!:!"T 

!:!,.U = 2.0 x 103 J mol - I - (2.0 mol) x (8.3145 J K- I mol - I) x (277 - 250) K 

= 11.6 x 103 J mol - I I 

E2.14(b) In an adiabatic process, q = @]. Work against a constant external pressure is 

-(78.5x1Q3 Pa)x(4xI5-15)dm3 _1_ 3 1 
w = -Pex !:!" V = I 3 -. 3.5 x 10 J. 

(IOdm m- ) 

!:!,.U = q + w = 1-3.5 x 103 J I 

One can also relate adiabatic work to !:!"T (eqn 2.27): 

w 
w = Cv!:!"T = n(Cp,m - R)!:!"T so !:!"T = , 

n(Cp,m - R) 

-3.5 x 103 J 
!:!,.T= =1-24KI. 

(5.0mol) x (37.11 - 8.3145)JK-I mol - I 

!:!"H = !:!,.U + !:!"(PV) = !:!,.U + nR!:!"T, 

= -3.5 x 103 J + (5.0 mol) x (8.3145JK- I mol-I) x (-24K) =1-4.5 x 103 J I 

E2.1S(b) In an adiabatic process, the initial and final pressures are related by (eqn 2.29) 

prV! = Pi Vr where 
Cp,m Cp,m 

y----
- CV,m - Cp,m- R 

20.8JK- I mol- I 6 ---------;------;- = I. 7 
(20.8 - 8.31) JK- I mol- I 
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Find Vi from the perfect gas law: 

. _ nRTi _ (1.5mol)(8.3IJK- l mol- I)(315K) =0017-1 3 
V,- - . m Pi 230 x 103 Pa 

so Vr = Vi (Pi) I/ y = (Om 71m3) (230 kPa) 1/ 1.67 = I 0.0205 m31. 
pr 170kPa 

Find the final temperature from the perfect gas law: 

Adiabatic work is (eqn 2.27) 

w = Cv/'o,.T = (20.8 - 8.31) JK- I mol-I x 1.5 mol x (279 - 315) K = 1-6.7 x 102 J I 

E2.16(b) At constant pressure 

q = /'o,.H = n/'o,.vapW = (0.75 mol) x (32.0 kJ mol-I) = 124.0 kJ I 

and w = -p/'o,.V ~ -pVvapor = -nRT = -(0.75 mol) x (8 .3145JK- I mol-I) x (260K) 

w = -1.6 x 103J = 1-1.6kJ I 

/'0,. U = w + q = 24.0 - 1.6 kJ = 122.4 kJ I 

COMMENT. Because the vapor is here treated as a perfect gas, the specific value of the external pressure 

provided in the statement of the exercise does not affect the numerical value of the answer. 

E2.17(b) The reaction is 

C6HsOH(l) + 702(g) ~ 6C02(g) + 3H20(l) 

/'o,.cW = 6/'o,.rW(C02) + 3/'o,.rW(H20) - /'o,.rW(C6HsOH) -7/'o,.rW (02) 

= [6(-393.15) + 3( -285.83) - (- 165.0) - 7(0)] kJ mol- I = 1-3053.6 kJ mol-I I 

E2.18(b) We need /'o,.rW for the reaction 

(4) 2B(s) + 3H2(g) ~ B2H6(g) 

reaction(4) = reaction(2) + 3 x reaction(3) - reaction(l) 

Thus, /'o,.rW = /'o,.rW{reaction(2)} + 3 x /'o,.rW{reaction(3)} - /'o,.rW{reaction(l)} 

= [-2368 + 3 x (-241.8) - (-1941)] kJ mol-I = 1-1152 kJ mol-I I 
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E2.19(b) For anthracene the reaction is 

"""e cr = """ell" - """ngRT [2.21], """ng = - ~ mol 

"""ecr = -7061kJmol- 1 - (-~ x 8.3 x 1O-3 kJK- l mol- 1 x 298K) 

