CHAPTER 1 Whole Numbers

Section 1.1: An Introduction to the Whole Numbers

VOCABULARY

- 1. The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are the digits.
- 2. The set of whole numbers is $\{0, 1, 2, 3, 4, 5, ...\}$
- 3. When we write five thousand eighty-nine as 5,089, we are writing the number in standard form.
- **4.** To make large whole numbers easier to read, we use commas to separate their digits into groups of three, called <u>periods</u>.
- 5. When 297 is written as 200 + 90 + 7, we are writing 297 in <u>expanded</u> form.
- **6.** Using a process called *graphing* we can represent whole numbers as points on a <u>number</u> line.
- 7. The symbols < and > are <u>inequality</u> symbols.
- **8.** If we <u>round</u> 627 to the nearest ten, we get 630.

CONCEPTS

9. Trillions Billions Millions Thousands Ones

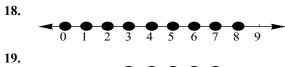
1 , 3 4 2 , 5 8 7 , 2 0 0 , 9 4 6

- **10.** a. 5467010 = 5,467,010
 - b. seventy-two million, four hundred twelve thousand, six hundred thirty-five
- **11.** a. forty
 - b. ninety
 - c. sixty-eight
 - d. fifteen
- **12.** a. 81,692 b. 965,347

13.

0 1 2 3 4 5 6 7


14.


0 1 2 3 4 5 6 7 8

15. 0 1 2 3 4 5 6 7 8

16.

0 1 2 3 4 5 6 7 8 9

NOTATION

17.

- **21.** The symbols { }, called <u>braces</u>, are used when writing a set.
- 22. The symbol > means <u>is greater than</u>, and the symbol < means <u>is less than</u>.

GUIDED PRACTICE

- **23.** a. 3 tens
 - b. 7
 - c. 6 hundreds
 - d. 5
- **24.** a. 8 thousands
 - b. 9
 - c. 2 ten thousands
 - d. 1
- **25.** a. 6 millions
 - b. 7
 - c. 3 ten millions
 - d. 9
- **26.** a. 5 hundreds
 - b. 8
 - c. 2 billions
 - d. 7
- **27.** 93 = ninety-three
- 28. 48 =forty-eight
- 29. 732 = seven hundred thirty-two
- 30. 259 = two hundred fifty-nine
- 31. 154,302 = one hundred fifty-four thousand, three hundred two
- 32. 615,019 = six hundred fifteen thousand, nineteen
- 33. 14,432,500 = fourteen million, four hundred thirty-two thousand, five hundred
- 34. 104,052,005 = one hundred four million, fifty-two thousand, five

- 2 Tussy/Koenig Prealgebra, 5e
- 35. 970,031,500,104 = nine hundred seventy billion, thirty-one million, five hundred thousand, one hundred four
- **36.** 5,800,010,700 = five billion, eight hundred million, ten thousand, seven hundred
- 37. 82,000,415 = eighty-two million, four hundred fifteen
- **38.** 51,000,201,078 = fifty-one billion, two hundred one thousand, seventy-eight
- **39.** 3,737
- **40.** 15,492
- **41.** 930
- **42.** 640
- **43.** 7,021
- **44.** 4,500
- **45.** 26,000,432
- **46.** 92,000,018,399
- 47. 245 = 200 + 40 + 5
- **48.** 518 = 500 + 10 + 8
- **49.** 3,609 = 3,000 + 600 + 9
- **50.** 3.961 = 3.000 + 900 + 60 + 1
- **51.** 72,533 = 70,000 + 2,000 + 500 + 30 + 3
- **52.** 73,009 = 70,000 + 3,000 + 9
- 53 104,401 = 100,000 + 4,000 + 400 + 1
- **54.** 570,003 = 500,000 + 70,000 + 3
- **55.** 8,403,613 = 8,000,000 + 400,000 + 3,000 + 600 + 10 + 3
- **56.** 3,519,807 = 3,000,000 + 500,000 + 10,000 + 9,000 + 800 + 7
- 57. 26,000,156 = 20,000,000 + 6,000,000 + 100 + 50 + 6
- **58.** 48,000,061 = 40,000,000 + 8,000,000 + 60 + 1
- **59.** a. 11 > 8
- b. 29 < 54
- **60.** a. 410 < 609
- b. 3,206 < 3,231
- **61.** a. 12,321 > 12,209
- b. 23,223 < 23,231
- **62.** a. 178,989 > 178,898
- b. 850,234 < 850,342
- 63. 98,150, since 4 < 5
- 64. 26,740, since 2 < 5
- 65. 512,970, since $7 \ge 5$
- 66. 621,120, since $6 \ge 5$
- 67. $8,400, \text{ since } 5 \ge 5$
- 68. 1.800, since 4 < 5
- 69. 32.400, since 3 < 5
- 70. 73,900, since 3 < 5

- 71. 66,000, (since $8 \ge 5$, 981 rounds to 1,000)
- 72. 5,347,000, (since $7 \ge 5$, 975 rounds to 1,000)
- 73. 2,581,000, (since $5 \ge 5$, 952 rounds to 1,000)
- 74. 3,429,000, (since $6 \ge 5$, 961 rounds to 1,000)
- **75.** 53,000 ; 50,000
- **76.** 85,000 ; 90,000
- 77,000;80,000
- **78.** 34,000 ; 30,000
- **79.** 816,000; 820,000
- **80.** 536,000 ; 540,000
- **81.** 297,000; 300,000
- **82.** 499,000 ; 500,000
- **83.** a. 79,590
- b. 79,600
- c. 80,000
- d. 80,000
- **84.** a. 5,926,000
- b. 5,930,000
- c. 5,900,000
- d. 6,000,000
- a. \$419,160
- b. \$419,200d. \$420,000
- c. \$419,000 a. 5,436,480 ft.
- b. 5,436,500 ft.
- c. 5,436,000 ft.
- d. 5,440,000 ft.
- **87.** 40,025

85.

