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To the Student

This solution manual accompanies Physics for Scientists and Engineers, Se, by
Paul Tipler and Gene Mosca. Following the structure of the solutions to the
Worked Examples in the text, we begin the solutions to the back-of-the-chapter
numerical problems with a brief discussion of the physics of the problem,
represent the problem pictorially whenever appropriate, express the physics of the
solution in the form of a mathematical model, fill in any intermediate steps as
needed, make the appropriate substitutions and algebraic simplifications, and
complete the solution with the substitution of numerical values (including their
units) and the evaluation of whatever physical quantity is called for in the
problem. This is the problem-solving strategy used by experienced leamers of
physics, and it is our hope that you will see the value in such an approach to
problem solving and leam to use it consistently.

Believing that it will maximize your leaming of physics, we encourage you
to create your own solution before referring to the solutions in this manual. You
may find that, by following this approach, you will find different, but equally
valid, solutions to some of the problems. In any event, studying the solutions
contained herein without having first attempted the problems will do little to help
you leam physics.

You’ll find that nearly all problems with numerical answers have their
answers given to three significant figures. Most of the exceptions to this rule are
in the solutions to the problems on Significant Figures and Order of Magnitude
and the problems dealing with nuclear physics. When the nature of the problem
makes it desirable to do so, we keep more than three significant figures in the
answers to intermediate steps and then round to three significant figures for the
final answer. Some of the Estimation and Approximation Problems have answers
to fewer than three significant figures.

Physics for Scientists and Engineers, Se includes numerous spreadsheet
problems. Most of them call for the plotting of one or more graphs. The solutions
to these problems were generated using Microsoft Excel and its “paste special”
feature, so that you can easily make changes to the graphical parts of the
solutions.
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Chapter 21
The Electric Field 1: Discrete Charge Distributions

Conceptual Problems

*] e Discuss the similarities and differences in the properties of electric charge
and gravitational mass.

Similarities: Differences:

The force between charges and There are positive and negative charges but
masses varies as 1/77. only positive masses.

The force is directly proportional to Like charges repel; like masses attract.

the product of the charges or
masses.

The gravitational constant G is many orders
of magnitude smaller than the Coulomb
constant k.

*§ ee  Two uncharged conducting spheres with their conducting surfaces in contact
are supported on a large wooden table by insulated stands. A positively charged rod is
brought up close to the surface of one of the spheres on the side opposite its point of
contact with the other sphere. (a) Describe the induced charges on the two conducting
spheres, and sketch the charge distributions on them. (b) The two spheres are separated
far apart and the charged rod is removed. Sketch the charge distributions on the separated
spheres.

Determine the Concept Because the spheres are conductors, there are free electrons on
them that will reposition themselves when the positively charged rod is brought nearby.

(a) On the sphere near the positively

charged rod, the induced charge is negative

and near the rod. On the other sphere, the ++ % 4% ) “
net charge is positive and on the side far

from the rod. This is shown in the diagram.

(b) When the spheres are separated and far

apart and the rod has been
removed, the induced charges are
distributed uniformly over each sphere. The

charge distributions are shown in the
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diagram.

¥ e A positive charge that is free to move but is at rest in an electric field E will
(@) accelerate in the direction perpendicular to E.

(b) remain at rest.

(c) accelerate in the direction opposite to E.

(d) accelerate in the same direction as E.

(e) do none of'the above.

Determine the Concept The acceleration of the positive charge is given by

F

a=—-= 9o E .Because go and m are both positive, the acceleration is in the same
m m

direction as the electric field. | (d) is correct.

*§ . If four charges are placed at the corners of a square as shown in Figure 21-
33, the field E is zero at

() all points along the sides of the square midway between two charges.

(b) the midpoint of the square.

(¢) midway between the top two charges and midway between the bottom two charges.
(d) none of the above.

