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To the Student 

This solution manual accompanies Physics for Scientists and Engineers, 5e, by 
Paul Tipler and Gene Mosca. Following the structure of the solutions to the 
Worked Examples in the text, we begin the solutions to the back-of-the-chapter 
numerical problems with a brief discussion of the physics of the problem, 
represent the problem pictorially whenever appropriate, express the physics of the 
solution in the form of a mathematical model, fill in any intermediate steps as 
needed, make the appropriate substitutions and algebraic simplifications, and 
complete the solution with the substitution of numerical values (including their 
units) and the evaluation of whatever physical quantity is called for in the 
problem. This is the problem-solving strategy used by experienced learners of 
physics, and it is our hope that you will see the value in such an approach to 
problem solving and learn to use it consistently. 

Believing that it will maximize your learning of physics, we encourage you 
to create your own solution before referring to the solutions in this manual. You 
may find that, by following this approach, you will find different, but equally 
valid, solutions to some of the problems. In any event, studying the solutions 
contained herein without having first attempted the problems will do little to help 
you learn physics. 

You'll find that nearly all problems with numerical answers have their 
answers given to three significant figures. Most of the exceptions to this rule are 
in the solutions to the problems on Significant Figures and Order of Magnitude 
and the problems dealing with nuclear physics. When the nature of the problem 
makes it desirable to do so, we keep more than three significant figures in the 
answers to intermediate steps and then round to three significant figures for the 
final answer. Some of the Estimation and Approximation Problems have answers 
to fewer than three significant figures. 

Physics for Scientists and Engineers, 5e includes numerous spreadsheet 
problems. Most of them call for the plotting of one or more graphs. The solutions 
to these problems were generated using Microsoft Excel and its "paste special" 
feature, so that you can easily make changes to the graphical parts of the 
solutions. 

v 
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Chapter 21 
The Electric Field 1:  Discrete Charge Distributions 
Conceptual Problems 

*1 •• Discuss the similarities and differences in the properties of electric charge 

and gravitational mass. 

Similarities : 

The force between charges and 

masses varies as lIr2. 

The force is directly proportional to 

the product of the charges or 

masses. 

Differences: 

There are positive and negative charges but 

only positive masses. 

Like charges repel; like masses attract. 

The gravitational constant G is many orders 

of magnitude smaller than the Coulomb 

constant k. 

*5 •• Two uncharged conducting spheres with their conducting surfaces in contact 

are supported on a large wooden table by insulated stands. A positively charged rod is 

brought up close to the surface of one of the spheres on the side opposite its point of 

contact with the other sphere. (a) Describe the induced charges on the two conducting 

spheres, and sketch the charge distributions on them. (b) The two spheres are separated 

far apart and the charged rod is removed. Sketch the charge distributions on the separated 

spheres. 

Determine the Concept Because the spheres are conductors, there are free electrons on 

them that will reposition themselves when the positively charged rod is brought nearby. 

(a) On the sphere near the positively 

charged rod, the induced charge is negative 

and near the rod. On the other sphere, the 

net charge is positive and on the side far 

from the rod. This is shown in the diagram. 

(b) When the spheres are separated and far 

apart and the rod has been 

removed, the induced charges are 

distributed uniformly over each sphere. The 

charge distributions are shown in the 

1 

+ + + + + ) 

o o 
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diagram. 

*7 A positive charge that is free to move but is at rest in an electric field E will 

(a) accelerate in the direction perpendicular to E . 
(b) remain at rest. 

(c) accelerate in the direction opposite to E. 
Cd) accelerate in the same direction as E. 
( e) do none of the above. 

Determine the Concept The acceleration of the positive charge is given by 

ii = F = !l.!!.. E. Because qo and m are both positive, the acceleration is in the same 
m m 

direction as the electric field. I (d) is correct. I 
*8 • If four charges are placed at the corners of a square as shown in Figure 21-
33, the field E is zero at 

(a) all points along the sides of the square midway between two charges. 

(b) the midpoint of the square. 

(c) midway between the top two charges and midway between the bottom two charges. 