86.

- **88.** 7,000,077
- **89.** 202,036
- **90.** 7,000,000,350
- **91.** 27,598
- **92.** 7,452,860
- **93.** 10,700,506
- **94.** 86,412

LOOK ALIKES

- **95.** a. 1,000,600,000,000
 - b. 1,000,600,000
 - c. 1,000,600
- **96.** a. 99,000,000,099
 - b. 88,000,088
 - c. 77,077
- **97.** a. 9,000,000,000
 - b. 9,000,000,000
- **98.** a. 1,001,001,001
 - b. 1,001,001,001

APPLICATIONS

99. Aisha is the closest to \$4,745 without being over.

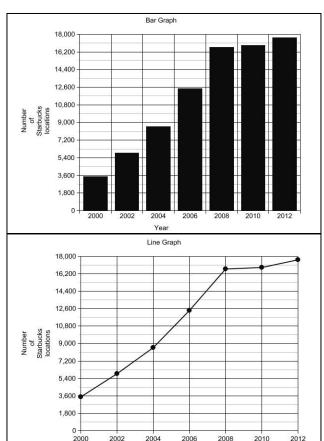
100.

T. Roosevelt 42 yr/	G. Cleveland 47			
322 days	yr/351days			
J. Kennedy 43	F. Pierce 48 yr/101			
yr/236 days	days			
W. Clinton 46	J. Garfield 49 yr/105			
yr/154 days	days			
U. Grant 46 yr/236	J. Polk 49 yr/122 days			
days				
B. Obama 47	M. Filmore 50 yr/184			
yr/169 days	days			
	-			

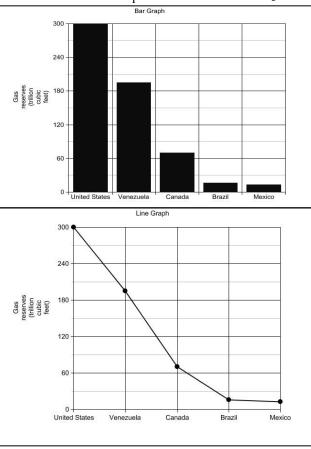
a. Under \$25,000

b. \$100,000 and Over

c. 17 million renter households


d. 5 million renter households

102. a. Golf, at 205mph.


b. Ping-Pong, at 70mph.

c. Tennis, at about 155mph.

103.

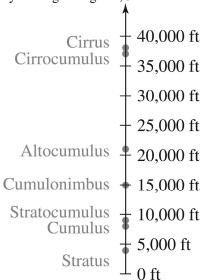
104.

105. Fifteen thousand, six hundred one Three thousand, four hundred thirty-three

106. a. This diploma awarded this the twenty-seventh day of June, two thousand fourteen.

b. The suggested contribution for the fundraiser is eight hundred fifty dollars a plate, or an entire table may be purchased for five thousand, two hundred fifty dollars.

107. 1,865,593; 482,880; 1,503; 269; 43,449


108. 6,504 kwh used.

109. a. hundred thousands

b. 980,000,000; 900,000,000+80,000,000

c. 1,000,000,000; one billion

110.

WRITING

- 111. To round 687 to the nearest ten, look to the right of the tens place. Since this digit is 7, increase the 8 in the tens place to 9 and make the ones place a zero. So, to the nearest ten, 687 is approximately 690.
- 112. The lower priced homes are roughly \$130,000.
- 113. Because 1,000 (3 zeros) is a thousand 1s, so 1,000,000 is a thousand thousands.
- **114.** A 6 figure income is any income between \$100,000 and \$999,999.
- **115.** 2, 10, 0, 1,000, 80 12, 3, 100, 2, 0
- **116.** Because "and" is used to represent decimals and mixed numbers.
- 117. Two hours is too long to wait!
- a. Two thousand, sixteen is less than two thousand, one hundred six.
 - b. Seven million, eighty thousand, eight is greater than seven million, eight thousand, eight hundred


Section 1.2: Adding and Subtracting Whole Numbers

VOCABULARY

- $1. \qquad 10 + 15_{addend} = 25_{sum}$
- 2. When using the vertical form to add whole numbers, if the addition of the digits in any one column produces a sum greater than 9, we must carry.
- The <u>commutative</u> property of addition states that the order in which whole numbers are added does not change their sum.

- 4. The <u>associative</u> property of addition states that the way in which whole numbers are grouped does not change their sum.
- 5. To see whether the result of an addition is reasonable, we can round the addends and estimate the sum.
- 6. The words *rise*, *gain*, *total*, and *increase* are often used to indicate the operation of <u>addition</u>. The words *fall*, *lose*, *reduce*, and *decrease* often indicate the operation of <u>subtraction</u>.
- 7. The figure on the left is an example of a rectangle. The figure on the right is an example of a square.
- **8.** Together the length and width of a rectangle are called its dimensions.

Length

- 9. When all the sides of a rectangle are the same length, we call the rectangle a square.
- **10.** The distance around a rectangle is called its perimeter.
- 11. 25 10 = 15 minuend subtrahend difference
- 12. If the subtraction of the digits in any place value column requires that we subtract a larger digit from a smaller digit, we must borrow or *regroup*.
- 13. Every subtraction has a <u>related</u> addition statement. For example 7 2 = 5 because 5 + 2 = 7.
- 14. To *evaluate* an expression such as 58 33 + 9 means to find its value.

CONCEPTS

- **15.** a. commutative property of addition
 - b. associative property of addition
 - c. associative property of addition
 - d. commutative property of addition

16. a.
$$19 + 33 = 33 + 19$$

b.
$$3 + (97 + 16) = (3 + 97) + 16$$

- 17. The subtraction 7 3 = 4 is related to the addition statement 4 + 3 = 7.
- 18. The operation of <u>addition</u> can be used to check the result of a subtraction. If a subtraction is done correctly, the <u>sum</u> of the difference and the subtrahend will always equal the minuend.
- 19. To *evaluate* (find the value of) an expression that contains both addition and subtraction, we perform the operations as they occur from <u>left</u> to <u>right</u>.
- **20.** To answer questions about *how much more*, or *how many more*, we can use subtraction.