= -7055kJmol- 1 

( 
2.25 x 10-

3 
g ) ( ) Iql = Iqvl = In"""ecrl = _I x 7055kJmol- 1 = 0.0922kJ 

172.23gmol 

c = M = 0.0922 kJ = 0.0683 kJ K- I = 168.3 J K- I I 
"""T 1.35 K 

When phenol is used the reaction is 

"""ell" = -3054kJmol- 1 [Table2.5] 

"""eU = """eH - """ngRT, """ng = -~ 

= (-3054kJmol - l ) + (~) x (8.314 X 1O-3 kJK- 1 mol-I) x (298K) 

= -3050 kJ mol-I 

Iql = ( 135 x 10-
3 
~) x (3050kJmOI- I) = 4.375kJ 

94.12gmol-

Iql 4.375kJ 
"""T = C = 0.0683 kJ K-I = 1+64.1 K I 

COMMENT. In this case f'>. cif and f'>. cH" differed by about 0.1 percent. Thus, to within 3 significant figures, 

it would not have mattered if we had used f'>.cH" instead of f'>. cif, but for very precise work it would. 

E2.20(b) The reaction is AgBr(s) -+ Ag+(aq) + Br-(aq) 

"""solJr = """rJr(Ag+,aq) + """rJr(Br-,aq) - """rJr(AgBr, s) 

= [105.58 + (-121.55) - (-100.37)] kJ mol-I = 1 +84.40 kJ mol- l I 

E2.21 (b) The combustion products of graphite and diamond are the same, so the transition C(gr) -+ C(d) is 
equivalent to the combustion of graphite plus the reverse of the combustion of diamond, and 

"""= 11" = [-393.51 - (395.41)] kJ mol-I = 1+ 1.90 kJ mol-I I 
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E2.22(b) (a) reaction(3) = (-2) x reaction(l) + reaction(2) and L'l.ng = -1 

E2.23(b) 

The enthalpies of reactions are combined in the same manner as the equations (Hess's law). 

L'l.r~(3) = (-2) x L'l.r~(l) + L'l.r~(2) 

= [(-2) x (52.96) + (-483 .64)] kJ mol-l 

= 1-589.56kJmOI- 1 1 

L'l.rlr = L'l.r~ - L'l.ngRT 

= -589.56kJmol- 1 - (-3) x (8.314JK- 1mol- 1) x (298K) 

= -589.56kJ mol- 1 + 7.43 kJmol- 1 = 1-582.13 kJ mol-II 

(b) L'l.fH>7 refers to the formation of one mole of the compound, so 

L'l.f~(HI) = ! (52.96 kJ mol-I) = 126.48 kJ mol-II 

L'l.f~(H20) = ! (-483.64kJmOI- 1
) = 1-241.82kJmol- 1 1 

L'l.r~ = L'l.rlr + RT L'l.ng [2.21] 

= -772.7kJmol- 1 +(5) x (8 .3145 x 1O-3kJK-lmol-l) x (298K) 

= 1-760.3 kJ mol-II 

E2.24(b) Combine the reactions in such a way that the combination is the desired formation reaction. The enthalpies 
of the reactions are then combined in the same way as the equations to yield the enthalpy of formation. 

!N2(g) + !02(g) ~ NO(g) 
NO(g) + !CI2(g) ~ NOCl(g) 

Hence, L'l. fHB(NOCI , g) = 1 +52.5 kJ mol-l 1 

E2.25(b) According to Kirchhoff's law [2.36] 

+ 90.25 
-!(75.5) 

+52.5 

100°C 

L'l.r~(lOO°C) = L'l.r~(25 ° C) + { L'l.rC;dT 
125°C 

where L'l.r as usual signifies a sum over product and reactant species weighted by stoichiometric 
coefficients. Because Cp,m can frequently be parametrized as 

Cp,m = a + bT + c/T2 
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the indefinite integral of Cp,m has the form 