QO

Figure 21-33 Problem 8

Determine the Concept E is zero wherever the net force acting on a test charge is zero.
At the center of the square the two positive charges alone would produce a net electric
field of zero, and the two negative charges alone would also produce a net electric field
of zero. Thus, the net force acting on a test charge at the midpoint of the square will be

zero. | (b)1is correct.

*11 . Two charges +q and —3q are separated by a small distance. Draw the electric
field lines for this system.
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Determine the Concept We can use the

rules for drawing electric field lines to

draw the electric field lines for this system.

In the field-line sketch to the right we’ve = i
assigned 2 field lines to each charge q.

*12 . Three equal positive point charges are situated at the comers of an equilateral
triangle. Sketch the electric field lines in the plane of the triangle.

Determine the Concept We can use the
rules for drawing electric field lines to
draw the electric field lines for this system.

+q
In the field-line sketch to the right we’ve +q +q
assigned 7 field lines to each charge gq.

*14 o The electric field lines around an electrical dipole are best represented by

which, if any, of the diagrams in Figure 21-34?

Figure 21-34 Problem 14

Determine the Concept Electric field lines around an electric dipole originate at the
positive charge and terminate at the negative charge. Only the lines shown in (d) satisfy

this requirement. | (d) is correct.

*15 e A molecule with electric dipole moment p is oriented so that p makes an

angle @ with a uniform electric field E that is in the direction of increasing x. The dipole
is free to move in response to the force from the field. Describe the motion of the dipole.
Suppose the electric field is nonuniform and is larger in the x direction. How will the
motion be changed?
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Determine the Concept Because 8 =0, a dipole in a uniform electric field will
experience a restoring torque whose magnitude is pE_sin @ . Hence it will oscillate

about its equilibrium orientation, 8= 0. If #<< 1, sinf= §, and the motion will be simple
harmonic motion. Because the field is nonuniform and is larger in the x direction, the
force acting on the positive charge of the dipole (in the direction of increasing x) will be
greater than the force acting on the negative charge of the dipole (in the direction of
decreasing x) and thus there will be a net electric force on the dipole in the direction of
increasing x. Hence, the dipole will accelerate in the x direction as it oscillates about

6 =0.

*18 e A metal ball is positively charged. Is it possible for it to attract another
positively charged ball? Explain.

Determine the Concept Yes. A positively charged ball will induce a dipole on the metal
ball, and if the two are in close proximity, the net  force can be attractive.

*19 e A simple demonstration of electrostatic attraction can be done simply by
tying a small ball of tinfoil on a hanging string, and bringing a charged wand near it.
Initially, the ball will be attracted to the wand, but once they touch, the ball will be
repelled violently from it. Explain this behavior.

Determine the Concept Assume that the wand has a negative charge. When the charged
wand is brought near the tinfoil, the side nearer the wand becomes positively charged by
induction, and so it swings toward the wand. When it touches the wand, some of the
negative charge is transferred to the foil, which, as a result, acquires a net negative charge
and is now repelled by the wand.

Estimation and Approximation

*23 e A popular classroom demonstration consists of rubbing a "magic wand"
made of plastic with fur to charge it, and then placing it near an empty soda can on its
side (Figure 21-35). The can will roll toward the wand, as it acquires a charge on the side
nearest the wand by induction. Typically, if the wand is held about 10 cm away from the
can, the can will have an initial acceleration of about 1 m/s>. If the mass of the can is
0.018 kg, estimate the charge on the rod.

Figure 21-35 Problem 23
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Picture the Problem We can use Coulomb’s law to express the charge on the rod in
terms of the force exerted on it by the soda can and its distance from the can. We can
apply Newton’s 2™ law in rotational form to the can to relate its acceleration to the
electric force exerted on it by the rod. Combining these equations will yield an expression
for O as a function of the mass of the can, its distance from the rod, and its acceleration.