(d) none of the above. 

-q ,0 }------{:+ +q 

+q t;'-:}-------{, - -q 

Figure 21-33 Problem 8 

Determine the Concept E is zero wherever the net force acting on a test charge is zero. 

At the center of the square the two positive charges alone would produce a net electric 

field of zero, and the two negative charges alone would also produce a net electric field 

of zero. Thus, the net force acting on a test charge at the midpoint of the square will be 

zero. I (b) is correct. I 
*11 • Two charges +q and -3q are separated by a small distance. Draw the electric 

field lines for this system. 



The Electric Field 1: Discrete Charge Distributions 3 

Determine the Concept We can use the 

rules for drawing electric field lines to 

draw the electric field lines for this system. 

In the field-line sketch to the right we've 

assigned 2 field lines to each charge q. 

-3q +q 

*12 • Three equal positive point charges are situated at the comers of an equilateral 

triangle. Sketch the electric field lines in the plane of the triangle. 

Determine the Concept We can use the 

rules for drawing electric field lines to 

draw the electric field lines for this system. 

In the field-line sketch to the right we've 

assigned 7 field lines to each charge q. 

*14 · The electric field lines around an electrical dipole are best represented by 

which, if any, of the diagrams in Figure 2 1-34? 

(c) (d) 

Figure 21-34 Problem 1 4  

Determine the Concept Electric field lines around an electric dipole originate at the 

positive charge and terminate at the negative charge. Only the lines shown in (d) satisfy 

this requirement. I (d) is correct. I 
*15 ·· A molecule with electric dipole moment p is oriented so that p makes an 

angle e with a uniform electric field E that is in the direction of increasing x. The dipole 

is free to move in response to the force from the field. Describe the motion of the dipole. 

Suppose the electric field is nonuniform and is larger in the x direction. How will the 

motion be changed? 
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Determine the Concept Because 8* 0, a dipole in a unifonn electric field will 

experience a restoring torque whose magnitude is pEx sin e . Hence it will oscillate 

about its equilibrium orientation, 8= o. If 8« 1 ,  sin8� e, and the motion will be simple 

hannonic motion. Because the field is nonunifonn and is larger in the x direction, the 

force acting on the positive charge of the dipole ( in the direction of increasing x) will be 

greater than the force acting on the negative charge of the dipole ( in the direction of 

decreasing x) and thus there will be a net electric force on the dipole in the direction of 

increasing x. Hence, the dipole will accelerate in the x direction as it oscillates about 

8 =0. 

*18 •• A metal ball is positively charged. Is it possible for it to attract another 

positively charged ball? Explain. 

Determine the Concept Yes. A positively charged ball will induce a dipole on the metal 

ball, and if the two are in close proximity, the net force can be attractive. 

*19 ·· A simple demonstration of electrostatic attraction can be done simply by 
tying a small ball of tinfoil on a hanging string, and bringing a charged wand near it. 
Initially, the ball will be attracted to the wand, but once they touch, the ball will be 
repelled violently from it. Explain this behavior. 

Determine the Concept Assume that the wand has a negative charge. When the charged 
wand is brought near the tinfoil, the side nearer the wand becomes positively charged by 
induction, and so it swings toward the wand. When it touches the wand, some of the 
negative charge is transferred to the foil, which, as a result, acquires a net negative charge 
and is now repelled by the wand. 

Estimation and Approximation 

*23 ·· A popular classroom demonstration consists of rubbing a "magic wand" 
made of plastic with fur to charge it, and then placing it near an empty soda can on its 
side ( Figure 2 1 -35). The can will roll toward the wand, as it acquires a charge on the side 
nearest the wand by induction. Typically, if the wand is held about 1 0  cm away from the 
can, the can will have an initial acceleration of about 1 rnIs2• If the mass of the can is 
0.0 1 8  kg, estimate the charge on the rod. 

