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Preface

This manual provides detailed solutions to all the end-of-chapter (b) Exercises, and to the odd-numbered
Discussion Questions and Problems. Solutions to Exercises and Problems carried over from previous
editions have been reworked, modified, or corrected when needed.

The solutions to the Problems in this edition rely more heavily on the mathematical and molecular
modelling software that is now generally accessible to physical chemistry students, and this is partic-
ularly true for many of the new Problems that request the use of such software for their solutions. But
almost all of the Exercises and many of the Problems can still be solved with a modern hand-held sci-
entific calculator. When a quantum chemical calculation or molecular modelling process has been called
for, we have usually provided the solution with PC Spartan Pro™ because of its common availability.

In general, we have adhered rigorously to the rules for significant figures in displaying the final
answers. However, when intermediate answers are shown, they are often given with one more figure
than would be justified by the data. These excess digits are indicated with an overline.

We have carefully cross-checked the solutions for errors and expect that most have been eliminated.
We would be grateful to any readers who bring any remaining errors to our attention.

We warmly thank our publishers for their patience in guiding this complex, detailed project to
completion.

P. W A.
C.AT
M.P.C.

C.G.
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PART 1 Equilibrium




The properties of gases

D11

D1.3

D1.5

Answers to discussion questions

An equation of state is an equation that relates the variables that define the state of a system to each other.
Boyle, Charles, and Avogadro established these relations for gases at low pressures (perfect gases) by
appropriate experiments. Boyle determined how volume varies with pressure (V o 1/p), Charles how
volume varies with temperature (V o T'), and Avogadro how volume varies with amount of gas (V  n).
Combining all of these proportionalities into one we find

nT
Vox—.
p

Inserting the constant of proportionality, R, yields the perfect gas equation

RnT
V="""_or pV=nRT.
p

Consider three temperature regions:

(1) T < Tg. At very low pressures, all gases show a compression factor, Z = 1. At high pressures, all
gases have Z > 1, signifying that they have a molar volume greater than a perfect gas, which implies
that repulsive forces are dominant. At intermediate pressures, most gases show Z < 1, indicating
that attractive forces reducing the molar volume below the perfect value are dominant.

(2) T~ Tg.Z ~ 1 at low pressures, slightly greater than 1 at intermediate pressures, and significantly
greater than 1 only at high pressures. There is a balance between the attractive and repulsive forces
at low to intermediate pressures, but the repulsive forces predominate at high pressures where the
molecules are very close to each other.

(3) T > Tg. Z > 1 at all pressures because the frequency of collisions between molecules increases
with temperature.

The van der Waals equation ‘corrects’ the perfect gas equation for both attractive and repulsive
interactions between the molecules in a real gas. See Justification 1.1 for a fuller explanation.

The Bertholet equation accounts for the volume of the molecules in a manner similar to the van der
Waals equation but the term representing molecular attractions is modified to account for the effect of
temperature. Experimentally one finds that the van der Waals a decreases with increasing temperature.
Theory (see Chapter 18) also suggests that intermolecular attractions can decrease with temperature.



E1.1(b)

E1.2(b)

E1.3(b)
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This variation of the attractive interaction with temperature can be accounted for in the equation of state
by replacing the van der Waals a with a/T.

Solutions to exercises

(a) The perfect gas law is
pV = nRT

implying that the pressure would be

nRT

P=V

All quantities on the right are given to us except n, which can be computed from the given mass
of Ar.

25¢g —
n=———"— =0.626 mol
39.95 g mol ™!
0.626 mol) x (8.31 x 10~2dm? bar K~'mol~") x (30 + 273 K m
sop=( mol) x ( X m a}r mol™ ") x (30 + ):10.5bar
1.5dm
not 2.0 bar.

(b) The van der Waals equation is

_ RT a
P=Ya—b" V2
(8.31 x 10~2dm?> bar K~ 'mol™!) x (30 +273) K
sop =

"~ (1.53dm>/0.626 mol) — 3.20 x 10~2dm"> mol~!

(1.337 dm®atm mol~2) x (1.013 bar atm™!) =
- 3 = = =|10.4 bar
(1.5 dm?/0.626 mol)?

(a) Boyle’s law applies:

pV =constant so pfVi = piVi

and

piVe  (1.97 bar) x (2.14dm?)
p =5 = =1{1.07 bar
="y, (2.14 + 1.80) dm® [1.07 bar]

(b) The original pressure in bar is
1 atm 760 Torr
L= (1. = -803 T
P = (LT by x (1.013bar) X( 1 atm ) [803 Torr]

The relation between pressure and temperature at constant volume can be derived from the perfect

gas law

pV =nRT so pxT and %:’%
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THE PROPERTIES OF GASES §
The final pressure, then, ought to be

pTr (125kPa) x (11 +273) K
_ Pt _ =[120kP
="y (23 +273) K

According to the perfect gas law, one can compute the amount of gas from pressure, temperature,
and volume. Once this is done, the mass of the gas can be computed from the amount and the molar

mass using

pV =nRT

pV _ (1.00atm) x (1.013 x 10°Paatm™') x (4.00 x 10* m?)
RT ~ (8.3145J K 'mol™") x (20 + 273) K

and m = (1.66 x 10° mol) x (16.04 g mol™') = 2.67 x 10%g =|2.67 x 10’ kg

Identifying pex in the equation p = pex + pgh [1.3] as the pressure at the top of the straw and p as the
atmospheric pressure on the liquid, the pressure difference is

P —pex = pgh=(1.0x 10°kgm™) x (9.81ms~2) x (0.15m)

=[1.5x 10* Pa|(= 1.5 x 102 atm)

The pressure in the apparatus is given by

= 1.66 x 10°mol

SO n=

P = Pam + pgh [1.3]
Paum = 760 Torr = 1 atm = 1.013 x 10° Pa

1 kg
103 g

p=1013x10°Pa + 1.33 x 10* Pa=1.146 x 10° Pa=|115kPa

All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVy, /T will give
the best value of R.

pgh = 13.55 gcm'3 X (

106 3
) x ( = ) x 0.100m x 9.806 ms™> =133 x 10* Pa
-

The molar mass is obtained from pV = nRT = %RT

: ; m RT RT
which upon rearrangement gives M = — — = p—
Vp P

The best value of M is obtained from an extrapolation of p/p versus p to p = 0; the intercept is M /RT.

Draw up the following table

p/atm (pVm/T)/(dm® atm K~ 'mol ™) (p/p)/(dm_3atm‘1)

0.750 000 0.082 0014 1.428 59
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90
. PVm 3 1 —1
From Figure 1.1(a), T = l 0.082 061 5 dm” atm K~ mol
p=0
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Figure 1.1(a)

From Figure 1.1(b), (ﬁ) =142755¢ dm~3 atm™!
p p=0

Ell
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]

Figure 1.1(b)

M =RT (3) = (0.082 061 5 dm> atm mol~' K1) x (273.15K) x (1.42755 g dm 3atm™")
PJp=0

=(31.9987 g mol~!

The value obtained for R deviates from the accepted value by 0.005 percent. The error results from the
fact that only three data points are available and that a linear extrapolation was employed. The molar
mass, however, agrees exactly with the accepted value, probably because of compensating plotting
erTors.