Use Coulomb’s law to relate the
force on the rod to its charge Q and
distance » from the soda can:

Solve for Q to obtain:

Apply chenter of mass T to the
can:

Because the can rolls without
slipping, we know that its linear
acceleration @ and angular
acceleration « are related according
to:

Because the empty can is a hollow
cylinder:

Substitute for 7 and @ and solve for
F’to obtain:

Substitute for F in equation (1):

Substitute numerical values and
evaluate Q:

Electric Charge

%
2
r’F
=.— 1
0 P (1
FR=1Ix
a
a=—
R

where R is the radius of the soda can.

I = MR?
where M is the mass of the can.

2
F=M1}:2a =Ma

r*Ma
k

0=

o (0.1m)*(0.018kg)(1m/s?)
8.99x10° N-m? /C”

=|141nC

*27 o How many coulombs of positive charge are there in 1 kg of carbon? Twelve

grams of carbon contain Avogadro’s number of atoms, with each atom having six protons

and six electrons.

Picture the Problem We can find the number of coulombs of positive charge there are in
1 kg of carbon fromQ = 6n_.e, where nc is the number of atoms in

1 kg of carbon and the factor of 6 is present to account for the presence of 6 protons in
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each atom. We can find the number of atoms in 1kg of carbon by setting up a proportion
relating Avogadro’s number, the mass of carbon, and the molecular mass of carbon to 7.

Express the positive charge in terms O =6nce
of the electronic charge, the number

of protons per atom, and the number

of atoms in 1 kg of carbon:

Using a proportion, relate the ne Mg _ N,mg

number of atoms in 1 kg of carbon N, M
nc, to Avogadro’s number and the
molecular mass M of carbon:

Substitute to obtain: Gi= 6N, m.e

Substitute numerical values and evaluate Q:

6(6.02 x10% atoms/mol)(l kg)(l 6x107" C)
0.012 kg/mol

0= =|4.82x10"C

Coulomb’s Law

*32 e A point charge of —2.5 xC is located at the origin. A second point charge of 6
p#Cisatx=1m,y=0.5m. Find the x and y coordinates of the position at which an
electron would be in equilibrium.

Picture the Problem The positions of the y.m
charges are shown in the diagram. It is
apparent that the electron must be located q,=6uC
along the line joining the two charges. 5
Moreover, because it is negatively charged, - ol [0.5m

. Xe <~ 1Im
it must be closer to the —2.5 4C than to the = o= 254

6.0 4C charge, as is indicated in the figure. Ye| o
We can find the x and y coordinates of the /L,/(F 2¢

electron’s position by equating the two T

electrostatic forces acting on it and solving

for its distance from the origin.

We can use similar triangles to express this
radial distance in terms of the x and y
coordinates of the electron.
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Express the condition that must be
satisfied if the electron is to be in
equilibrium:

Express the magnitude of the force
that ¢, exerts on the electron:

Express the magnitude of the force
that ¢, exerts on the electron:

Substitute and simplify to obtain:

Substitute for ¢, and g> and
simplify:

Solve for r to obtain:

Use the similar triangles in the
diagram to establish the proportion
involving the y coordinate of the
electron:

Solve for y,:

Use the similar triangles in the
diagram to establish the proportion
involving the x coordinate of the

electron:

Solve for x.:

The coordinates of the electron’s
position are:

‘Fl,e = F2,e
Fo kq,e
e [  —\2
(r+125m)
FZ,e = klfzzle
q, |QZ|

(-+125m) 7

(-1.4m7)s* +(2.2361m™ ) r
+125m=0

r=2.036m
and
r =-0.4386m

Because r < 0 is unphysical, we’ll consider

only the positive root.

y, _2.036m
0.5m 1.12m

y, =0.909m

x, 2.036m

e

Im 1.12m

x,=1.82m

(x,,y.)=| (~1.82m,— 0.909m)
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*33 e Achargeof—1.0 xC is located at the origin; a second charge 0f2.0 xC is
located at x =0, y = 0.1 m; and a third charge of 4.0 £C is located at x=0.2 m, y = 0.
Find the forces that act on each of the three charges.