Figure 21-35 Problem 23 

Soda 
can 
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Picture the Problem We can use Coulomb's law to express the charge on the rod in 
terms of the force exerted on it by the soda can and its distance from the can. We can 
apply Newton's 2nd law in rotational form to the can to relate its acceleration to the 
electric force exerted on it by the rod. Combining these equations will yield an expression 
for Q as a function of the mass of the can, its distance from the rod, and its acceleration. 

Use Coulomb's law to relate the 
force on the rod to its charge Q and 
distance r from the soda can: 

Solve for Q to obtain: 

Apply L reenter of mass = fa to the 

can: 

Because the can rolls without 
slipping, we mow that its linear 
acceleration a and angular 
acceleration a are related according 
to: 

Because the empty can is a hollow 
cylinder: 

Substitute for I and a and solve for 
Fto obtain: 

Substitute for F in equation ( 1 ): 

Substitute numerical values and 
evaluate Q: 

Electric Charge 

FR=fa 

a a=-
R 

( 1 ) 

where R is the radius of the soda can. 

f=MR2 
where M is the mass of the can. 

Q�r7Q 
Q= 

= I 14l nC I 

*27 · How many coulombs of positive charge are there in 1 kg of carbon? Twelve 

grams of carbon contain Avogadro's number of atoms, with each atom having six protons 

and six electrons. 

Picture the Problem We can find the number of coulombs of positive charge there are in 

1 kg of carbon from Q = 6nce, where nc is the number of atoms in 

1 kg of carbon and the factor of 6 is present to account for the presence of 6 protons in 
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each atom. We can find the number of atoms in lkg of carbon by setting up a proportion 

relating Avogadro's number, the mass of carbon, and the molecular mass of carbon to nco 

Express the positive charge in terms 

of the electronic charge, the number 

of protons per atom, and the number 

of atoms in 1 kg of carbon: 

Using a proportion, relate the 

number of atoms in 1 kg of carbon 

nc, to Avogadro's number and the 

molecular mass M of carbon: 

Substitute to obtain: 

Substitute numerical values and evaluate Q: 

nc m N m 
- -�-n - A C  - ---.' c-NA M M 

Q = 
6(6.02 X 1023 atoms/mol)(1 kg) (1.6 x 10-19 C) 

= 1 4.82 X 107 C 1 
0.012 kg/mol 

Coulomb's Law 

*32 •• A point charge of -2.5 jiC is located at the origin. A second point charge of 6 

jiC is at x = 1 m, Y = 0.5 m. Find the x and y coordinates of the position at which an 

electron would be in equilibrium. 

Picture the Problem The positions of the 

charges are shown in the diagram. It is 

apparent that the electron must be located 

along the line joining the two charges. 

Moreover, because it is negatively charged, 

it must be closer to the -2.5 jiC than to the 

6.0 jiC charge, as is indicated in the figure. 

We can find the x and y coordinates of the 

electron's position by equating the two 

electrostatic forces acting on it and solving 

for its distance from the origin. 

Y,m 

We can use similar triangles to express this 

radial distance in terms of the x and y 
coordinates of the electron. 
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Express the condition that must be 

satisfied if the elech-on is to be in 

equilibrium: 

Express the magnitude of the force 

that ql exerts on the electron: 

Express the magnitude of the force 

that q2 exerts on the electron: 

Substitute and simplify to obtain: 

Substitute for ql and q2 and 

simplify: 

Solve for r to obtain: 

Use the similar triangles in the 

diagram to establish the proportion 

involving the y coordinate of the 

electron: 

Solve for Ye: 

Use the similar triangles in the 

diagram to establish the proportion 

involving the x coordinate of the 

electron: 

Solve for Xe: 

The coordinates of the electron's 

position are: 

q l 
_ lq2 1 

�+JL25mY -7 

(-L4m-2) r2 + (22361m-1) r 
+125m = 0 

r = 2_036m 
and 

r=-OA386m 
Because r < 0 is unphysical, we'll consider 

only the positive root 

� 2_036m 
O_5m L12m 

Ye =O_909m 

Xe _ 
2_036m 

1m L12m 

Xe = L82m 

(xe,yJ=1 (-L82m,-O.909m) I 
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*33 ·· A charge of  -1.0 ;...tC is located at the origin; a second charge of  2.0 ;...tC is 

located atx = O,y = 0.1 m; and a third charge of 4.0;...tC is located atx = 0.2 m,y = O. 
Find the forces that act on each of the three charges. 