NOTATION

- 21. The symbols () are called <u>parentheses</u>. It is standard practice to perform the operations within them <u>first</u>.
- **22.** 83 30 is correct.

23.
$$12 + (15 + 2) = 12 + 17$$

= 29

24.
$$36-11+5=25+5$$

= 30

GUIDED PRACTICE

33.
$$(13+8)+12=13+(8+12)=13+20$$

= 33

34.
$$(19+7)+13=19+(7+13)=19+20$$

= 39

35.
$$94+(6+37)=(94+6)+37$$

= $100+37$
= 137

36.
$$92 + (8 + 88) = (92 + 8) + 88$$

= $100 + 88$
= 188

- 6 Tussy/Koenig Prealgebra, 5e
- 38.
- 400
- 400
- 10,000
- 40,000
- $\frac{+8,000}{58,800}$
- **39.** 600,000
 - 20,000
 - 300,000
 - + 100,000
 - 1,020,000
- 40.
- 800,000 20,000
- 300,000
- + 100,000
 - 1,220,000
- **41.** 32 + 12 + 32 + 12 = 88 ft.
- **42.** 127 + 91 + 127 + 91 = 436 m.
- **43.** 17 + 17 + 17 + 17 = 68 in.
- **44.** 5+5+5+5=20 yd.
- **45.** 94 + 94 + 94 + 94 = 376 mi.
- **46.** 56 + 56 + 56 + 56 = 224 ft.
- 47. 87 + 6 + 87 + 6 = 186 cm.
- **48.** 77 + 76 + 77 + 76 = 306 in.
- **49.** 7,989 <u>-347</u>

7,642

50. 9,799

-283
9,516

- 51. 2,967 <u>-405</u>
 - 2,562
- **52.** 1,736
 - -304
 - 1,432

8,4 5 7

- 55. $6, \cancel{9} \cancel{6} \cancel{1}$ 4 7 8 6, 4 8 3
- 56. $\begin{array}{c} 7 & \cancel{\cancel{1}} & 13 \\ 4, \cancel{\cancel{8}} & \cancel{\cancel{2}} & \cancel{\cancel{5}} \\ -6 & 6 & 7 \\ \hline 4, 1 & 5 & 6 \end{array}$

61.
$$123+175=298$$
 correct

62.
$$132 + 237 = 369$$
 incorrect

64.
$$1{,}129 + 1{,}569 = 2{,}698$$
 correct

67.
$$80,000$$

$$-30,000$$

$$50,000$$

69.
$$35-12+6=23+6$$

= 29

70.
$$47-23+4=24+4$$

= 28

71.
$$574 + 47 - 13 = 621 - 13$$

= 608

72.
$$863+39-11=902-11$$

= 891

TRY IT YOURSELF

75.
$$3,430$$

$$- 529$$

$$2,901$$

76.
$$2,470$$

$$- 863$$

$$1,607$$

79.
$$633 - 598 + 30 = 35 + 30$$

= 65

80.
$$600-497+60=103+60$$

= 163

81.
$$(45+16)+4=45+20$$

= 65

82.
$$7 + (63 + 23) = 70 + 23$$

= 93

83.
$$20,007-78=19,929$$

84.
$$70,006-48=69,958$$

85.
$$852 - 695 + 40 = 157 + 40$$

= 197

86.
$$397 - 348 + 65 = 49 + 65$$

= 114

91.
$$16,427+13,573=30,000$$

92.
$$18,788+13,567=32,355$$

LOOK ALIKES

b.
$$99 + 299 = 398$$

98. a.
$$(913 + 87) + 688 = 1,000 + 688$$

= 1,688
b. $913 + (87 + 688) = 913 + 775$
= 1,688

APPLICATIONS

99.
$$24 + 35 + 16 + 16 = 91$$
 ft.

100.
$$540 + 230 + 150 + 170 = 990$$
 calories

101.
$$308,058,000 - 64,511,000 = 243,547,000 \text{ visitors}$$

105.
$$64 + 34 + 64 + 34 = 196$$
 inches of fringe

106.
$$15 + 11 + 15 + 11 = 52$$
 feet of border.

107.
$$48-2(11) = 48-22 = 26$$
 inches each side $4(26) = 104$ inches total

108.
$$209 + 209 + 209 + 209 = 836$$
 ft. of fence.

109.
$$2,623 - 351 = 2,272$$
 lbs.

110. The greatest increase occurred from 2010 to 2011. 7,175-6,132=1,043 markets

111.
$$71,649 - 70,154 = 1,495$$
 miles

112.
$$231 - 197 = 34$$
 lbs. lost

113.
$$2,662,066 - 1,571,537 = 1,090,529$$
 magazines

- 1,947-183=1,764°F115.
- 116. 67 - 33 = 34 cm. for the motor
- 117. a. \$49,565
 - b. 50,887 49,565 = \$1,322
- 118. a. \$50,751
 - b. 53,531 50,751 = \$2,780

WRITING

- 119. Benefit: faster; Tradeoff: less accurate
- 120. Something is wrong – he needs to check his work
- 121. Because taking 2 things from 3 things is not equivalent to taking 3 things from 2 things.
- By adding the difference to the subtrahend, you 122. should get the minuend.

REVIEW

- 123. a. 3,000 + 100 + 20 + 5
 - b. 60,000 + 30 + 7
- 124. a. 6,354,780
 - b. 6,354,800
 - c. 6,350,000
 - d. 6,400,000
- 125. a. 5,370,650
 - b. 5,370,000
 - c. 5,400,000
- a. seventy-two million, one thousand fifteen **126.**
 - b. 70,000,000 + 2,000,000 + 1,000 + 10 + 5

Section 1.3: Multiplying Whole Numbers

VOCABULARY

- 1. $5 \cdot 10 = 50$ factor factor product
- 2. Multiplication is repeated addition.