Picture the Problem Let ¢, represent the F
charge at the origin, ¢, the charge at (0, 0.1 Nn; —2uC
m), and ¢q; the charge at 0.1 2\
(0.2 m, 0). The diagram shows the forces E ‘L N .
1.2
acting on each of the charges. Note the ~ N ~
. . g E A
action-and-reaction pairs. We can apply M N_4,=4uC
Coulomb’s law and the principle of - < X, m
.. N q,=-1pC| £ F_02
superposition of forces to find the net 3 13
force acting on each of the charges. E, 5
Express the net force acting on ¢;: F =F,;+F,;

Express the force that ¢, exerts on ¢;: P kq,q, . kq,q, 1, _kq,q, -
21" 3 a7 3 — T3 Iy
X i T2 %

Substitute numerical values and evaluate F, , :

F,, =(8.99x10° N-m%/C?)(2 yc)w (~0.1m)j = (1.80N);

(0.1m)’
Express the force that ¢; exerts on ¢;: F = kqsq, >
3,1 3 3,1
r3,l

Substitute numerical values and evaluate F} .

F,, =(8.99x10° N-m*/C? )(4 yC)M(—~O.2m)f =(0.899N)i

(0.2m)’

|

~
.

(0.899N)i +(1.80N);j

Substitute to find FI :

Express the net force acting on ¢,: f‘z = +
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because F),and F,  are action-and-reaction

forces.
Express the force that g5 exerts on g5: F o= kq,q, -
32573 N
¥
ki 2 T “
= —C;{—;i [(— 0.2 m)t + (O. 1 m)j]
3,2

Substitute numerical values and evaluate Fs.z :

F,, =(8.99x10° N-m%/C?)(4 yc)((% [(C02m)i +(0.1m)j]

~
.

= (-1.28N)i + (0.640N);

Find the net force acting on g,:

A~
.

F,=F,,—(1.80N)j=(~1.28N)i +(0.640N);j - (1.80N);

(-1.28N)i -(1.16N)j

Noting that F| ;and F; , are an action-and-reaction pair, as are F,,and F; ,,

express the net force acting on g;:

— — -

F,=F,+F,, =—F, - F,, =-(0899N)i - |(-1.28 N)i + (0.640 N)j|
=| (0.381N)i — (0.640N)j

The Electric Field

*37 e A charge of 4.0 xC is at the origin. What is the magnitude and direction of
the electric field on the x axis at (a) x =6 m, and (b) x=-10 m?

(¢) Sketch the function E, versus x for both positive and negative values of x. (Remember
that £, is negative when E points in the negative x direction.)

Picture the Problem Let g represent the charge at the origin and use Coulomb’s law for

Eduetoa point charge to find the electric field at x = 6 m and —10 m.

(a) Express the electric field at a E(x) kq .
point P located a distance x from a b
charge ¢:
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Evaluate this expression for

(6.99x10° N-m?/C (4 C) -

x=6m: E(6m)= (6m)2
=| (999N/C)i
(b) Evaluate Eatx=-10m:
9 2 2
B(c10m)= B9 N-mICNu0)( ) e

(10m)’

(¢) The following graph was plotted using a spreadsheet program:

500

250

£, (N/C)
o

-250

-500
-2 -1 0 1 2
x (m)
*38 o Two charges, each +4 £C, are on the x axis, one at the origin and the other at

x = 8 m. Find the electric field on the x axis at (a) x=-2m, (b) x=2 m, (¢) x = 6 m, and
(d) x =10 m. (e) At what point on the x axis is the electric field zero? (f) Sketch E, versus

X.

Picture the Problem Let g represent the charges of +4 C and use Coulomb’s law for
E due to a point charge and the principle of superposition for fields to find the electric
field at the locations specified.