Picture the Problem Let ql represent the 

charge at the origin, q2 the charge at (0, 0. 1 

m), and q3 the charge at 

(0.2 m, 0). The diagram shows the forces 

acting on each of the charges. Note the 

action-and-reaction pairs. We can apply 

Coulomb's law and the principle of 

superposition of forces to find the net 

force acting on each of the charges. 

Express the net force acting on q 1 : 

Express the force that q2 exerts on ql: 

Substitute numerical values and evaluate F2,1 : 

Y,m 
qz = 2 p.C 

" 
F1.2 "" " 
FZ•1 "" " 

F", � (8.99xI0' N ·m'/C' )(2 pC) tl�! (-O.lm)] � (1.80N)] O.lm 

Express the force that q3 exerts on ql: 

Substitute numerical values and evaluate F3 1 : 

i: = kq3ql r 3,1 3 3,1 r3,1 

F", � (8.99x 10' N ·m'/C' )(4 pC) t IpCJ (-0.2m)i � (0.899N)i O.2m 

Substitute to find F; : 

Express the net force acting on q2: 

i; =\ (O.899N)i + (1.80N)) I 
- - -

F2 = F3,2 + F;,2 
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Express the force that q3 exerts on q2: 

- -
because F.,,2 and F2,I are action-and-reaction 

forces. 

F = kq3q2 r 3,2 3 3,2 r3,2 
= kq�q2 [(-O.2m)i + (O. lm)J] r3,2 

Substitute numerical values and evaluate F3,2 : 

F", � (8,99 X 10' N, m'IC' )(4 jiC) ( 
(2 jiC)

)' [(- 0,2 m)i + (0, lm)j 1 0.224m 
= (-1.28 N)i + (0.640 N)J 

Find the net force acting on q2: 
F2 = F3,2 -(1.80 N)J = (-1.28 N)i + (0.640 N)J -(1.80 N)J 

=1 (-1.28N)i-(1. 16N)J 1 
- - - -

Noting that F., 3 and F3 I are an action-and-reaction pair, as are F23 and F3 2 ' , , , , 
express the net force acting on q3: 

F3 = FI,3 + F2,3 = -F3,1 - F3,2 = -(0.899 N)i -l(-1.28 N)i + (0.640N)J J 
=1 (0.381N)i -(0.640N)J 1 

The Electric Field 

*37 · A charge of 4.0 J-LC is at the origin. What is the magnitude and direction of 

the electric field on the x axis at (a) x = 6 m, and (b) x = -10 m? 

(c) Sketch the function Ex versus x for both positive and negative values ofx. (Remember 

that Ex is negative when E points in the negative x direction.) 

Picture the Problem Let q represent the charge at the origin and use Coulomb's law for 

E due to a point charge to find the electric field at x = 6 m and -10m. 

(a) Express the electric field at a 

point P located a distance x from a 

charge q :  

-() kq A E X =-2 rpo 
x ' 
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Evaluate this expression for 

x=6 m: 

(b) Evaluate Eatx=-lO m: 

E-(6 )= (8.99xl09N .m2/C2)(4,LlC) � m 
(6mY 

I 

= I (999N/C)i I 

(c) The following graph was plotted using a spreadsheet program: 

500 

250 

� a 
«5' 

-250 

-500 
-2 -1 a 2 

x (m) 

*38 · Two charges, each +4 pC, are on the x axis, one at the origin and the other at 

x = 8 m. Find the electric field on the x axis at (a) x = -2 m, (b) x = 2 m, (c) x = 6 m, and 

(d) x = 10 m. (e) At what point on the x axis is the electric field zero? if) Sketch Ex versus 

x. 