Combining this expression with our original integral, we have 

Now for the pieces 

/).rH"(25 °C) = 2( -285.83 kJ mol - I) - 2(0) - 0 = -571.66 kJ mol - 1 

/).ra = [2(75.29) - 2(27.28) - (29.96)]JK- 1 mol - 1 = 0.06606kJK- 1 mol - 1 

/).rb = [2(0) - 2(3.29) - (4.18)] x 10-3 J K- 2 mol - 1 = -10.76 x 10-6 kJ K-2 mol- 1 

/).rC = [2(0) - 2(0.50) - (-1.67)] x 105 J K mol- 1 = 67 kJ K mol- 1 

/).rH"(1oo 0c) = [-571.66 + (373 - 298) x (0.06606) + ~ (3732 - 2982) 

x (-10.76 x 10- 6) - (67) x (_1_ - _1_)] kJ mol- 1 

373 298 

= 1-566.93kJmol- 1 1 

E2.26(b) The hydrogenation reaction is 

The reactions and accompanying data which are to be combined in order to yield reaction (1) and 
/).rW(T) are 

(2) H2(g) + !02(g) -+ H20(l) /).cH"(2) = -285.83 kJ mol - 1 

(3) C2!it(g) + 302 (g) -+ 2H20(l) + 2C02(g) /).cH"(3) = -1411 kJ mol- 1 

(4) C2H2(g) + ~02(g) -+ H20(l) +2C02(g) /).cH"(4) = -13ookJmol- 1 

reaction (1) = reaction (2) - reaction (3) + reaction (4) 

(a) Hence, at 298 K: 

/).rH" = /).cH"(2) - /).cH"(3) + /).cH"(4) 

= [(-285.83) - (-1411) + (-1300)] kJ mol- 1 = 1-175 kJ mol-II 

/).r if' = /).rH" - /).ngRT [2.21]; /).ng = -1 

= -175kJmol-1 - (-1) x (2.48kJmol- 1) =1-173kJmOI- 1 1 
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(b) At 348 K: 

torF'(348 K) = torF'(298 K) + to rC;(348 K - 298 K) [Example 2.6] 

torCp = L vJC;m(J) [2.37] = C; m(C2IL!,g) - Cp~m(C2H2,g) - Cp~m (H2, g) 
J 

= (43 .56 - 43.93 - 28.82) x 10-3 kJ K- I mol- I = -29.19 x 10-3 kJ K- I mol- I 

to rF'(348K) = (-175kJmol- l) - (29.19 x 1O-3 kJK- I mol-I) x (50K) 

= 1-176kJmol- 1 1 

E2.27(b) NaCI, AgN03 , and NaN03 are strong electrolytes; therefore the net ionic equation is 

Ag+(aq) + Cl-(aq) --+ AgCI(s) 

torF' = tofF'(AgCI) - tofF'(Ag+) - tofF'(CI-) 

= [(-127.D7) - (105.58) - (-167.16)]kJmol- 1 = 1-65.49kJmol-1 1 

E2.28(b) The cycle is shown in Figure 2.1. 

Ionization 

Dissociation 

Vaporization 
Br 

Sublimation 
Ca 

-Formation 

-Solution 

~, 

Ca(g) + 2Br(g) 

~ 

Ca(g) + Br2(g) 

~ 

Ca(g) + Br2(1) 

~ 

Ca(s) + Br2(1) 

~~ 

CaBr2(s) 

~I' 

Ca2+ (g) + 2Br- (g) t 

Ca2+(g) + 2Br- (aq) ,~ 

Electron 
gain Br 

Hydration Br-

Hydration ci+ 
,~ 

Figure 2.1 

-tohydF'(Ca2+) = -tosolnF'(CaBr2) - tofF'(CaBr2, s) + tosubF'(Ca) 

+ tovapF' (Br2) + todissF' (Br2) + toionF' (Ca) 

+ toionF'(Ca+) + 2toegF'(Br) + 2to hydF'(Br-) 