Noting that g, = ¢, use Coulomb’s law and the principle of superposition to express the
electric field due to the given charges at a point P a distance x from the origin:
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E(x):qu(x)+qu(x):k({'F’ + kg, _FI,P:kq,[%thPJr—l—zf‘qz’Pj
X m X m x)

=(36kN-m2/C)[L2F’+ : ;,]
X

=
-

(0 ¢]

|
=

~'
T
S
-]

(a) Apply this equation to the point at x = -2 m:

E(-2m)= (36kN.m2/C)[ g 1111)2 (i} (1—0.11;]_)2-(— .)} =| (~9.36kN/C)i

(b) Evaluate Eatx=2m:

E(Zm)=(36kN-m2/C)[ 1)2(§)+ 1)2(—2)} (8.00kN/C)i

(c) Evaluate Eatx=6m:

E(6m)= (36kN-m2/c)[ (Grln)z )+ ( 1 ; . l)} - [ (C8.00kN/C)i

(d) Evaluate E at x = 10 m:

E(10m)= (36kN.m2/C)|: (101m)2 () + (2;)2 (l)} =| (9.35kN/C)i

(e) From symmetry considerations: E(4 m) = E

(f) The following graph was plotted using a spreadsheet program:
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E, (KN m/C)

*42 e A point charge of +5.0 £C is located at x = —3.0 cm, and a second point
charge of —8.0 uC is located at x = +4.0 cm. Where should a third charge of +6.0 £C be
placed so that the electric field at x = 0 is zero?

Picture the Problem If the electric field at x = 0 is zero, both its x and y components must
be zero. The only way this condition can be satisfied with the point charges of +5.0 £C
and —8.0 uC are on the x axis is if the point charge of +6.0 xC is also on the x axis. Let the
subscripts 5, —8, and 6 identify the point charges and their fields. We can use Coulomb’s
law for E duetoa point charge and the principle of superposition for fields to determine
where the +6.0 £C charge should be located so that the electric field at x = 0 is zero.

Express the electric field at x =0 in E(O) = ES‘E +E 0+ Eg
terms of the fields due to the charges -0
of +5.0 C, —8.0 1C, and +6.0 1C:

' kg, . kq, . kq_ .
Subs'tltute for each of the fields to % P+ % P+ q2_8 =0
obtain: ¥ r

or
ki 2\ k 2
b b))
rs ¥s g
Divide out the unit vector i to 4s 96 _9-s _
obtain: A A
Substitute numerical values to 5 _ i L= 8 0
. 2 2 2
obtain: 3 cm) 72 (4 cm)

Solve for rg: r,=|2.38cm
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*45 oo A 5-uC point charge is located at x =1 m, y =3 m; and a —4-«C point charge
is located at x =2 m, y = —2 m. (a) Find the magnitude and direction of the electric field
at x =-3m, y =1 m. (b) Find the magnitude and direction of the force on a proton at

x=-3my=1m

Picture the Problem The diagram shows the electric field vectors at the point of interest
P due to the two charges. We can use Coulomb’s law for E due to point charges and the

superposition principle for electric fields to find EP . We can apply F = qE to find the

force on a proton at (=3 m, 1 m).

Y. m
13 _ag,=5uC
-~
L~
i ~
. "2
~
~
>
e ¥
E, _
~
t f t t + . m
-3 -2 1 2
~N
-1
N
~N
~N
—27 q,= —4nuC
(a) Express the electric field at E‘P = El + E2
(-3 m, 1 m) due to the charges ¢, and
q>:
Evaluate E|:

~
.

kg, . (8.99x10° N-m*/C?)(~ 4 4C)[ (-5m)i + (3m)j
=5 hp= 2 2 = >
o (5m)* +(3m) Jm) +(3m)
=(-1.06 kN/c)(— 0.857i + 0.514}'): (0.908KkN/C)i + (~ 0.544kN/C)j

E,

D

Evaluate E oL

"
.