E1.8(b) The mass density p is related to the molar volume Vi, by

M

-
where M is the molar mass. Putting this relation into the perfect gas law yields

M
PVm =RT so %:RT
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Rearranging this result gives an expression for M; once we know the molar mass, we can divide by the
molar mass of phosphorus atoms to determine the number of atoms per gas molecule

__RTp _ (8314Pam?mol™") x [(100 + 273) K] x (0.6388kg m ™)
T p 1.60 x 10* Pa

= 0.124 kg mol~! = 124 g mol ™!

M

The number of atoms per molecule is

124 ¢ mol ™!

——— =4.00
31.0g mol~!

suggesting a formula of

Use the perfect gas equation to compute the amount; then convert to mass.

pV
pV=nRT so n=—
RT

We need the partial pressure of water, which is 53 percent of the equilibrium vapor pressure at the given
temperature and standard pressure.

p = (0.53) x (2.69 x 10> Pa) = 1.43 x 10’ Pa

B (1.43 x 103 Pa) x (250m?)
T (83145JK - 'mol™!) x (23 +273)K

or m = (1.45 x 10 mol) x (18.0g mol™!) =2.61 x 10> g =|2.61 kg

(a) The volume occupied by each gas is the same, since each completely fills the container. Thus solving
for V we have (assuming a perfect gas)

so n = 1.45 x 10% mol

nyRT 0225¢
Ve Ne = —————
14 20.18 g mol™

=1.115 x 1072 mol, pne = 8.87kPa, T = 300K

y — (115 x 102 mol) x (8.314 dm’ kPaK™' mol™!) x 300 K)

8.87 kPa
~[3.14m’ ]

(b) The total pressure is determined from the total amount of gas, n = nCcH, + NAr + NNe.-

=3.137dm’>

0.320 g . 0.175 g
neHy, = ——————— = 1.995 x 10™%mol =——"° _—34 =
* " 16.04 g mol ! TAT = 3095 gmol T o0 < 107 mel
n = (1.995 4 0.438 + 1.115) x 10~%mol = 3.548 x 10~2mol
o= PR e (3.548 x 1072 mol) x (8.314 dm® kPa K~ mol~!) x (300 K)
v 3.137 dm®

=|28.2kPa
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E1.11(b)  This is similar to Exercise 1.11(a) with the exception that the density is first calculated.

RT
M = p— [Exercise 1.8(a)]
P

_ 335mg
= 250 cm3

0.1340g dm™?) x (62. 3 Torr K~ mol™!
M= ( gdm™) x (62.36 dm’ Torr K~ ! mol™!) x (298 K) [ 16.14 g mol!
152 Torr

E1.12(b) This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as that temperature
at which the volume of a sample of gas would become zero if the substance remained a gas at low
temperatures. The solution uses the experimental fact that the volume is a linear function of the Celsius
temperature.

=0.1340gdm™>3, p=152Tomr, T =298K

Thus V=V +aVpb = Vo + b0, b =aV)
At absolute zero, V = 0, or 0 = 20.00dm> + 0.0741 dm3 °C~" x @(abs. zero)

20.00 dm?
f(abs. zero) = ——— X = -270°C
(abs. zero) 0.0741 dm3 oC—l

which is close to the accepted value of —273 °C.

_ nRT
E113(b) (@ P~ 7y
n = 1.0mol

T = (i) 273.15K; (ii) S00K
V = (i) 22.414dm?; (ii) 150cm?

(1.0mol) x (8.206 x 10~2dm3 atm K~ mol™!) x (273.15K)
p L — -

22.414dm>
=[1.0atm]

_ (1.0mol) x (8.206 x 10~2 dm’ atm K" mol™") x (500K)
B 0.150 dm*

= (2 significant figures)

(b) From Table (1.6) for H;S

(@

(i) p

a=4484dmlatmmol™! b =4.34 x 1072 dm? mol™!

nRT an?

P=v_m~ v2

_ (1.0mol) x (8.206 x 10~2 dm’ atm K~! mol™") x (273.15K)
© 22414dm® — (1.0 mol) x (4.34 x 10-2dm’ mol ")

@

(4.484 dm® atm mol™") x (1.0 mol)?
(22.414 dm3)?

659 um]
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_ (1.0mol) x (8.206 x 10~%dm’ atm K~' mol™") x (500K)
~0.150dm’ — (1.0mol) x (4.34 x 10~2dm? mol )

(i)

(4.484 dmPatmmol ') x (1.0mol)2
(0.150 dm>)2

= 185.6atm ~ (2 significant figures).

E1.14(b) The conversions needed are as follows:

latm=1.013 x 10°Pa; 1Pa=1kgm 's72; 1dm®=10""m® 1dm’=10"3m?
Therefore,

a = 1.32 atm dm® mol 2 becomes, after substitution of the conversions

a= |T34 x 107" kg m®’s~2mol 2 |, and

b = 0.0436 dm> mol~! becomes

b= ’74.36 x 1073 m3mol ! l

E1.15(b) The compression factor is

7 — PVm _ E
RT 144

(a) Because Vy, = V2 +0.12V2 = (1.12)VQ, we have Z = | 1.12 Repulsive | forces dominate.

(b) The molar volume is

RT
V= (1.12)Vy = (1.12) x (7)

0.08206 dm? atm K~! mol ™! 350K
V=(1.12)><<( e RO R L ) T PR ——

12 atm

E116() (a)  yo _ RT _ B314JK mol ') x (298.15K)
" op (200 bar) x (105 Pabar~')

=1.24 x 10~*m3 mol~! =1{0.124 dm? mol~!

(b) The van der Waals equation is a cubic equation in V. The most direct way of obtaining the molar
volume would be to solve the cubic analytically. However, this approach is cumbersome, so we
proceed as in Example 1.4. The van der Waals equation is rearranged to the cubic form

RT b
v§,—<b+—)v,§+(5)vm—a—=0 orx3—(b+ﬂ>x2+<g)x—gl—)=0
P P p P P p

with x = Vi /(dm® mol™1).




10 STUDENT'S SOLUTIONS MANUAL

The coefficients in the equation are evaluated as

(8.206 x 1072 dm> mol™!) x (298.15 K)
(200 bar) x (1.013 atmbar™!)

RT
b+ 5 (3.183 x 1072 dm> mol™') +

= (3.183 x 1072 +0.1208) dm? mol~! = 0.1526 dm>mol~!

a 1.360 dm® atm mol 2 e
- = o= = 6.71 x 107°(dm” mol™")
P (200 bar) x (1.013 atm bar™")

ab (1360 dm® atmmol~2) x (3.183 x 10~2dm’ mol~!) o P x5
— = = =2.137 x 107*(dm’ mol™")
p (200 bar) x (1.013 atmbar™")

Thus, the equation to be solved is x> — 0.1526x2 + (6.71 x 10~3)x — (2.137 x 10~%) = 0.
Calculators and computer software for the solution of polynomials are readily available. In this case
we find

x=0.112 or Vp=]0.112dm> mol™!

The difference is about 15 percent.

E1.17(b) The molar volume is obtained by solving Z = pVp,,/RT [1.17], for Vp,, which yields

_ZRT _ (0.86) x (0.08206 dm’ atm K~' mol™") x (300K)

= 1.059 dm> mol ™!
p 20 atm

Vm

(a) Then, V = nVim = (8.2 x 10~ mol) x (1.059dm*mol~!) = 8.7 x 103 dm’® =

(b) An approximate value of B can be obtained from eqn 1.19 by truncation of the series expansion after
the second term, B/Vp,, in the series. Then,

V,
B:Vm<pR—;'—1)=me(Z—l)

= (1.059dm’ mol ") x (0.86 — 1) =| —0.15 dm*mol !