Picture the Problem Let q represent the charges of +4 fI2 and use Coulomb's law for 

E due to a point charge and the principle of superposition for fields to find the electric 

field at the locations specified. 

Noting that ql = q2, use Coulomb's law and the principle of superposition to express the 

electric field due to the given charges at a point P a distance x from the origin: 
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- - ) - () kql � kq, � k (1 � + 1 r J E(x) =Eq, (x +Eq, x = 
x2 rq"p+ (8m

�x
) 2 rq"p = ql x2 rfJ"p (8m-xY fJ"P 

( 2)( 1 � 1 � J = 36kN'm IC 7rq"p + (8m -xY 
rq"p 

(a) Apply this equation to the point at x = -2 m: 

ii,(- 2m) � (36kN m' IC l[ (2�)' (-i)+ (1 O�)' (-il] � I (-936kN/C)i I 

(b) Evaluate E atx = 2 m: 

E(2m)� (36kN. m'/cl[ (2�)' (i)+ (6�)' (-I)H (S.oOkN/c)i I 

(c) Evaluate E at x = 6 m: 

E(6m)� (36kN ·m'/C t6�)' �)+ (2�)' (-I)] � I (-S.oOkN/c)i I 
(d) Evaluate E at x = 1 0m: 

E(10m)� (36kN m'/ctl0�)' (I) + (2�)J)] � I (935kN/C)i I 

(e) From symmetry considerations: E(4m)=@] 
(f) The following graph was plotted using a spreadsheet program: 
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·4 4 8 12 

x (m) 

*42 •• A point charge of +5.0 j.1C is located at x = -3.0 cm, and a second point 

charge of -8.0 j.1C is located at x = +4.0 cm. Where should a third charge of +6.0 j.1C be 

placed so that the electric field at x = 0 is zero? 

Picture the Problem If the electric field at x = 0 is zero, both its x and y components must 

be zero. The only way this condition can be satisfied with the point charges of +5.0 j.1C 

and -8.0 j.1C are on the x axis is if the point charge of +6.0 j.1C is also on the x axis. Let the 

subscripts 5, -8, and 6 identify the point charges and their fields. We can use Coulomb's 

law for E due to a point charge and the principle of superposition for fields to determine 

where the +6.0 j.1C charge should be located so that the electric field at x = 0 is zero. 

Express the electric field at x = 0 in 

terms of the fields due to the charges 

of +5.0 j.1C, -8.0 j.1C, and +6.0 j.1C:  

Substitute for each of the fields to 

obtain: 

Divide out the unit vector i to 

obtain: 

Substitute numerical values to 

obtain: 

E(O) = Es,£ + E_8,£ + E6,£ 
=0 

or 

kqs � 
+ 
kq6 ( �) kq_8 ( �)-0 -

2 
l -

2 
-l + -

2
- -l -

� � r_8 

5 6 
(3 cmY 

r6 = 12.38 cm I 

_-_8_ =0 (4 cmY 
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*45 ·· A 5-p.C point charge is located at x = 1 m, Y = 3 m; and a -4-,uC point charge 

is located at x = 2 m, Y = -2 m. (a) Find the magnitude and direction of the electric field 

at x = -3 m, Y = 1 m. (b) Find the magnitude and direction of the force on a proton at 

x = -3 m, Y = I m. 

Picture the Problem The diagram shows the electric field vectors at the point of interest 

P due to the two charges. We can use Coulomb's law for E due to point charges and the - - -
superposition principle for electric fields to find E p . We can apply F = qE to find the 

force on a proton at (-3 m, 1 m). 

Y,m 
3 /q2 = SI-'C 
./ 

2 

--�---+��r----r---+----r-----x,m 
-3 -2 

(a) Express the electric field at 

(-3 m, 1 m) due to the charges ql and 

q2: 

Evaluate EI : 

�'-.. 2 
'-.. 
-1 '-. '-.. '-.. '-.. 
-2 '--. 