= [-( - 103.1) - (-682.8) + 178.2 + 30.91 + 192.9 

+ 589.7 + 1145 + 2(-33\.0) + 2(-337)] kJ mol-I 

= 11587 kJ mol-II 

so tohydW (Ca2+) = 1-1587kJmol- 1 1 
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E2.29(b) The Joule-Thomson coefficient J-t is the ratio of temperature change to pressure change under conditions 
of isenthalpic expansion. So 

J-t - (aT) "'" 6.T = __ -_I_O_K __ = I 0.48 Katm- I I 
ap H 6.p (1.00 - 22) atm 

E2.30(b) The internal energy is a function of temperature and volume, Urn = Um(T, Vm), so 

dUm = -- dT+ -- dVm (
aUm) (aUm) 
aT Vm aVm T 

For an isothermal expansion dT = 0; hence 

a a 
----:;------;-+------;;------;-
22.1 dm3 mol-I 1.00dm3 mol-I 

2l.la - 3 
------;;-3-----;-1 = 0.95475adm- mol 
22.1 dm mol-

From Table 1.6, a = 1.337 dm6 atm mol-I 

6.Um = (0.95475 mol dm3) x (1.337 atm dm6 mol-2) 

= 129Pam3 mol- 1 =1129JmOI- 1 1 

w =-fpdVm where 
RT a 

p = --- - 2 for a van der Waals gas. 
Vm - b Vm 

Hence, 

w = -/ (~) dVm + / -;'dVm = -q+ 6. Urn 
Vm - b Vm 

Thus 

/

22.1 dm 3 mol -
1 

( RT ) 122.1 dm3 mol - 1 

q = --- dVm = RTln(Vm - b) 3 I 
l.00dm3 mol - 1 Vm - b l.00dm mol -

(
22.1 - 3.20 x 10-2

) I I = (8.314 JK- 1 mol-I) x (298K) x In 2 = +7.7465kJmol- ~ 
1.00 - 3.20 x 10-

and w = -q + 6.Um = -(7747 J mol-I) + (l29Jmol- l
) = 1-76181 mol-I I = 1-7.62kJmol- 1 1 



E2.31(b) The expansion coefficient is 

V' (3 .7 X 1O-4 K- 1 +2 x l.52 x 1O- 6 TK-2 ) 

V 

V' [3.7 x 10-4 + 2 x 1.52 x 10- 6 (T / K)] K- I 

= V' [O.77 + 3.7 x 1O- 4 (T / K) + 1.52 x 1O-6 (T / K) 2] 

[3.7 x 10-4 + 2 x 1.52 x 10-6(310)] K- I I 3 I I = = l.27 x 10- K-
0.77 + 3.7 x 10-4 (310) + 1.52 x 10 6(310)2 

E2.32(b) Isothermal compressibility is 

so 
LiV 

Lip = -­
VKT 
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A density increase of 0.08 percent means Li V /V = -0.0008. So the additional pressure that must be 
applied is 

Lip - 0.0008 = 13.6 x 102 at~ 1 
- 2.21 x 10- 6 atm- I . . 

E2.33(b) The isothermal Joule-Thomson coefficient is 

( 8H) = -J1,Cp = -(1.11 K atm- I) x (37.11 J K- I mol-I) = 1-41.2J atm- 1 mol - I 1 
8p T 

If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which must be 

supplied to maintain constant temperature is LiH in the following relationship 

LiH/ n = -41.2Jatm-1 mol-I so LiH = -(41.2Jatm- 1 mol-l)nLip 
Lip 

LiH = -(4l.2J atm- I mol-I ) x (l2.0mol) x (-55 atm) = 127.2 x 103 J I 

Solutions to problems 

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are 
for 298 K. 

Solutions to numerical problems 

P2.1 The temperatures are readily obtained from the perfect gas equation, T = P V , 
nR 

(1.00atm) x (22.4dm3) ~ 
TI = = ~ = T3 [isotherm). 

(1.00 mol) x (0.0821 dm3 atm mol- I K-l) 

Similarly, T2 = 1546 K I. 