E1.18(b) (a) Mole fractions are
NN 2.5mol
=== -0.63
Niotal (2.5 + 1.5) mol
Similarly, xy =
(¢) According to the perfect gas law

PtotalV = nioralRT

Mol RT
Vv

4.0 mol) x (0.08206 dm? at -1 K-! 273.15K
=( mol) x ( n;;r:rr;o ) x ( )=
% m-

SO Protal =
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(b) The partial pressures are

PN = XNpiot = (0.63) x (4.0atm) =
and py = (0.37) x (4.0atm) =

E1.19(b) The critical volume of a van der Waals gas is

Ve =3b

sob = 1V = 1(148cm’ mol™") = 49.3cm® mol~! ={0.0493 dm> mol !

By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centers of spherical particles are excluded from a sphere whose radius is the
diameter of those spherical particles (i.e. twice their radius); that volume times the Avogadro constant
is the molar excluded volume b

__— 4r (2r)3 1/ 3 \'3
= SO = =
1 "= 32\ 4N,

1/3
1 3(49.3cm’ mol !
oo = 49, el ™) =194x108cm =194 x 10"°m
2 \4n

(6.022 x 103 mol™")

The critical pressure is

a

Pe= T

s0 a = 27p.b? = 27(48.20 atm) x (0.0493 dm® mol=")? =|3.16 dm® atm mol 2

But this problem is overdetermined. We have another piece of information

_ 8a
" 27Rb

Cc

According to the constants we have already determined, 7, should be

r_ 8(3.16 dm® atm mol2)
¢ 27(0.08206 dm? atm K~ mol~") x (0.0493 dm> mol~)

=231K

However, the reported T is 305.4 K, suggesting our computed a/b is about 25 percent lower than it
should be.

E1.20(b) (a) The Boyle temperature is the temperature at which limy, _, o dZ/(d(1/Vy,)) vanishes. According
to the van der Waals equation

( RT a)v
Z=PVm _ Vi —b V% m Vi a

RT RT Vm—b  VuRT
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dz ( dz ) dVn
80 —— =|—] x
d(1/Vm) dVm (d(l/Vm)>

dz -V, 1 a
=-V? (—) =-V2 ( i
™\ dVi m (Vm—b)2+vm—b+v§,RT

_ V2b a
" (Vm—b)2 RT

In the limit of large molar volume, we have

B o e s i) :
Vim—o00 d(1/Vin) RT RT
o (4484 dm® atmmol~2)
an ===
Rb  (0.08206 dm> atm K ! mol~!) x (0.0434 dm® mol ")

=[1259K]

(b) By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centres of spherical particles are excluded from a sphere whose radius is the
diameter of those spherical particles (i.e. twice their radius); the Avogadro constant times the volume
is the molar excluded volume b

47 (2r)3 1/ 3 \'?
b=Na\—3 S0 T=3\ann,

1/3
0.0434 dm> mol ™~
r=%( 3 il ))) =1.286 x 10~ dm = 1.29 x 10" m =[0.129 nm |

47(6.022 x 1023 mol ™!

E1.21(b) States that have the same reduced pressure, temperature, and volume are said to correspond. The reduced
pressure and temperature for N» at 1.0 atm and 25 °C are

1.0at T  (25+273)K
pe= P = 108M 1030 and T, = L= BTIIK_ 5
pe  3354am T. 1263K

The corresponding states are

(a) For HS

p = pepe = (0.030) x (88.3atm) =
T =TT = (2.36) x (3732K) =
(Critical constants of H,S obtained from Handbook of Chemistry and Physics.)
(b) For CO;

p = pepe = (0.030) x (72.85atm) =
T = T,T. = (2.36) x (304.2K) =

(¢) For Ar
p = prpe = (0.030) x (48.00atm) =
T = T;T. = (2.36) x (150.72K) =



E1.22(b)

P1.1

P1.3
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The van der Waals equation is

RT a
Vm—b V2

which can be solved for b

- -1
RT - (8.3145J K 'mol™!) x (288 K)
b=Vm— —7p =400 x 10" m’ mol™' — . =
P+ — 5 0.76 m° Pamol
V2 4.0 x 106 Pa + =
m (4.00 x 10~4 m3 mol~')?

=13 x107*m3 moli‘

The compression factor is

6 —4 3 -1
PVm _ (4.0 x 10°Pa) x (4.00 x 107" m” mol™") _
RT (8.3145J K~ mol™!) x (288K)

Solutions to problems
Solutions to numerical problems

Since the Neptunians know about perfect gas behavior, we may assume that they will write pV = nRT
at both temperatures. We may also assume that they will establish the size of their absolute unit to be
the same as the °N, just as we write 1K = 1°C. Thus

pV(T)) = 28.0dm® atm = nRT| = nR x (T} + 0°N),
pV(T2) = 40.0dm® atm = nRT> = nR x (T; + 100°N),

3 3

J t 40.0dm” atm

orT) = %a—m, Ti + 100°N = S
n

Ty 4+ 100°N _ 40.0dm’ atm

T ~ 28.0dm’ atm ,
As in the relationship between our Kelvin scale and Celsius scale T = 6§ — absolute zero(°N) so absolute
‘—233°N

= 1.429 or Ty + 100°N = 1.429T}, T; = 233 absolute units.

Dividing,

zero (°N) = x
COMMENT. To facilitate communication with Earth students we have converted the Neptunians’ units of
the pV product to units familiar to humans, which are dm3atm. However, we see from the solution that only
the ratio of pV products is required, and that will be the same in any civilization.

Question. If the Neptunians’ unit of volume is the lagoon (L), their unit of pressure is the poseidon (P),
their unit of amount is the nereid (n), and their unit of absolute temperature is the titan (T), what is the
value of the Neptunians’ gas constant (R) in units of L, P, n, and T?

The value of absolute zero can be expressed in terms of « by using the requirement that the volume of
a perfect gas becomes zero at the absolute zero of temperature. Hence

0 = Vy[1 + af(abs. zero)].
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1
Then 6 (abs. zero) = ——.
o

All gases become perfect in the limit of zero pressure, so the best value of & and, hence, 6 (abs. zero)
is obtained by extrapolating « to zero pressure. This is done in Fig. 1.2. Using the extrapolated value,
a =3.6637 x 1073°C~!, or

1
0(abs. zero) = ~36637 x 103°CT — —272.95°C|,

which is close to the accepted value of —273.15°C.

Figure 1.2

nR
; = v = constant, if n and V are constant. Hence, % == ? where p is the measured pressure at
3

temperature, T, and p3 and T3 are the triple point pressure and temperature, respectively. Rearranging,
p3
== )T.
g ( T3 )

The ratio i is a constant = w
T3 273.16K

the change in temperature, AT : Ap = (0.0245kPaK~!) x (AT).
(@) Ap = (0.0245 kPa K1) x (1.00K) =|0.0245 kPa |.

T 373.16K
(b) Rearranging, p = (F)m = (m> x (6.69kPa) =(9.14 kPa |.
3 .

