Chapter 2

Limits and Derivatives

2.1 Introduction to Derivatives

2.1.1. With
$$\Delta t = 1.0$$
, $\Delta f = f(2.0) - f(1.0) = 3.0$, so $\frac{\Delta f}{\Delta t} = 3.0$. With $\Delta t = 0.5$, $\Delta f = f(1.5) - f(1.0) = 1.5$, so $\frac{\Delta f}{\Delta t} = 3.0$. With $\Delta t = 0.1$, $\Delta f = f(1.0) - f(1.0) = 0.03$, so $\frac{\Delta f}{\Delta t} = 3.0$. With $\Delta t = 0.01$, $\Delta f = f(1.01) - f(1.0) = 0.03$, so $\frac{\Delta f}{\Delta t} = 3.0$. 2.1.2. With $\Delta t = 1.0$, $\Delta g = g(1.0) - g(0.0) = -3.0$, so $\frac{\Delta g}{\Delta t} = -3.0$. With $\Delta t = 0.5$, $\Delta g = g(0.5) - g(0.0) = -1.5$, so $\frac{\Delta f}{\Delta t} = -3.0$. With $\Delta t = 0.01$, $\Delta g = g(0.01) - g(0.0) = -0.03$, so $\frac{\Delta g}{\Delta t} = -3.0$. With $\Delta t = 0.01$, $\Delta f = f(0.0) - f(0.0) = f(0.0$

2.1.8. Each secant line is $g_s(t) = 2 - 3t$.

2.1.9. The coordinates of the base point are (1, 2), so the secant lines are: with $\Delta t = 1.0$, $h_s(t) = 2+6(t-1)$, with $\Delta t = 0.5$, $h_s(t) = 2+5(t-1)$, with $\Delta t = 0.1$, $h_s(t) = 2+4.2(t-1)$, with $\Delta t = 0.01$, $h_s(t) = 2+4.02(t-1)$.

2.1.10. The coordinates of the base point are (0, 1), so the secant lines are: with $\Delta t = 1.0$, $h_s(t) = 1+t$, with $\Delta t = 0.5$, $h_s(t) = 1 + 0.5t$, with $\Delta t = 0.1$, $h_s(t) = 1 + 0.1t$, with $\Delta t = 0.01$, $h_s(t) = 1 + 0.01t$.

2.1.11. The coordinates of the base point are (0, 1), so the secant lines are: with $\Delta t = 1.0$, $G_s(t) = 1 + 6.389t$, with $\Delta t = 0.5$, $G_s(t) = 1 + 3.436t$, with $\Delta t = 0.1$, $G_s(t) = 1 + 2.21t$, with $\Delta t = 0.01$, $G_s(t) = 1 + 2.02t$.

2.1.12. The coordinates of the base point are (0, 1), so the secant lines are: with $\Delta t = 1.0$, $G_s(t) = 1 - 0.632t$, with $\Delta t = 0.5$, $G_s(t) = 1 - 0.787t$, with $\Delta t = 0.1$, $G_s(t) = 1 - 0.95t$, with $\Delta t = 0.01$, $G_s(t) = 1 - 0.995t$.

- 2.1.13. The slope is 3, so the tangent line i f(t) = 2 + 3t
- 2.1.14. The slope is -3, so the tangent line is $\hat{g}(t) = 2 3t$.
- 2.1.15. It looks like the slopes are getting close to 4.0, so the tangent line is $\hat{k}(t) = 2 + 4(t 1)$.
- 2.1.15. It looks like the slopes are getting close to 0.0, so the tangent line is $\hat{h}(t) = 1$.
- 2.1.17. It looks like the slopes are getting close to 2.0, so the tangent line is G(t) = 1 + 2t.
- 2.1.18. It looks like the slopes are getting close to -1.0, so the tangent line is G(t) = 1 t.
- 2.1.19. The derivative of g(t), the slope of the tangent line.
- 2.1.20. g'(t), $\frac{dg}{dt, \lim_{\Delta t \to 0} \Delta t}$

2.1.21.

- a. b(0) = 1.0, b(1.0) = 1.5, b(2.0) = 2.25.
- b. $\Delta b = 1.5 1.0 = 0.5$, so $\Delta b/\Delta t = 0.5$.
- c. $\Delta b = 2.25 1.5 = 0.75$, so $\Delta b/\Delta t = 0.75$.

a.
$$b(0) = 1.0$$
, $b(1.0) = 1.2$, $b(2.0) = 1.44$.

b.
$$\Delta b = 1.2 - 1.0 = 0.2$$
, so $\Delta b/\Delta t = 0.2$.

c.
$$\Delta b = 1.44 - 1.2 = 0.24$$
, so $\Delta b/\Delta t = 0.24$.

2.1.23.

a.
$$\Delta b = 1.5^{1.0} - 1.0 = 0.5$$
, and $\Delta b/\Delta t = 0.5$.

b.
$$\Delta b = 1.5^{0.1} - 1.0 = 0.0413$$
, and $\Delta b/\Delta t = 0.414$.

c.
$$\Delta b = 1.5^{0.01} - 1.0 = 0.00406$$
, and $\Delta b/\Delta t = 0.406$.

d.
$$\Delta b = 1.5^{0.001} - 1.0 = 0.000405$$
, and $\Delta b/\Delta t = 0.405$.

e. The limit looks like 0.405.

2.1.24.

- a. The slope is $(2.0^{1.0} 1.0)/1.0 = 1.0$.
- b. The slope is $(2.0^{0.1} 1.0)/0.1 = 0.718$.
- c. The slope is $(2.0^{0.01} 1.0)/0.01 = 0.696$.
- d. The slope is $(2.0^{0.001} 1.0)/0.001 = 0.693$.
- e. It looks like the slope of the tangent is 0.693.

f.

2.1.25.

- a. The slope is $(5 \cdot 1.0^2 0.0)/1.0 = 5.0$.
- b. The slope is $(5 \cdot 0.1^2 0.0)/0.1 = 0.5$.
- c. The slope is $(5 \cdot 0.01^2 0.0)/0.01 = 0.05$.
- d. The slope is $(5 \cdot 0.001^2 0.0)/0.001 = 0.005$.
- e. The slope gets close to 0.

f.

2.1.26.

- a. The slope is $((1 + 2 \cdot 1.0^3) (1.0 + 2.0 \cdot 0.0^3))/1.0 = 26.0$.
- b. The slope is $((1+2\cdot 0.1^3) (1.0+2.0\cdot 0.0^3))/0.1 = 7.28$.
- c. The slope is $((1 + 2 \cdot 0.01^3) (1.0 + 2.0 \cdot 0.0^3))/0.01 = 6.1208$.
- d. The slope is $((1 + 2 \cdot 0.001^3) (1.0 + 2.0 \cdot 0.0^3))/0.001 = 6.012$.
- e. The slope seems to be approaching 6.0.

f.

2.1.27. During the first hour, 3.0 bacteria/h. During the first half hour, 2.485 bacteria/h. During the second half hour, 3.515 bacteria/h. The population changes faster during the second half hour.

2.1.28. During the first hour, 0.648 bacteria/h. During the first half hour, 0.568 bacteria/h. During the second half hour, 0.729 bacteria/h. The population changes faster during the second half hour.

2.1.29. During the first hour, -0.79 bacteria/h. During the first half hour, -0.88 bacteria/h. During the second half hour, -0,69 bacteria/h. The population changes faster during the first half hour.

2.1.30. During the first hour, -1.5 bacteria/h. During the first half hour, -1.757 bacteria/h. During the second half hour, -1.243 bacteria/h. The population changes faster during the first half hour.