5 kg, _ (899x10° N-m*/C?)(5 uC) [ (~4m)i + (~2m)j
S (4m)* +(2m) J@m) +(2m)y

=(2.25 kN/C)(— 0.8941 — 0.447}'): (- 2.01kN/C)i + (~1.01kN/C)j
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Substitute and simplify to find EP :

E, =(0.908kN/C)i + (- 0.544kN/C)j + (- 2.01kN/C)i + (— 1.01kN/C);j
(-1.10kN/C)i + (- 1.55KN/C)j

The magnitude of EP is: E, = \/(1.10kN/C)2 + (l.SSkN/C)2
=| 1.90kN/C

The direction of E is: g, =t 4 —1.55kN/C =[ 2350
-1.10kN/C

Note that the angle returned by your
—1.55kN/C ).
——=——=———isthe
—1.10kN/C

reference angle and must be increased by
180° to yield 6.

calculator for tan_l(

(b) Express and evaluate the force on a proton at point P:

F=gE, =(1.6x10™° C)|(~1.10kN/C) +(~1.55kN/C)j]

= (-1.76x107 N)i + (- 2.48x10"* N);

The magnitude of Fis:

F =+(-1.76x10"*N)’ + (- 2.48x10"*N)* =[ 3.04x10"° N

-1.76x10™"° N

where, as noted above, the angle returned

The direction of F is: 6, = tan'l(_ 2.48x107"° N) i

by your calculator for
4[-2.48x107"° N

tan a3
-1.76x107° N

angle and must be increased by 180° to
yield Gg.

j is the reference
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*48 e« Two positive point charges +q are on the y axis at y=+a and y = —a as in
Problem 44. A bead of mass m carrying a negative charge —q slides without friction along
a thread that runs along the x axis. (@) Show that for small displacements of x << a, the
bead experiences a restoring force that is proportional to x and therefore undergoes
simple harmonic motion. (b) Find the period of the motion.

Picture the Problem In Problem 44 it is shown that the electric field on the x axis, due to
equal positive charges located at (0, @) and (0,—a), is given by

2 2 Y32 ; ) )
E = 2kqx(x +a ) .We can use T = 27+/m/k’ to express the period of the motion

in terms of the restoring constant k.

(a) Express the force acting on the on 2kq2x
the bead when its displacement from = (xl +a° /2

the origin is x:

Factor @’ from the denominator to F = 2kq’x
obtain: * 2 Y
2
a — +1
a
Forx <<a: 2k’
F, = - ? b
a

i.e., the bead experiences a linear restoring

force.
(b) Express the period of a simple m
. . T=2nm,|—
harmonic oscillator: '
Obtain 4’ from our result in part (a): = 2kq?
a3
Substitute to obtain: 3
T=2r [— =| 27 |
2kg 2kg
a3

Motion of Point Charges in Electric Fields

*50 - (a) Compute e/m for a proton, and find its acceleration in a uniform electric
field with a magnitude of 100 N/C. (») Find the time it takes for a proton initially at rest
in such a field to reach a speed of 0.01¢ (where c is the speed of light).
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Picture the Problem We can use Newton’s 2™ law of motion to find the acceleration of
the proton in the uniform electric field and constant-acceleration equations to find the
time required for it to reach a speed of 0.01¢ and the distance it travels while acquiring

this speed.

(a) Use data found at the back of e 1.6x107°C

your text to compute e/m for an m, T 1.67x1077 kg

electron: =
=|9.58x10" C/kg

Apply Newton’s 2" law to relate the g= Fa _ ek

acceleration of the electron to the m, m,

electric field:

Substitute numerical values and _ (1 6x107" C)(l 00 N/C)

evaluate a: ‘= 1.67x107%" kg

=19.58x10° m/s*

The direction of the acceleration

of a proton is in the direction of

the electric field.