(¢) Since % is a constant at constant n and V, it always has the value 0.0245 kPa K~!; hence

Ap = p37415K — Pa73.15Kk = (0.0245kPaK~!) x (1.00K) =|0.0245 kPa |.
, ~2dm3 1 mol~! 350K
@ Vo = E _ (8.206 x 107“dm” atmK~"' mol™") x ( ) —[125 dm® mol" |.
P

2.30atm
RT . RT
2 _ 2 [1.21b], we obtain Vi = —————
Vm—b V2 % a
Pty

= 0.0245 kPaK~!. Thus the change in p, Ap, is proportional to

(b) Fromp = + b [rearrangel.21b].
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Then, with a and b from Table 1.6,

(8206 x 1072dm? atm K~ mol™") x (350K)
(2.30 atm) + ((6.260 dm® atm mol~2)/(12.5 dm’ mol_l)z)

28.72 dm> mol ™!
~ %mo— n (5.42 x 102 dm? mor‘) ~[12.3 dm® mot-1}.

Vi & + (542 x 1072 dm3? mol™")

Substitution of 12.3 dm*mol™' into the denominator of the first expression again results in
Vm = 12.3 dm>® mol ™!, so the cycle of approximation may be terminated.

P1.9 As indicated by eqns 1.18 and 1.19 the compression factor of a gas may be expressed as either a virial

expansion in p or in v ) The virial form of the van der Waals equation is derived in Exercise 1.20(a)
m

RT 1
andisp= KL {14 (5= 2 ) (L) 4o

Vi RT Vi

. PVm a 1
R n,Z:——-:l (b——) )+
earranging RT + RT X (Vm)

On the assumption that the perfect gas expression for Vy, is adequate for the second term in this expansion,
we can readily obtain Z as a function of p.

Z=1+<%>x(b—Ra—T)p+~--

(@ T. = 126.3K.
RT RT a

_ (0.08206dm* atmK~! mol™") x (126.3K)
B 10.0 atm

(0.08206 dm? atm K—'mol ') x (126.3K)

= (1.036 — 0.092) dm> mol~! =1 0.944 dm3 mol~! |.

D (10.0 atm) x (0.944 dm> mol ")
Z=(=)x (Vy) = =0.911.
(RT ) ™ (0.08206 dm3 atm K~ mol~1) x (126.3K)

s {(0.0387 dm® mol™1) — ( 1.352 dm® atm mol 2 ) ]

(b) The Boyle temperature corresponds to the temperature at which the second virial coefficient is zero,
hence correct to the first power in p, Z = 1, and the gas is close to perfect. However, if we assume
that Ny is a van der Waals gas, when the second virial coefficient is zero,

b——2 ) =0 %
RTB =0, or B_Eﬁ.

1.352 dm® atm mol—2

Tg = = 426K.
(0.0387 dm® mol™!) x (0.08206 dm?> atm K—! mol~')
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The experimental value (Table 1.5) is 327.2 K. The discrepancy may be explained by two
considerations.

1. Terms beyond the first power in p should not be dropped in the expansion for Z.

2. Nitrogen is only approximately a van der Waals gas.

RT
WhenZ = 1,Vy = —, and using Tg = 327.2K
p

_ (0.08206 dm” atm K~'mol ™) x 327.2K
B 10.0 atm

=12.69 dm> mol !

and this is the ideal value of V. Using the experimental value of Tp and inserting this value into
the expansion for V;,, above, we have

0.08206 dm? atm K~ 'mol~! x 327.2K
m —
10.0 atm

0.08206 dm? atm K—'mol~! x 327.2K
= (2.685 — 0.012) dm*mol~! = |2.67 dm? mol~!

Vm 2.67 dm> mol ™!
Ve~ 2.69dm’ mol™!

4 !0 0387 dm®mol~! — ( 1.352 dm®atm mol 2 ) ]

and Z = =0.992 ~ 1.

(c) T1 = 621 K [Table 2.9].

_0.08206 dm*atm K~'mol ™' x 621K

m 10.0 atm
3 1 1.352 dm®atm mol 2
+ 10.0387dm” mol™" — 3 |
0.08206 dm” atm K—'mol ™' x 621 K
= (5.096 + 0.012) dm> mol~! =1 5.11 dm3 mol !
5.11dm’mol ™!
andZ = 20— 1002~ 1.
5.10dm” mol™

Based on the values of Tg and Tt given in Tables 1.4 and 2.9 and assuming that N» is a van der Waals
gas, the calculated value of Z is closest to 1 at , but the difference from the value at Ty is less
than the accuracy of the method.

molarmass M 18.02 gmol ™!
density ~ p 1332 x 102gdm™>

PV (327.6atm) x (0.1353 dm> mol ")
b) Z="—Z1[1.17b] = =-0.6957 )
) RT [ ] (0.08206 dm?® atm K—! mol~!) x (776.4K)

P11 (@) Vi = ={0.1353 dm® mol~! |.
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(c) Two expansions for Z based on the van der Waals equation are given in Problem 1.9. They are

z:1+(b_1%)x(vi)+...
.

=1+ {(0.0305 dm? mol™!) — (

5.464 dm® atm mol 2
(0.08206 dm? atm K—! mol~!) x (776.4K)

1
X —_—
0.1353 dm> mol~!

1 a
=1 — b— — & ¥
% +(RT)X( RT)X(p)+
N 1
(0.08206 dm® atm K—! mol™!) x (776.4K)

5.464 dm® atm mol 2
x {(0.0305 dm? mol™"y — - T x 327.6atm
(0.08206 dm” atm K—! mol™") x (776.4K)
=1-0.2842 ~[0.72].

=1—-0.4084 = 0.5916 = 0.59.

In this case the expansion in p gives a value close to the experimental value; the expansion in v

m
is not as good. However, when terms beyond the second are included the results from the two
expansions for Z converge.

a
P1.1 =2b Tpi= —= ;
3 Ve ;5 ©= R [Table 1.7]

1 1
Hence, with V and T, from Table 1.5, b = 5Vc =3 X (118.8cm3 mol™!) =|59.4 cm® mol ™! |.

a = 4bRT, = 2RT.V,
= (2) x (8.206 x 1072 dm? atmK ' mol™!) x (289.75K) x (118.8 x 1073 dm> mol™!)

= 5.649 dm® atm mol~2 .

Hence

RT e—/RTVa _ nRT e—na/RTV

P=v. "% V—nb

_ (1.0mol) x (8.206 x 10~ dm® atmK~" mol™!) x (298K)
(1.0dm*) — (1.0mol) x (59.4 x 10~3 dm> mol~!)

0 —(1.0mol) x (5.649 dm® atm mol~2)
(8.206 x 10~2dm> atm K—! mol™!) x (298 K) x (1.0 dm® atm mol~!)

= 26.0atm x e_O'23T = .
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Solutions to theoretical problems

P1.15 This expansion has already been given in the solutions to Exercise 1.20(a) and Problem 1.14; the
result is

—RT(1+[b a] 1 b?
p_vm RT Vm+v—%+“-).

; : . RT
Compare this expansion with p = — (l + L4 + - +--- ) [1.19]
Vi Vm V2

and hence find | B=b — % and.

Since C = 1200cm®mol~2, b= C'/2 =|34.6 cm? mol~!

a=RT(b— B) = (8206 x 1072) x (273dm> atmmol™') x (34.6 + 21.7) cm® mol~!

= (22.46dm3 atmmol ') x (56.3 x 1073 dm? mol']) :‘ 1.26 dm® atm mol 2 |.

P1.17 The critical point corresponds to a point of zero slope that is simultaneously a point of inflection in a
plot of pressure versus molar volume. A critical point exists if there are values of p, V, and T that result
in a point that satisfies these conditions.

_RT B C
P=v, vz T3

( ) _RT . 2B_3C _
WV /)r VE V3 oviT
8%p 2RT 6B 12C
vz) =vi “yatys =0

T m m m

at the critical point.