- 3. The <u>commutative</u> property of multiplication states that the order in which whole numbers are multiplied does not change their product. The associative property of multiplication states that the way in which whole numbers are grouped does not change their product.
- 4. Letters that are used to represent numbers are called variables.
- 5. If a square measures 1 inch on a side, its area is 1 square inch.
- 6. The area of a rectangle is a measure of the amount of surface it encloses.

CONCEPTS

- 7. a. 4.8
 - b. 15+15+15+15+15+15+15
- 8. a. A rectangular array of red squares is shown below.
 - b. 5.12 = 60
- 9. a. 3
 - b. 5
- 10. a. xy = yx
 - b. (xy)z = x(yz)
- 11. a. area
 - b. perimeter
 - c. area
 - d. perimeter
- 12.
 - a. $1 \cdot 25 = 25$ b. 62(1) = 62

 - c. $10 \cdot 0 = 0$ d. 0(4) = 0

NOTATION

- 13. \times , \cdot , ()
- 14. square feet
- 15. $A = l \cdot w$ or A = lw
- 16. a. 8*x* b. *ab*

GUIDED PRACTICE

17.
$$\frac{3}{15}$$

$$\times \frac{7}{105}$$

19.
$$\frac{3}{34}$$
 $\times \frac{8}{272}$

20.
$$\frac{4}{37}$$
 $\times \frac{6}{222}$

- **21.** 100 has 2 zeros : attach 2 zeros : 3,700
- 22. 1,000 has 3 zeros : attach 3 zeros : 63,000
- **23.** 10 has 1 zero : attach 1 zero : 750
- **24.** 10,000 has 4 zeros : attach 4 zeros : 880,000
- **25.** 10,000 has 4 zeros : attach 4 zeros : 1,070,000
- **26.** 100 has 2 zeros : attach 2 zeros : 32,300
- 27. 1,000 has 3 zeros : attach 3 zeros : 512,000
- **28.** 10 has 1 zero : attach 1 zero : 6,730

29.
$$68 \cdot 4 = 272$$

 $68 \cdot 40 = 2,720$

30.
$$83 \cdot 3 = 249$$

 $83 \cdot 30 = 2,490$

31.
$$56 \cdot 2 = 112$$

 $56 \cdot 200 = 11,200$

32.
$$222 \cdot 5 = 1{,}110$$

 $222 \cdot 500 = 111{,}000$

33.
$$13 \cdot 3 = 39$$

 $130(3,000) = 390,000$

34.
$$63 \cdot 7 = 441$$

 $630(7,000) = 4,410,000$

35.
$$27 \cdot 4 = 108$$

 $2,700(40,000) = 108,000,000$

36.
$$51 \cdot 8 = 408$$

 $5,100(80,000) = 408,000,000$

38.
$$173$$

$$\times 54$$

$$\overline{692}$$

$$\underline{8,650}$$

$$9,342$$

39.
$$287$$

$$\times 64$$

$$1,148$$

$$17,220$$

$$18,368$$

40.
$$461$$

$$\times 72$$

$$922$$

$$32,270$$

$$33,192$$

41.
$$602 \cdot 679 = 600 \cdot 679 + 2 \cdot 679$$

= $407,400+1,358$
= $408,758$

42.
$$504 \cdot 729 = 500 \cdot 729 + 4 \cdot 729$$

= $364,500 + 2,916$
= $367,416$

43.
$$3,002(5,619) = 3,000(5,619) + 2(5,619)$$

= 16,857,000+11,238
= 16,868,238

44.
$$2,003(1,376) = 2,000(1,376) + 3(1,376)$$

= 2,752,000 + 4,128
= 2,756,128

45.
$$(18 \cdot 20) \cdot 5 = 18 \cdot (20 \cdot 5) = 18 \cdot 100$$

= 1,800

46.
$$(29 \cdot 2) \cdot 50 = 29 \cdot (2 \cdot 50) = 29 \cdot 100$$

= 2,900

47.
$$250 \cdot (4.135) = (250.4) \cdot 135$$

= 1000.135
= $135,000$

48.
$$250 \cdot (4 \cdot 289) = (250 \cdot 4) \cdot 289$$

= $1000 \cdot 289$
= $289,000$

49.
$$90 \cdot 200 = 18,000$$

50.
$$60 \cdot 600 = 36,000$$

51.
$$200 \cdot 2,000 = 400,000$$

52.
$$400 \cdot 4,000 = 1,600,000$$

53.
$$6 \cdot 14 = 84 \text{ in}^2$$
.

54.
$$22 \cdot 50 = 1100 \text{ m}^2$$
.

55.
$$12 \cdot 12 = 144 \text{ in}^2$$
.

56.
$$20 \cdot 20 = 400 \text{ cm}^2$$
.