,/, = -4 f.LC 

E =kql � =(8.99X109N . m 2/C2)(-4,uC) [ (-S m)1+(3 m))] I ? rl,p ( ) 2 ( ) 2 � 
1'j�p S m + 3 m (S mY +(3 mY 

= (-1.06kN /C)(-0.8571 + 0.514))= (0.908kN/c)1 + (- 0 .544 kN/C)) 

Evaluate E 2 : 
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Substitute and simplify to  find Ep : 

Ep = (0.908kN/C)i + (-0.544kN/C)} + (-2.0lkN/C)i + (-1.0lkN/C)) 
= (-1.1 OkN/C)i + (-1.55kN/C)) 

The magnitude of Ep is: 

The direction of Ep is: 

Ep = �(1.10kN/CY + (1.55kN/CY 
= ! 1.90kN/C ! 

e = tan- I(-1.55kN/C) =! 2350 ! E -1.10kN/C 
Note that the angle returned by your 

_1(-1.55kN/C) . calculator for tan IS the -1.10kN/C 
reference angle and must be increased by 

1800 to yield BE. 

(b) Express and evaluate the force on a proton at point P: 

F = qEp = (1.6 x 10-19 C )l(-1.10kN/c)1 + (-1.55kN/C)) J 
= (-1.76 x 1 0-'6N)i + (-2.48 X 10-16 N)} 

The magnitude of F is: 

The direction of F is: 
e =tan- I (-2.48X10-16N] =! 2350 ! 

F -1.76x10-16N ' 
where, as noted above, the angle returned 

by your calculator for (-2 48X10-16N) tan - I · 16 is the reference -1.76x10- N 
angle and must be increased by 1800 to 

yield BE. 



The Electric Field 1: Discrete Charge Distributions 15 

*48 ••• Two positive point charges +q are on the y axis at y = +a and y = -a as in 

Problem 44. A bead of mass m can-ying a negative charge -q slides without friction along 

a thread that runs along the x axis. (a) Show that for small displacements of x «  a, the 

bead experiences a restoring force that is proportional to x and therefore undergoes 

simple harmonic motion. (b) Find the period of the motion. 

Picture the Problem In Problem 44 it is shown that the electric field on the x axis, due to 

equal positive charges located at (0, a) and (O,-a), is given by 

Ex = 2kqx(x2 + a2 t/2. We can use T = 2Jr�m/ k' to express the period of the motion 

in terms of the restoring constant Ii. 

(a) Express the force acting on the on 

the bead when its displacement from 

the origin is x: 

Factor a2 from the denominator to 

obtain: 

For x «  a: 

(b) Express the period of a simple 

harmonic oscillator: 

Obtain Ii from our result in part (a): 

Substitute to obtain: 

F= x 

i.e., the bead experiences a linear restoring 

force. 

T = 2Jr 1m fk7 

Motion of Point Charges in Electric Fields 

*50 · (a) Compute elm for a proton, and find its acceleration in a uniform electric 

field with a magnitude of 100 N/C. (b) Find the time it takes for a proton initially at rest 

in such a field to reach a speed of O.Ole ( where e is the speed of light). 
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Picture the Problem We can use Newton's 2nd law of motion to find the acceleration of 

the proton in the uniform electric field and constant-acceleration equations to find the 

time required for it to reach a speed ofO.Ole and the distance it travels while acquiring 

this speed. 

(a) Use data found at the back of 

your text to compute elm for an 

electron: 

Apply Newton's 2nd law to relate the 

acceleration of the electron to the 

electric field: 

Substitute numerical values and 

evaluate a: 

(b) Using the definition of 

acceleration, relate the time required 

for an electron to reach O.Ole to its 

acceleration: 

Substitute numerical values and 

evaluate f..t: 

e 1.6 X 10-19 C =------

mp 1.67x10-27 kg 
= 19.58x 107 Clkg 1 

Fnet eE a=--=-
mp mp 

a = (1 .6 x 10-19 C){l00 N/C) 
1.67 x 10-27 kg 

= 19.58 X 109 m1s2 1 
The direction of the acceleration 
of a proton is in the direction of 
the electric field. 

a a 

*54 •• A particle leaves the origin with a speed of 3 x 106 m/s at 35 ° to the x axis. It 
- � 

moves in a constant electric field E = Eyj. Find Ey such that the particle will cross the x 

axis atx = 1.5 em if the particle is (a) an electron, and (b) a proton. 