—— —RT.V? +2BV,—3C =0
* RT.V2-3BV.+6C =0
3C B?
which solveto V. =| — ||| T, = :
B 3RC

Now use the equation of state to find p.

RT. B C RBZ) (B) B(B)2+C(3>3 B
= —— — _—= —_— X _— —_ —_— _— = "
Pe=~y " v2Tvi~ \Gre 3C 3C 3C 27C2

peVe B? 3C 1 3RC 1
It follows that Z, = RT. =(2_7?) X (F x < x = )=|3|

P1.19 For a real gas we may use the virial expansion in terms of p [1.18]

B Bl RT(1+B’ Fronse)
P=— p =Py p
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hich w25 KE .
whic rearrangesop_ % K

/

T . . .
Therefore, the limiting slope of a plot of % against p is . From Fig. 1.3 the limiting slope is

B'RT _ (5.84—544) x 10*m?s~>
M (10.132-1223) x 10*Pa

=44 x102kg™ ' m?.

RT
From Fig. 1.3, - = 5.40 x 10* m? s~2; hence

, 44 x10%kg™'m’
T 540 x 10*m?s2

B = (0.81 x 107®Pa~") x (1.0133 x 10° Paatm~!) =|0.082atm™"' |.

B = RTB' [Problem 1.18]

=0.81 x 107%Pa~!,

= (8.206 x 10~2dm’ atm K" mol~") x (298 K) x (0.082atm™")

=|2.0dm3mol~! |.

59

58|
5.7

5.6

(plp)/ (10*m?s7")

5.5

5.4

p/(10* Pa) Figure 1.3

The critical temperature is that temperature above which the gas cannot be liquefied by the application
of pressure alone. Below the critical temperature two phases, liquid and gas, may coexist at equilibrium,
and in the two-phase region there is more than one molar volume corresponding to the same conditions
of temperature and pressure. Therefore, any equation of state that can even approximately describe this
situation must allow for more than one real root for the molar volume at some values of T and p, but

as the temperature is increased above T¢, allows only one real root. Thus, appropriate equations of state
must be equations of odd degree in Vp,.

The equation of state for gas A may be rewritten V,%, — (RT/p)Vm — (RTb/p) = 0, which is a quadratic
and never has just one real root. Thus, this equation can never model critical behavior. It could possibly
model in a very crude manner a two-phase situation, since there are some conditions under which a
quadratic has two real positive roots, but not the process of liquefaction.
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The equation of state of gas B is a first-degree equation in V;, and therefore can never model critical
behavior, the process of liquefaction, or the existence of a two-phase region.

A cubic equation is the equation of lowest degree that can show a cross-over from more than one real

root to just one real root as the temperature increases. The van der Waals equation is a cubic equation
in Vp,.

The two masses represent the same volume of gas under identical conditions, and therefore, the same
number of molecules (Avogadro’s principle) and moles, n. Thus, the masses can be expressed as

nMn =2.2990 g
for ‘chemical nitrogen’ and
narMar + nNMn = nlxarMar + (1 — xar)MN] = 2.3102 ¢

for ‘atmospheric nitrogen’. Dividing the latter expression by the former yields

XarMar i ) 23102 © (MA, 1) 2.3102
— X, = —_— X - T S
Mx A= 52990 Ar\ My 2.2990
(2.3102/2.2990) — 1 (2.3102/2.2990) — 1
and xar = = = -0.011 i
Ar (Mar/MN) — 1 (39.95 gmol1)/(28.013 gmol ™! — 1) -

COMMENT. This value for the mole fraction of argon in air is close to the modern value.

Solutions to applications

1 t =103 kg. Assume 300 t per day.

300 x 10° kg
64 x 10~3 kg mol ™

v "RT _ (47 % 10° mol) x (0.082dm*atmK~"'mol™") x 1073K _ TP
p 1.0 atm

The pressure at the base of a column of height H is p = pgH (Example 1.1). But the pressure at any
altitude A within the atmospheric column of height H depends only on the air above it; therefore

n(S0y) = = 4.7 x 10° mol.

p = pg(H — h)and dp = —pgdh.

3 ’ dp Mgdh
1 that — = ————
, implying tha » RT

pMgdh

M
Since p = % [Problem 1.2], dp = —

This relation integrates to p = poe~M&h/RT

For air M ~ 29 gmol ™' and at 298 K

Mg (29 x 103 kgmol™') x (9.81ms~?)

R e e =1.15x 10 m~! [1J = 1kgm?s7?].
K X mo
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(@ h=15cm.
p=po x (015 m)x(1.15x 107 m~1) _ 0.99998 po; pP—po =‘
po
() h=11km=11x10*m.

_ (-1.1x107%)x(1.15x10~*m~1) _ . P—pPo _ [
p=poXxe = 0.28 po; =|-0.72|.
—

Refer to Fig. 1.4.

F top

l
23T

_l_(environmem)

I

F bottom

Ground

VA A A A A A e e avd Figure 1.4

The buoyant force on the cylinder is
F buoy = Fhottom — F top
= A(Pvottom — plop)

according to the barometric formula.

—Mgh/RT
Ptop = Pbottom€ gh/

where M is the molar mass of the environment (air). Since 4 is small, the exponential can be expanded

1
in a Taylor series around h = 0 (e‘x =1—-x+ Exz + - ) Keeping the first-order term only yields

Mgh
RT )’

Ptop = Pbottom (l =

The buoyant force becomes

Mgh M
Fbuoy =Apbolt0m (1 -1+ %) — Ah (M)g

RT
_ ( Pbottom VM & = n 5 = PbottomV
RT 8 "7 Tt

n is the number of moles of the environment (air) displaced by the balloon, and nM = m, the mass of
the displaced environment. Thus Fiyoy = mg. The net force is the difference between the buoyant force
and the weight of the balloon. Thus

Fret = mg — Mypalioon & = (m — Mballoon)&

This is Archimedes’ principle.



2 The First Law

D2.1

D2.3

D2.5

Answers to discussion questions

Work is a precisely defined mechanical concept. It is produced from the application of a force through a
distance. The technical definition is based on the realization that both force and displacement are vector
quantities and it is the component of the force acting in the direction of the displacement that is used in
the calculation of the amount of work, that is, work is the scalar product of the two vectors. In vector
notation w = — f - d = —fd cos 6, where 6 is the angle between the force and the displacement. The
negative sign is inserted to conform to the standard thermodynamic convention.

Heat is associated with a non-adiabatic process and is defined as the difference between the adiabatic
work and the non-adiabatic work associated with the same change in state of the system. This is the
formal (and best) definition of heat and is based on the definition of work. A less precise definition of
heat is the statement that heat is the form of energy that is transferred between bodies in thermal contact
with each other by virtue of a difference in temperature.

At the molecular level, work is a transfer of energy that results in orderly motion of the atoms and
molecules in a system; heat is a transfer of energy that results in disorderly motion. See Molecular
interpretation 2.1 for a more detailed discussion.

The difference results from the definition H = U + PV; hence AH = AU + A(PV). As A(PV) is
not usually zero, except for isothermal processes in a perfect gas, the difference between AH and AU
is a non-zero quantity. As shown in Sections 2.4 and 2.5 of the text, AH can be interpreted as the heat
associated with a process at constant pressure, and AU as the heat at constant volume.