TRY IT YOURSELF

57.
$$2\overset{2}{13}$$
 $\times \overset{7}{1,491}$

58.
$$\begin{array}{r} 58. \\ 863 \\ \times 9 \\ \hline 7,767 \end{array}$$

59.
$$34, \overset{1}{4}74$$

$$\times \qquad 2$$

$$68,948$$

63.
$$44(55)(0) = 0$$

64.
$$81 \cdot 679 \cdot 0 \cdot 5 = 0$$

65.
$$53 \cdot 3 = 159$$

 $53 \cdot 30 = 1590$

66.
$$2 \cdot 78 = 156$$

 $20 \cdot 78 = 1,560$

67.
$$754$$

$$\times 59$$

$$6786$$

$$+37700$$

68.
$$846$$

$$\times 79$$

$$7614$$

$$+59220$$

$$66,834$$

71.
$$916$$

$$\times 409$$

$$8 244$$

$$00 000$$

$$+366 400$$

$$374,644$$

72.
$$889$$

$$\times 507$$

$$6 223$$

$$00 000$$

$$+444 500$$

$$450,723$$

73.
$$25 \cdot (4.99) = (25.4) \cdot 99 = 100.99$$

= 9,900

74.
$$(41 \cdot 5) \cdot 20 = 41 \cdot (5 \cdot 20) = 41 \cdot 100$$

= 4,100

75.
$$48 \cdot 5 = 240$$

 $4,800 \cdot 500 = 2,400,000$

76.
$$64 \cdot 7 = 448$$

 $6,400 \cdot 700 = 4,480,000$

77.
$$2,779$$

$$\times 128$$

$$22232$$

$$55580$$

$$+277900$$

$$355,712$$

78.
$$3,596$$

$$\times 136$$

$$21\,576$$

$$107\,880$$

$$+359\,600$$

$$489,056$$

LOOK ALIKES

81. a.
$$76 \cdot 20 = 1,520$$

b. $76 \cdot 200 = 15,200$
c. $76 \cdot 2,000 = 152,000$

95,200

82. a.
$$50 \cdot 50 = 2,500$$

b. $50 \cdot 500 = 25,000$
c. $50 \cdot 5,000 = 250,000$

83. a.
$$98 \cdot 36 = 3,528$$
 b. $360 \cdot 98 = 35,280$

84. a.
$$41 \cdot 13 = 533$$
 b. $130 \cdot 410 = 53,300$

APPLICATIONS

85.
$$2 \cdot 36 = 72$$
 cups of raisins

86.
$$4.180 = 720$$
 peanut M&Ms

87.
$$12 \cdot 17 = 204$$
 grams of fat

88.
$$13 \cdot 24 = 312$$
 oranges

89.
$$60.65 = 3,900$$
 times per minute

90.
$$15 \cdot 413 = \$6,195$$

91.
$$12 \cdot 5,280 = 63,360$$
 in. in a mile

92. a.
$$16 \cdot 14 = 224$$
 mi.
b. $16 \cdot 23 = 368$ mi.

93.
$$250 \cdot 308 = 77,000$$
 words

94.
$$18 \cdot 450 = \$8,100$$
 per month

95.
$$36 \cdot 174,000 = \$6,264,000$$
 per year

96.
$$42 \cdot 19{,}389{,}000 = 814{,}338{,}000 \text{ gal/day}$$

97.
$$8.9 = 72$$
 entries

98.
$$24+24+24+24=96$$
 ft around once $96+96+96+96=384$ ft around four times

99.
$$17 \cdot 33 = 561$$
: There are 561 students and 1 instructor, so since $562 < 570$ they are O.K.

100.
$$14.150 = 2,100$$
 lbs. They are overloaded.

101.
$$3 \cdot 6 = 18$$
 hours asleep

102.
$$8.10 = 80$$
 inch jump

103.
$$6 \cdot 27,000 = 162,000$$
 attacks

104.
$$8 \cdot 11 = 88$$
 months.

105.
$$2 \cdot 3 \cdot 14 = 6 \cdot 14 = 84$$
 pills

106. a.
$$60 \cdot 60 \cdot 24 = 86,400$$
 beats
b. $100 \cdot 60 \cdot 24 = 144,000$ beats

107.
$$3 \cdot 18 = 54 \text{ ft}^2$$
.

108.
$$24 \cdot 36 = 864 \text{ in}^2$$
.

109. Perimeter:
$$360 + 270 + 360 + 270 = 1,260 \text{ mi.}$$

Area: $360 \cdot 270 = 97,200 \text{ mi}^2$.

110.		Area	Perimeter
	Square	$16 \cdot 16 = 256 \text{ ft}^2.$	$4 \cdot 16 = 64 \text{ ft.}$
	Rectangle	$14 \cdot 17 = 238 \text{ ft}^2.$	$2 \cdot 14 + 2 \cdot 17 =$ 62 ft.

The square is larger in both cases.

WRITING

- 111. 1 foot is a unit of length, while 1 square foot is a unit
- 112. At least one of the numbers has to be 0.

REVIEW

113.
$$10,357+9,809+476=20,642$$

114.
$$367-179 = $188$$
 discount

Section 1.4: Dividing Whole Numbers

VOCABULARY

1.
$$12_{dividend} \div 4_{divisor} = 3_{quotient}$$

$$\frac{3}{divisor \rightarrow 4)12} \frac{\leftarrow quotient}{\leftarrow dividend}$$

$$\frac{dividend \rightarrow}{divisor \rightarrow} \frac{12}{4} = 3 \leftarrow quotient$$

- 2. We call 5.8 = 40 the related <u>multiplication</u> statement for the division $40 \div 8 = 5$.
- 3. The problem 6)246 is written in <u>long</u> division form.
- 4. If a division is not exact, the leftover part is called the remainder.
- One number is divisible by another number if, 5. when we divide them, the remainder is 0.
- 6. Phrases such as *split equally* and *how many does* each indicate the operation of division.

CONCEPTS

- a. 7 groups of 3 7.
 - b. 5 groups of 4, 2 left over
- 8. a. true
 - b. true
 - c. false
 - d. false

9. a.
$$\frac{25}{25} = 1$$
 b. $\frac{6}{1} = 6$

b.
$$\frac{6}{1} = 6$$

c.
$$\frac{100}{0}$$
 is undefined d. $\frac{0}{12} = 0$

10. To perform long division, we follow a four-step process: estimate, multiply, subtract, bringdown.

11.
$$\frac{2}{\text{a. 5})1147}$$
 b. $9)587$

$$\frac{3}{\text{c. }23)7501}$$
 d. $16)892$

12. a. Quotient · divisor = dividend

> b. (Quotient · divisor) + remainder = dividend

13. 37 333

14. a. 2

b. sum

c. two

15. a. 0 or 5

b. 2 and 3

c. sum

d. 10

16. We can simplify the division $43,800 \div 200$ by removing two zeros from the dividend and the divisor.

NOTATION

18. In a division, 35 R 4 means "a quotient of 35 and a remainder of 4".

GUIDED PRACTICE

19. 9)45 because 5.9 = 45.