(b) Using the definition of L 0.01c
acceleration, relate the time required a a
for an electron to reach 0.0l ¢ to its
acceleration:
Substitute numerical values and 0.01(3 x10° m/ S)

At = =| 313 us
evaluate At: 9.58 x10° m/s>

*54 es A particle leaves the origin with a speed of 3x10° m/s at 35° to the x axis. It

moves in a constant electric field E = E y}'. Find E, such that the particle will cross the x

axis at x = 1.5 cm if the particle is (a) an electron, and () a proton.

Picture the Problem We can use constant-acceleration equations to express the x and y
coordinates of the particle in terms of the parameter 7 and Newton’s 2™ law to express
the constant acceleration in terms of the electric field. Eliminating the parameter will
yield an equation for y as a function of x, ¢, and m that we can solve for E,.

Express the x and y coordinates of x= (v cos 9)1
the particle as functions of time:
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Apply Newton’s 2™ law to relate the
acceleration of the particle to the net
force acting on it:

Substitute in the y-coordinate
equation to obtain:

Eliminate the parameter ¢ between
the two equations to obtain:

Set y = 0 and solve for E,:

Substitute the non-particle specific
data to obtain:

(a) Substitute for the mass and
charge of an electron and evaluate
IO

(b) Substitute for the mass and
charge of a proton and evaluate E):

*S8 o

and
y=(vsin@) -1 a,t’

By _9E,
’ m m
E
y=(vsin) 2y
2m
qE
= (tan )x - ———2——x?
y =(tan6) 2mv? cos’ 6
E, - mv* sin 26
qx
o _ mBx10°ms)sin70°
¢ ¢(0.015m)
= (5.64x10" m/s? )
q
=31
E, = (5.64x10" mys? )2 11X10"_ke
’ 1.6x10™"°C

=| 3.21kN/C

(5.64x10" m/s?)

=
I

1.6x107"°C

=| 5.89MN/C

A dipole of moment 0.5 e-nm is placed in a uniform electric field with a
magnitude of 4.0x10* N/C. What is the magnitude of the torque on the dipole when (a)
the dipole is parallel to the electric field, (b) the dipole is perpendicular to the electric

field, and (c) the dipole makes an angle of 30° with the electric field? (d) Find the
potential energy of the dipole in the electric field for each case.

Picture the Problem The torque on an electric dipole in an electric field is given by

T=px E and the potential energy of the dipole by U = — P .E.

Using its definition, express the torque

f=ﬁxE

1.67x107%" kg

17



18  Chapter 21

on a dipole moment in a uniform and

electric field: 7= pEsin®
where 61s the angle between the electric
dipole moment and the electric field.

(a) Evaluate 7 for 6 = 0°: 7= pEsin0°= @

(b) Evaluate 7 for 6 = 90°: 7 =(0.5¢-nm)(4.0 x10* N/C)sin 90°
=|320x10* N-m

(c) Evaluate « for 6 =30°; 7 =(0.5¢-nm)(4.0x10* N/C)sin30°
=[1.60x10* N-m

(d) Using its definition, express the U=-p- E= —pEcosf

potential energy of a dipole in an

electric field:

Evaluate U for 8 = 0°: U=-(0.5e- nm)(4.0 x10* N/C)cos 0°
=| -3.20x1077J

Evaluate U for 8 = 90°; U =—(0.5¢-nm)(4.0x10* N/C)cos 90°

Evaluate U for 6 = 30°: U =—(0.5¢-nm)(4.0x 10 N/C)cos30°
=| -2.77x107*]

*59 e For a dipole oriented along the x axis, the electric field falls off as 1/x’ in the
x direction and 1/)” in the y direction. Use dimensional analysis to prove that, in any
direction, the field far from the dipole falls off as 1/r°.

Picture the Problem We can combine the dimension of an electric field with the
dimension of an electric dipole moment to prove that, in any direction, the dimension of
the far field is proportional to l/ [L]3 and, hence, the electric field far from the dipole falls
off as 1/7°.

Express the dimension of an electric [ E] [kQ]
field: L]