In the Joule experiment, the change in internal energy of a gas at low pressures (a perfect gas) is zero.
Hence in the calculation of energy changes for processes in a perfect gas one can ignore any effect due
to a change in volume. This greatly simplifies the calculations involved because one can drop the first
term of eqn 2.40 and need work only with dU = Cy dT. In a more sensitive apparatus, Joule would
have observed a small temperature change upon expansion of the ‘real’ gas. Joule’s result holds exactly
only in the limit of zero pressure where all gases can be considered perfect.

The solution to Problem 2.33 shows that the Joule-Thomson coefficient can be expressed in terms of
the parameters representing the attractive and repulsive interactions in a real gas. If the attractive forces
predominate, then expanding the gas will reduce its energy and hence its temperature. This reduction
in temperature could continue until the temperature of the gas falls below its condensation point. This
is the principle underlying the liquefaction of gases with the Linde refrigerator, which utilizes the
Joule-Thomson effect. See Section 2.12 for a more complete discussion.
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D2.7 The vertical axis of a thermogram represents C,, and the baselines represent the heat capacity associated
with simple heating in the absence of structural transformations or similar transitions. In the example
shown in Fig. 2.16, the sample undergoes a structural change between T and 7>, so there is no reason to
expect C,, after the transition to return to its value before the transition. Just as diamond and graphite have
different heat capacities because of their different structures, the structural changes that occur during
the measurement of a thermogram can also give rise to a change in heat capacity.

Solutions to exercises

E2.1(b)  The physical definition of work is dw = —F dz [2.4]
In a gravitational field the force is the weight of the object, which is F = mg
If g is constant over the distance the mass moves, dw may be intergrated to give the total work

zf f
w= —/ Fdz = —/ mgdz = —mg(zr — zi) = —mgh where h = (zz — z;)
Zi

g
w = —(0.120kg) x (9.81ms~2) x (50m) = —59J =59 J needed

E2.2(b)  This is an expansion against a constant external pressure; hence w = —pex AV [2.8]

The change in volume is the cross-sectional area times the linear displacement:

3
AV = (50.0cm?) x (15¢cm) x ( ) =75 x 10~*m?,

100cm
so w=—(121 x 10*Pa) x (7.5 x 10~*m%) = as1Pam’ = 11J.

E2.3(b)  For all cases AU = 0, since the internal energy of a perfect gas depends only on temperature. (See
Molecular interpretation 2.2 and Section 2.11(b) for a more complete discussion.) From the definition
of enthalpy, H = U 4 pV, so AH = AU + A(pV) = AU + A(nRT) (perfect gas). Hence, AH = 0 as
well, at constant temperature for all processes in a perfect gas.

(a) AU=AH =0

w = —nRT In (E) [2.11]

1

o 31.7 dm? 3
= —(2.00mol) x (8.3145J K™ mol™") x (22+273)K x In —— =| —1.62 x 10>J
22.8dm
g=-w=|162x107

®

W= —pex AV [2.8]
where pex in this case can be computed from the perfect gas law

pV = nRT
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_ (2.00mol) x (8.3145JK~"mol™") x (22 4 273) K
31.7 dm*

e S 3
S o o (1.55 x IO(II(’)a;r:n(il].;— 22.8) dm _
©
[free expansion] g = AU —w=0-0 =@

COMMENT. An isothermal free expansion of a perfect gas is also adiabatic.

sop x (10dmm~1)3 = 1.55 x 10° Pa

E2.4(b)  The perfect gas law leads to

p1V  nRT; nT (111kPa) x (356 K)
— = =— = =|143 kP
or p2="1 e

2V nRT,

There is no change in volume, so . The heat flow is
qg= [cv dT ~ CyAT = (2.5) x (8.3145J K~ ' mol~!) x (2.00 mol) x (356 — 277)K

Gaxio]

—(7.7 x 10% Pa) x (2.5dm?)
= —pex AV = =[-191J
w Pex Vi (10dmm~—1)3 -

1

E25(b) (a)
(b)

(2.5 + 18.5)dm?>

I . (8.3145JK—‘mor') x (305K) x In
18.5dm?>

39.95 g mol !

=|-528]
E2.6(b) AH = AcondH = —AvapH = —(2.00mol) x (35.3kJmol ') =| —70.6 kJ

Since the condensation is done isothermally and reversibly, the external pressure is constant at 1.00 atm.
Hence,

qg=gqp=AH=|-70.6 kI
w= “'PexAV [28] where AV = V]jq — Vvap ~ —Vvap because Vliq < Vvap

On the assumption that methanol vapor is a perfect gas, Vv, = nRT/p and p = pex, since the
condensation is done reversibly. Hence,

w ~ nRT = (2.00 mol) x (8.3145J K~ mol™') x (64 +273)K =|5.60 x 10
and AU =q+w=(-70.6+5.60)k] =| —65.0kJ
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E2.7(b) The reaction is
Zn+2H* > Zn*t + H,

so it liberates 1 mol of Hy(g) for every 1 mol Zn used. Work at constant pressure is

W = —pexAV = —pVgas = —nRT

5.0g ) = —
=—(—"="—) x(83145JK "'mol™") x (23 +273) K = | —188J |
(65.4gmor‘ ( ) (

E2.8(b) (a) At constant pressure, g = AH.

100+273K
q= / CpdT :/ [20.17 + (0.4001)T/K]dT JK™!
0+273K

373K
JK™!
273K

1 2 2 3
= [(20‘17) x (373 —273) + 5(0.4001) x (3737 =273 )] J=|149x10°J|= AH

w=—pAV = —nRAT = — (1.00mol) x (8.3145]1('1 mol_') x (100K) =|—8311J
AU=g+w=(149-0831)kl =|14.1 kJ

(b) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, AH =|14.9 kJ |and

AU = as above. At constant volume, w = @ and AU =gq,s0q = .

E2.9(b) For reversible adiabatic expansion
Vi 1/c
Tr=T; <—) [2.28a]
Ve

where

= 1017 T ! 0.4001 (T2
—[( .17) +§(- ) X i)]

_ Cvm _ Cpm—R _ (37.11—8.3145) J K 'mol ™!

R R 8.3145J K—'mol~!

c

= 3.463,

so the final temperature is

1/3.463
500 x 1073 dm?
T; = (298.15K) x (u) =[200K

2.00dm3

E2.10(b) Reversible adiabatic work is
w = CyAT [2.27] = n(Cpm — R) x (Tt — T})

where the temperatures are related by [solution to Exercise 2.15(b)]

vi\ e C Com — R
Tr=T(—) [228a] where c= -0 = 2" " T _ 5503
Vi R R
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400 x 10-3dm? /***
So Tt = [(23.0 4+ 273.15) K] x T T =156 K
& m

312 ¢ )
andw=| ——"2 ) x (29.125 — 8.3145) TK ' mol~! x (156 — 296 K:-—325J
(28.0 gmol ™! : ) ( )

E2.11(b) For reversible adiabatic expansion

13
vi\” 500 x 10~ dm’
iV} =n¥ 2291 0 po=pi(7) :(8.73Torr)x<—_x ™\ _[55Ton]
f

3.0dm3

E2.12(b) gp = nCpm AT [2.24]

Pm = AT ~ 1.9mol x 1.78K L
Cym=Cpm—R=(53-83)JK "mol~! =|45JK~! mol”!

E2.13(b) AH = g, = C,AT [2.23b,2.24] = nCp i AT

AH = g, = (2.0mol) x (37.11JK~" mol™") x (277 — 250)K = | 2.0 x10* J mol~!