20. $6)54 \text{ because } 9 \cdot 6 = 54.$

 $44 \div 11 = 4$ because $4 \cdot 11 = 44$. 21.

22. $120 \div 12 = 10$ because $10 \cdot 12 = 120$.

 $8 \cdot 4 = 32$ 24.

25. $6 \cdot 12 = 72$

26. $5 \cdot 15 = 75$

27. 6)96<u>-6</u> 36 <u>−36</u> Check: 6(16) = 96

28. 4)7232 $-\underline{32}$ 0 Check: 4(18) = 72

29. <u>−6</u> 27 $-\underline{27}$ 0 Check: 3(29) = 87

30. 7)9828 $-\underline{28}$ Check: 7(14) = 98 31. $\frac{325}{7)2275}$ −<u>21</u> 17 <u>−14</u> 35 −<u>35</u> 0 Check: 7(325) = 2275

32.

8)1728 <u>-16</u> 12 <u>−8</u> 48 <u>-48</u> 0 Check: 8(216) = 1728

33. 9)1962 <u>−18</u> 16 <u>-9</u> 72 -<u>72</u>

Check: 9(218) = 1962

34. 5)1635 <u>−15</u> 13 <u>-10</u> 35 <u>−35</u> Check: 5(327) = 1635

35.
$$504 \over 62)31248$$
 -310

$$248$$
 -248
 0

Check:
$$62(504) = 31,248$$

36.
$$\begin{array}{r}
403 \\
71)28613 \\
-\underline{284} \\
21 \\
-\underline{0} \\
213 \\
-\underline{213} \\
0
\end{array}$$

Check:
$$71(403) = 28,613$$

37.
$$\frac{602}{37)22274}$$

$$-222$$

$$07$$

$$-0$$

$$74$$

$$-74$$

$$0$$
Check: $37(602) = 22,274$

38.
$$704$$
 $28)19712$
 -196
 11
 -0

$$-\frac{112}{0}$$

Check: 28(704) = 19,712

112

39.
$$39$$
 $24)951$
 -72
 231
 -216
 15
 $39 R 15$
Check: $39 \cdot 24 + 15 = 951$

40.
$$\frac{28}{33)943}$$

$$-\underline{66}$$

$$283$$

$$-\underline{264}$$

$$19$$

$$28 R 19$$

$$Check: 28 \cdot 33 + 19 = 94$$

Check:
$$28 \cdot 33 + 19 = 943$$

41.
$$\frac{21}{46)999}$$
 $-\frac{92}{79}$
 $-\frac{46}{33}$
21 R 33
Check: $21 \cdot 46 + 33 = 999$

42.
$$\frac{19}{49)979}$$
 $-\frac{49}{489}$
 $-\frac{441}{48}$
19 R 48

Check:
$$19 \cdot 49 + 48 = 979$$

43.
$$47$$
 $524)24714$
 -2096
 3754

86

Check: $47 \cdot 524 + 86 = 24,714$

44.
$$\frac{56}{531)29773}$$

$$\frac{-2655}{3223}$$

$$\frac{-3186}{37}$$
Check: $56 \cdot 531 + 37 = 29,773$

45.
$$\frac{19}{178)3514}$$

$$\frac{-178}{1734}$$

$$\frac{-1602}{132}$$
Check: $19 \cdot 178 + 132 = 3,514$

46.
$$\frac{17}{164)2929}$$

$$\frac{-164}{1289}$$

$$\frac{-1148}{141}$$
Check: $17 \cdot 164 + 141 = 2,929$

	Chapter 1 Whole Numbers 17							
	Divisible by	2	3	4	5	6	9	10
47.	2,940	Y	Y	Y	Y	Y		Y
48.	5,850	Y	Y		Y	Y	Y	Y
49.	43,785		Y		Y		Y	
50.	72,954	Y	Y			Y	Y	
51.	181,223							
52	379,157							
53.	9,499,200	Y	Y	Y	Y	Y		Y
54.	6,653,100	Y	Y	Y	Y	Y		Y

- **55.** 10 has 1 zero : take away 1 zero : 70
- **56.** 10 has 1 zero : take away 1 zero : 90
- 57. Begin by cancelling a zero from each.

$$\begin{array}{r}
 22 \\
 45)990 \\
 \underline{-90} \\
 90 \\
 \underline{-90} \\
 0
\end{array}$$

58. Begin by cancelling a zero from each.

$$\begin{array}{r}
35 \\
26)910 \\
\underline{-78} \\
130 \\
\underline{-130} \\
0
\end{array}$$

59.
$$360,000 \div 40 = 9,000$$

60.
$$240,000 \div 60 = 4,000$$

61.
$$50,000 \div 1,000 = 50$$

62.
$$100,000 \div 500 = 200$$

TRY IT YOURSELF

63.
$$\frac{4325}{6)25950}$$
 $\frac{-24}{19}$
 $\frac{-18}{15}$

64.
$$\frac{3363}{7)23541}$$

$$-21
25
-21
44
-42
21
-21
0$$

65.
$$\frac{6}{9)54}$$
 $\frac{-54}{0}$

66.
$$\frac{9}{8)72}$$
 $\frac{-72}{0}$

67.
$$\frac{8}{31)273}$$

$$\frac{-248}{25}$$
8 R 25

68.
$$\frac{8}{35)295}$$
 $\frac{-280}{15}$
8 R 15

69. Begin by cancelling 2 zeros from each.
$$\frac{160}{4)640}$$

$$\frac{-4}{24}$$

$$\frac{-24}{4}$$

0

70. Begin by cancelling 3 zeros from each.
$$\frac{25}{5)125}$$

$$\frac{-10}{25}$$

$$\frac{-25}{0}$$

71.
$$\frac{106}{7)745}$$

$$\frac{-7}{04}$$

$$\frac{-0}{45}$$

$$\frac{-42}{3}$$

$$106 \text{ R } 3$$

72.
$$\frac{103}{9)931}$$

$$\frac{-9}{03}$$

$$\frac{-0}{31}$$

$$\frac{-27}{4}$$

$$103 R 4$$

$$\begin{array}{r}
509 \\
29)14761 \\
\underline{-145} \\
26 \\
\underline{-0} \\
261 \\
\underline{-261} \\
0
\end{array}$$