Picture the Problem We can use constant-acceleration equations to express the x and y 
coordinates of the particle in terms of the parameter t and Newton's 2nd law to express 

the constant acceleration in terms of the electric field. Eliminating the parameter will 

yield an equation for y as a function of x, q, and m that we can solve for Ey. 

Express the x and y coordinates of 

the particle as functions of time: 

x={vcosB)t 
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Apply Newton's 2nd law to relate the 

acceleration of the particle to the net 

force acting on it: 

Substitute in the y-coordinate 

equation to obtain: 

Eliminate the parameter t between 

the two equations to obtain: 

Set y = 0 and solve for Ey: 

Substitute the non-particle specific 

data to obtain: 

(a) Substitute for the mass and 

charge of an electron and evaluate 

Ey: 

(b) Substitute for the mass and 

charge of a proton and evaluate Ey: 

and 

y = {vsinB)t - -t ai2 

Fnet,y qEy a =--=-­y m m 

( ) qE 2 Y = vsinB t ---y t 2m 

qE y = ( tan B )x - 2 Y 2 x2 
2mv cos B 

E = mv2 sin2B 
y qx 

E _ m(3 x 106 mist sin 7 0° y - q(O.OIS m) 
= (S.64 x 1014 m /s2 )m 

q 

E =(S.64x1014m1s2)9.11x10-31kg 
y 1.6 x 10-19 C 
= 13.21kN/C I 

E = (S.64x 1014 mls2)1.67 x 10-2 7 kg 
y 1.6x10-19C 
= IS.89MN/C I 

*58 · A dipole of moment 0.5 e·nm is placed in a uniform electric field with a 

magnitude of 4.0x 104 N/C. What is the magnitude of the torque on the dipole when (a) 
the dipole is parallel to the electric field, (b) the dipole is perpendicular to the electric 

field, and (c) the dipole makes an angle of 30° with the electric field? (d) Find the 

potential energy of the dipole in the electric field for each case. 

Picture the Problem The torque on an electric dipole in an electric field is given by 

i = P x E and the potential energy of the dipole by U = -p . E. 

Using its definition, express the torque i=pxE 
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on a dipole moment in a uniform 

electric field: 

(a) Evaluate ,for () = 0°: 

(b) Evaluate ,for () = 90°: 

(c) Evaluate dor () = 30°: 

(d) Using its definition, express the 

potential energy of a dipole in an 

electric field: 

Evaluate U for () = 0°: 

Evaluate U for () = 90°: 

Evaluate U for () = 30°: 

and 
T = pEsin8 
where () is the angle between the electric 

dipole moment and the electric field. 

T = pE sin 0° = � 
T = (O.S e · nm )(4.0 x 104 N/C )sin 90° 
=13.20x10-24N'm 1 

T = (0.Se .nm)(4.0xl04 N/C)sin30° 
= 11.60 xl 0-24 N . m 1 

U =-p·i = -pEcos8 

U = -(O.Se . nm)(4.0 x 104 N/C )cosoo 
=1-3.20xl0-24 J 1 

U = -(O.Se . nm)(4.0 x 104 N/C )cos90° 
=0 

U = -(O.Se · nm)(4.0 x 104 N/C )cos30° 
=1-2.77x10-24 J I 

*59 ·· For a dipole oriented along the x axis, the electric field falls off as lIx3 in the 

x direction and lIi in the y direction. Use dimensional analysis to prove that, in any 

direction, the field far from the dipole falls off as llr3• 

Picture the Problem We can combine the dimension of an electric field with the 

dimension of an electric dipole moment to prove that, in any direction, the dimension of 

the far field is proportional to 1/[L]3 and, hence, the electric field far from the dipole falls 

off as lIr3. 

Express the dimension of an electric 

field: 
[E] = [kQ] 

[L ]2 