AH = AU + A(pV) = AU +nRAT so AU = AH — nRAT
AU =2.0 x 103 Tmol™" — (2.0mol) x (8.3145JK ' mol™") x (277 — 250) K

=|1.6 x103 J mol! |

E2.14(b) In an adiabatic process, g = @ Work against a constant external pressure is

—(78.5 x 10°P 4 x 15— 15)dm>
W AV = oo x 1) x [ x M 5 %< 10°]
(10dmm~1)3
AU=q+w=|-35%x1037

One can also relate adiabatic work to AT (eqn 2.27):

W
n(Cpm —R)’

—3.5x10%]
(5.0mol) x (37.11 — 8.3145) JK—! mol~!

AH = AU+ ApV) = AU + nRAT,

=-3.5x 10T + (5.0mol) x (8.3145JK "' mol™!) x (-=24K) =|—4.5x 10°J

E2.15(b) In an adiabatic process, the initial and final pressures are related by (eqn 2.29)

w=CyAT =n(Cpm —R)AT so AT =

C C 20.8J K~ mol~!
VY =p;v’ where =20 _ P — =
Pr¥e =Pt Y= Cvm Cum—-R _ (208—831)JK 'mol!

1.67
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Find V; from the perfect gas law:

_ nRT; _ (1.5mol)(8.31JK~" mol™")(315K)

Di 230 x 103 Pa

A\ /Y _ 230 kP: 1/1.67 —
so Ve =V; (ﬂ) = (0.017Tm®) (170@2) =10.0205 m? |,
pf

Find the final temperature from the perfect gas law:

V, 170 x 103 P 0.0205 m3 —
p= Bt QTOX 10 Ba) X £ ™) _ [k

nR (1.5mol)(8.31JK~ ! mol™!)

Vi =0.017Tm?

Adiabatic work is (eqn 2.27)

w=CyAT = (20.8 —8.31) JK ' mol~! x 1.5mol x (279 — 315)K = | —6.7 x 102 ]

E2.16(b) At constant pressure

g = AH = nAypH® = (0.75mol) x (32.0kJmol™') =|24.0kJ

and w = —pAV & —pVyapor = —nRT = —(0.75 mol) x (8.3145J K~  mol™!) x (260 K)
w=—16x10’]=|-1.6kJ
AU=w+q=240—1.6kJ =|22.4k]

COMMENT. Because the vapor is here treated as a perfect gas, the specific value of the external pressure
provided in the statement of the exercise does not affect the numerical value of the answer.

E2.17(b) The reaction is
CeH50H(1) 4+ 70,(g) — 6CO2(g) + 3H20(1)

AH® = 6A¢H® (CO,) 4+ 3A¢H® (H,0) — AsH® (C¢HsOH) — TAtH® (07)

= [6(—393.15) + 3(—285.83) — (—165.0) — 7(0)] kI mol~' =| —3053.6 kJ mol~!

E2.18(b) We need A¢H® for the reaction
(4) 2B(s) + 3Ha(g) — B2He(g)

reaction(4) = reaction(2) 4+ 3 x reaction(3) — reaction(1)

Thus, AfH® = A H®{reaction(2)} + 3 x A H®{reaction(3)} — A H®{reaction(1)}

=[—2368 + 3 x (—241.8) — (—1941)] kJmol~! = | —1152kJ mol~!
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E2.19(b) For anthracene the reaction is
CisHio(s) + 3 02(g) — 14C0,(g) + SH,0()
A U® = AcH® — AngRT [2.21],  Ang = —3 mol
AU® = =7061 kI mol ™! — (=3 x 83 x 10 kIK'mol~! x 298K)
= —7055kJ mol !

225x 1073 g

— =|nAU% | = ———
lgl = lgv| = [nAU®| (172.23gm01_'

) x (7055 KJ mor') =0.0922kJ

lgl  0.0922kJ 3
C=—"—="""=00683kIK™! =|68.3JK!
AT 1.35K 5K il

When phenol is used the reaction is

CeHsOH(s) + £ 01(g) — 6CO,(g) + 3H20(1)
AcH® = —3054k) mol ™' [Table 2.5]

AU = AcH — AngRT,  Ang = —3
= (=3054kImol™") + (3) x (8314 x 10 kI K™ mol™") x (298K)
= —3050kJ mol

135 x 103 g
gl =\ —7F—=

1) x (3050kJmor1) = 4375k
94.12 gmol™

lql 4375k
AT="2=—""""__ —|4+64.1K
C  0.0683kJK7!

COMMENT. In this case AcU® and A.H? differed by about 0.1 percent. Thus, to within 3 significant figures,
it would not have mattered if we had used AcH® instead of AcU®, but for very precise work it would.

E2.20(b) The reaction is AgBr(s) — Ag*(aq) + Br~(aq)

AwlH® = AtH®(Agt,aq) + AfH® (Br™,aq) — AfH®(AgBr, s)
= [105.58 4+ (—121.55) — (—100.37)] kJ mol~! = | 4+-84.40kJ mol~!

E2.21(b) The combustion products of graphite and diamond are the same, so the transition C(gr) — C(d) is
equivalent to the combustion of graphite plus the reverse of the combustion of diamond, and

AgansH® =[-393.51 — (395.41)] kI mol~! =| 4-1.90 kJ mol !
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E2.22(b) (a) reaction(3) = (—2) x reaction(1) + reaction(2) and Ang = —1
The enthalpies of reactions are combined in the same manner as the equations (Hess’s law).

AH®(3) = (=2) x AH®(1) + AH®(2)
= [(=2) x (52.96) + (—483.64)] kJ mol~!

=|—589.56kJ mol~!

AU® = AH® — AngRT
= —589.56 kI mol~! — (—=3) x (8.314JK 'mol~!) x (298K)

= —589.56 kI mol~! +7.43kI mol~! = —582.13kJ mol""!

(b) A¢H? refers to the formation of one mole of the compound, so

AfH® (D) = } (5296 kI mol™") =| 2648 kI mol"!

AfH (H20) = § (—483.64 15 mol ') = | ~24182 kJ mol ' |

E2.23(b) AH® = AU® + RT Ang[2.21]
= —772.7kImol™! + (5) x (8.3145 x 10> kKIK'mol™!) x (298 K)

=|—760.3kJ mol~!

E2.24(b) Combine thereactions in such a way that the combination is the desired formation reaction. The enthalpies
of the reactions are then combined in the same way as the equations to yield the enthalpy of formation.

AH® /(kImol™ 1)

INa2(g) + 102(g) — NO(g) +90.25
NO(g) + 5Cla(g) = NOCI(g) -1(755)
3N2(g) + 302(g) + 3Cla(g) > NOCI(g) +525

Hence, AfH® (NOCI, g) = | +52.5kJ mol !

E2.25(b) According to Kirchhoff’s law [2.36]
100°C
AH®(100°C) = AH®(25°C) + / AC,dT
25°C
where A; as usual signifies a sum over product and reactant species weighted by stoichiometric
coefficients. Because C, , can frequently be parametrized as

Cpm = a+bT 4 ¢/T?
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the indefinite integral of Cp, i, has the form
/Cp,de =aT + 1bT? —¢/T

Combining this expression with our original integral, we have

373K
AH®(100°C) = AH®(25°C) + (TAra + 3T Ach — Arc/T) .