77.
$$\frac{5}{15)75}$$
 $\frac{-75}{0}$

78.
$$\frac{6}{16)96}$$
 $\frac{-96}{0}$

79.
$$23$$
 $212)5087$
 -424
 847
 -636
 211
 $23 R 211$

80.
$$26$$
 $214)5777$

$$-428$$
 1497

$$-1284$$
 213
 $26 R 213$

81.
$$30$$
 $42)1273$
 -126
 13
 -0
 13
 $30 \text{ R } 13$

82.
$$\frac{40}{83)3363}$$

$$\frac{-332}{43}$$

$$\frac{-0}{43}$$
40 R 43

- **83.** 1,000 has 3 zeros : remove 3 zeros : 89
- **84.** 1,000 has 3 zeros : remove 3 zeros : 930

85.
$$\frac{7}{8)57}$$
 $\frac{-56}{1}$
7 R 1

86.
$$9/82$$
 -81
 $9 R 1$

LOOK ALIKES

88. a.
$$475,000 \div 1,000 = 475$$

b. $475,000 \div 100 = 4,750$
c. $475,000 \div 10 = 47,500$

89. a.
$$607 \div 12 = 50 \text{ R } 7$$

b. $608 \div 12 = 50 \text{ R } 8$
c. $606 \div 12 = 50 \text{ R } 6$

90. a.
$$453 \div 23 = 19 \text{ R } 16$$

b. $452 \div 23 = 19 \text{ R } 15$
c. $454 \div 23 = 19 \text{ R } 17$

APPLICATIONS

91.
$$2500 \div 4 = 625$$
 tickets

92.
$$371 \div 7 = 53$$
 days

93.
$$405 \div 15 = 27$$
 trips

94.
$$288 \div 36 = 8$$
 shelves

95.
$$50 \div 23 = 2R4$$
 Each student got 2 cartons, with 4 left over.

96.
$$200 \div 11 = 18R2$$
 They can wrap 18 lamps with 2 ft. left.

97.
$$640 \div 68 = 9R28$$
 It can be filled 9 times with 28 oz. left.

98.
$$896 \div 6 = 149R2$$
 149 cups with 2 oz. remaining.

99.
$$58,000 \div 4 = 14,500$$
 There are 14,500 lbs. on each jack.

100.
$$10,282,800 \div 22 = \$467,400$$
 each

101.
$$25,200 \div 240 = $105 \text{ per book}$$

102.
$$950,000 \div 20 = 47,500$$
 gallons each hour

103.
$$700 \div 140 = 5$$
 miles per gallon

104.
$$33,750,000 \cdot 45 = 750,000$$
 gallons

105.
$$156 \div 12 = 13$$
 They should order 13 dozen donuts.

106.
$$1,000 \div 10 = 100$$
 decades per millennium

107.
$$216 \div 7 \approx 30.86$$
 - teams won't have the same number

$$216 \div 8 = 27$$
 - not an even number of teams

$$216 \div 9 = 24$$
 GOOD CHOICE

 $216 \div 10 = 21.6$ - teams won't have the same number

There are 24 teams with 9 girls each.

108.
$$744 \div 12 = 62$$
. Putting one tree on the far end gives 63 trees.

WRITING

- 111. Find out how many times you must subtract 6 from 24 to get 0.
- 112. Because 0 of anything will be equal to 0, but no number of zeros can give a non-zero number.

113.
$$30-2\cdot8=30-16=14$$

Since 14 is divisible by 7, 308 is also.

114.
$$8-4+8-1=11$$

Since 11 is divisible by 11, 1,848 is also.

LOOK ALIKES

- 115. a. 272 + 4 = 276
 - b. 272 4 = 268
 - c. $272 \cdot 4 = 1,088$
 - d. $272 \div 4 = 68$
- 116. a. 430 + 55 = 485
 - b. 430 55 = 375
 - c. $430 \cdot 55 = 23,650$
 - d. $430 \div 55 = 7 \text{ R } 45$
- **117.** a. $1{,}104 + 46 = 1{,}150$
 - b. $1{,}104 46 = 1{,}058$
 - c. $1{,}104 \cdot 46 = 50{,}784$
 - d. $1,104 \div 46 = 24$
- **118.** a. 3,024 + 378 = 3,402
 - b. 3.024 378 = 2.646
 - c. $3,024 \cdot 378 = 1,143,072$
 - d. $3.024 \div 378 = 8$

Section 1.5: Prime Factors and Exponents

VOCABULARY

- 1. Numbers that are multiplied together are called <u>factors</u>.
- 2. To <u>factor</u> a whole number means to express it as the product of other whole numbers.
- 3. A <u>prime</u> number is a whole number greater than 1 that has only 1 and itself as factors.
- **4.** Whole numbers greater than 1 that are not prime numbers are called <u>composite</u> numbers.
- **5.** To prime factor a number means to write it as a product of only <u>prime</u> numbers.
- 6. An exponent is used to represent <u>repeated</u> multiplication. It tells how many times the <u>base</u> is used as a factor.
- 7. In the exponential expression 6^4 , the number 6 is the base and 4 is the exponent.
- 8. We can read 5^2 as "5 to the second power" or as "5 <u>squared</u>". We can read 7^3 as "7 to the third power" or as "7 <u>cubed</u>".

CONCEPTS

9. $1 \cdot 45 = 45$ $3 \cdot 15 = 45$ $5 \cdot 9 = 45$

The factors of 45, in order from least to greatest, are 1, 3, 5, 9, 15, 45.

10. $1 \cdot 28 = 28$ $2 \cdot 14 = 28$ $4 \cdot 7 = 28$

The factors of 28, in order from least to greatest, are 1, 2, 4, 7, 14, 28.