Now for the pieces
AH®(25°C) = 2(—285.83kI mol™!) — 2(0) — 0 = —571.66kJ mol !
Ara = [2(75.29) — 2(27.28) — (29.96)]J K~ mol™! = 0.06606 kJ K~! mol~!
Arh = [2(0) — 2(3.29) — (4.18)] x 103 JK 2 mol~! = —10.76 x 10" ®kJ K2 mol !
Arc = [2(0) — 2(0.50) — (—1.67)] x 10° IJK mol~! = 67 kJ K mol ™!

1
AH®(100°C) = [—571.66 + (373 — 298) x (0.06606) + 5(3732 —298%)

1 1
—10.76 x 107%) — (67 — —— )| KJmol™!
He XA=Leny X (373 298)] me

=[—566.93 kI mol! |

E2.26(b) The hydrogenation reaction is
@ C2Ha(g) +Ha(g) — CoHa(g) AHT(T) =?

The reactions and accompanying data which are to be combined in order to yield reaction (1) and
AH®(T) are

() Ha() + 102(g) - H0() AH®(2) = —285.83kJ mol ™!
()  CaHy(®) +302(g) — 2H,0(1) +2C05(g) AH®(3) = —1411kI mol ™!

@  CHy(®) + 302(g) > H0(1) +2COx(g) A H®(4) = —1300kJ mol ™!

reaction (1) = reaction (2) — reaction (3) + reaction (4)

(a) Hence, at 298 K:
AH® = AcH®(2) — AcH®(3) + AH® (4)
= [(~285.83) — (~1411) + (~1300)] K mol ! =

AU® = AH® — AngRT  [2.21];  Ang = —1

= —175kJmol~! — (—1) x (2.48kJm01_1) =|—173kJmol !
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(b) At 348 K:
AH®(348K) = AH®(298K) + A;C, (348K — 298K) [Example 2.6]
ACp =Y ViCp()[237] = Cyra(C2Ha, 8) — Cprn(C2Ha, 8) — Cp (H2, )
J

= (43.56 —43.93 —28.82) x 10 3 KJK ' mol™! = —29.19 x 103 kJ K~ ! mol™!

AH®(348K) = (—=175kI mol™") — (29.19 x 102 KJK ' mol™!) x (50K)

=|—176kJmol~!

E2.27(b) NaCl, AgNO3, and NaNO3 are strong electrolytes; therefore the net ionic equation is

Ag*(aq) + C1™(aq) > AgCl(s)
AH® = A¢H® (AgCl) — AfH® (Agh) — A¢H®(CI7)

= [(—=127.07) — (105.58) — (—167.16)] kI mol~! =| —65.49 kJ mol "

E2.28(b) The cycle is shown in Figure 2.1.

Ca’*(g) + 2¢™ + 2Br(g)

Ionization Ca(g) + 2Br(g)

Dissociation | Ca(g) + Br,(g) Electron

gain Br

;aporization Ca(g) + Bra(l) Ca’(g) +2Br™(g) %

% Pl

Sublimati

C: ation Ca(s) + Bra(l) Hydration Br~
Ca’*(g) + 2Br™ (aq)

—Formation

Hydration Ca**
—Solution

Figure 2.1
—AnyaH® (Ca’*) = —AgoinH® (CaBra) — A¢H®(CaBr3,s) + AgpH® (Ca)
+ AvapH® (Br2) + AdissH (Bra) + AjonH (Ca)
+ AionH® (Ca™) + 2AegH® (Br) + 2AnyaH® (Br™)
= [—(—103.1) — (—682.8) + 178.2 + 30.91 + 192.9
+589.7 + 1145 + 2(—331.0) 4 2(—337)1 kJ mol !

={1587kJ mol~!
$0 AnygH®(Ca*™) =| —1587kJ mol~!
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E2.29(b)

E2.30(b)
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The Joule-Thomson coefficient u is the ratio of temperature change to pressure change under conditions
of isenthalpic expansion. So

aT AT ~10K -
p=(E) ~22 o 72 _[048 Kam
4 Ap  (1.00—22)atm

ap

The internal energy is a function of temperature and volume, Uy, = U (T, Vi), S0

oUn 0Un 0Un
dUp = | — dTr — dv, = —=
" ( oT )Vm * <3Vm>T " [NT ( v )T]

For an isothermal expansion dT = 0; hence

U a
dUm = <m>r de = ﬂTde = Ede
V.2 Vm2 g 22.1dm’ mol ™" gy 22.1dm* mol ™!
AU, =/ dU, =/ —dV, =af e
* D m v VAT 1.00dm¥mol~! Vi Vin 11,00 dm? mol~!
a a 21.1a

= 0.95475a dm > mol

- Epp e 31
22.1 dm” mol 1.00 dm” mol 22.1 dm” mol
From Table 1.6, a = 1.337 dm® atm mol ™!

AUp = (0.95475mol dm®) x (1.337 atm dm® mol~2)

_ 1 3
= (1.2765 atm dm® mol™ ) x (1.01325 x 10° Paatm™1) x (—m—>

103 dm3
= 129Pam? mol~!' =129 mol~!

RT a
w=—[pdVm where p= — —- for a van der Waals gas.
Vm — b 2
Hence,
/(RT>dv+fadv + AU
w=— — =,
Vm—b/) ™ vz Cm =4 i
Thus
22.1dm* mol ™! RT 22.1dm? mol ™!
q= / dVi = RT In(Vin = b)|
1.00dm? mol~! Vm —b 1.00 dm? mol !

22.1—-3.20 x 1072
1.00 — 3.20 x 102

= (8.314JK ' mol™") x (298K) x In ( ) = | +7.7465 kJ mol ! J

and w = —q + AUp = —(7747 T mol~") + (129 mol~!) = | 7618 Jmol~! | = —7.62 kI mol”’
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E2.31(b) The expansion coefficient is

1 (BV) VB3I x 104K 1 4+2x152x107°TK™2)
P

v \or %

VBT x107*4+2x 1.52 x 10°%(T/K)]K™!
© V'[0.77 4 3.7 x 104(T/K) + 1.52 x 10-8(T/K)?]

3.7 x 1074 +2 x 1.52 x 107%(310)] K~!
Bl %I A 2 % 132 x 107 4310)] ={127 x 10-3K"!
0.77 4+ 3.7 x 10~4(310) + 1.52 x 10-6(310)2
E2.32(b) Isothermal compressibility is

1 [aV AV A AV
K = —— | — N —— SO = -
"="v\a /), “vap P = "Ver

33

A density increase of 0.08 percent means AV /V = —0.0008. So the additional pressure that must be

applied is

0.0008 —
Ap=———— — =136x 10%atm
2.21 x 106 atm™!

E2.33(b) The isothermal Joule-Thomson coefficient is

OH
(a_> = —uCp=—(L11Katm™") x (37.11JK~" mol™") =| —41.2J atm™! mol ! |
P/t

If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which must be

supplied to maintain constant temperature is AH in the following relationship

AH/n
Ap

AH = —41.2Jatm™ ' mol™") x (12.0mol) x (=55atm) =|27.2x 103]J

=—412Jatm ' mol™! so AH = —(41.2J atm™! mol_l)nAp

Solutions to problems

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are

for 298 K.

Solutions to numerical problems

1%
P2.1 The temperatures are readily obtained from the perfect gas equation, T = p—R,
n
(1.00 atm) x (22.4dm?) ,
T, = = -273 K | = T3 [isotherm].
'~ (1.00mol) x (0.0821 dm’ atmmol ' K—1 :h ]

Similarly, 7> =[ 546 K |