- **11.** yes
- **12.** yes
- **13.** a. even, odd
 - b. 0, 2, 4, 6, 8, 10, 12, 14, 16, 18
 - c. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19
- **14.** a. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
 - b. 4, 6, 8, 9, 10, 12, 14, 15, 16, 18
- 15. The blank should be a 6. The prime factorization of 150 is $2 \cdot 3 \cdot 5 \cdot 5$.
- **16.** 4, 6, 9, 10
- **17.** 2|150
 - 3 | 75
 - 5<u>25</u>

.

The prime factorization of 150 is $2 \cdot 3 \cdot 5 \cdot 5$.

18. a. 2

NOTATION

- **19.** a. base 7; exponent 6
 - b. base 15; exponent 1
- **20.** a. 3 factors of 2
 - b. 2 factors of 3

GUIDED PRACTICE

- **21.** 1, 2, 5, 10
- **22.** 1, 2, 3, 6
- **23.** 1, 2, 4, 5, 8, 10, 20, 40
- **24.** 1, 3, 5, 15, 25, 75
- **25.** 1, 2, 3, 6, 9, 18

- 22 Tussy/Koenig Prealgebra, 5e
- **26.** 1, 2, 4, 8, 16, 32
- **27.** 1, 2, 4, 11, 22, 44
- **28.** 1, 5, 13, 65
- **29.** 1, 7, 11, 77
- **30.** 1, 3, 9, 27, 81
- **31.** 1, 2, 4, 5, 10, 20, 25, 50, 100
- **32.** 1, 3, 7, 9, 21, 49, 63, 147, 441
- **33.** 2 · 4
- **34.** 3.3
- **35.** 3.9
- **36.** 5.7
- **37.** 7.7
- **38.** 5 · 5
- 39. $2 \cdot 10 \text{ or } 4 \cdot 5$
- 40. $2 \cdot 8 \text{ or } 4 \cdot 4$
- 41. 30 = 2.15= 2.3.5
- 42. 28 = 2.14= $2 \cdot 2 \cdot 7$
- 43. $63 = 3 \cdot 21$ = $3 \cdot 3 \cdot 7$
- 44. $50 = 2 \cdot 25$ = $2 \cdot 5 \cdot 5$
- 45. 54 = 6.9= $2 \cdot 3.9$ or $3 \cdot 3.6$
- 46. 56 = 4.14= $2 \cdot 2 \cdot 14$ or $2 \cdot 4 \cdot 7$

- 47. $60 = 2 \cdot 3 \cdot 10$ = $2 \cdot 5 \cdot 6$ = $2 \cdot 2 \cdot 15$
 - $=3\cdot4\cdot5$
- 48. $64 = 2 \cdot 4 \cdot 8$ = $2 \cdot 2 \cdot 16$ = $4 \cdot 4 \cdot 4$
- **49.** 11:1 and 11
- **50.** 29:1 and 29
- **51.** 37:1 and 37
- **52.** 41 : 1 and 41
- **53.** Yes
- **54.** Yes
- 55. No $(3 \cdot 3 \cdot 11)$
- 56. No $(3 \cdot 3 \cdot 3)$
- 57. No (3·17)
- 58. No (7·13)
- **59.** Yes
- **60.** Yes
- 61. 30 = 6.5= 2.3.5
- 62. $20 = 4 \cdot 5$ $= 2 \cdot 2 \cdot 5$ $= 2^2 \cdot 5$
- 63. 39 = 3.13
- 64. $105 = 15 \cdot 7$ = $3 \cdot 5 \cdot 7$

- 65. $99 = 9 \cdot 11$ = $3 \cdot 3 \cdot 11$ = $3^2 \cdot 11$
- 66. $400 = 16 \cdot 25$ = $4 \cdot 4 \cdot 5 \cdot 5$ = $2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$ = $2^4 \cdot 5^2$
- 67. $162 = 2 \cdot 81$ $= 2 \cdot 9 \cdot 9$ $= 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ $= 2 \cdot 3^{4}$
- 68. $98 = 2 \cdot 49$ = $2 \cdot 7 \cdot 7$ = $2 \cdot 7^2$
- 69. $64 = 8 \cdot 8$ = $2 \cdot 4 \cdot 2 \cdot 4$ = $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ = 2^{6}
- 70. 243 = 3.81= 3.9.9= 3.3.3.3.3.3= 3^5
- 71. 147 = 3.49= 3.7.7= 3.7^2
- 72. $140 = 4 \cdot 35$ = $2 \cdot 2 \cdot 5 \cdot 7$ = $2^2 \cdot 5 \cdot 7$
- 73. $220 = 22 \cdot 10$ = $2 \cdot 11 \cdot 2 \cdot 5$ = $2^2 \cdot 5 \cdot 11$
- 74. 385 = 5.77= 5.7.11

- 75. 102 = 2.51= 2.3.17
- 76. 114 = 2.57= 2.3.19
- 77. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5$
- 78. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^6$
- 79. $5 \cdot 5 \cdot 5 \cdot 5 = 5^4$
- **80.** $9 \cdot 9 \cdot 9 = 9^3$
- 81. $4(4)(8)(8)(8) = 4^2(8^3)$
- 82. $12(12)(12)(16) = 12^3(16)$
- **83.** $7 \cdot 7 \cdot 7 \cdot 9 \cdot 9 \cdot 7 \cdot 7 \cdot 7 \cdot 7 = 7^7 \cdot 9^2$
- **84.** $6 \cdot 6 \cdot 6 \cdot 5 \cdot 5 \cdot 6 \cdot 6 \cdot 6 = 5^2 \cdot 6^6$
- 85. a. $3^4 = 3 \cdot 3 \cdot 3 \cdot 3$ = 81
 - b. $4^3 = 4 \cdot 4 \cdot 4$ = 64
- 86. a. $5^3 = 5 \cdot 5 \cdot 5$ = 125
 - b. $3^5 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ = 243
- 87. a. $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ = 32
 - b. $5^2 = 5.5$ = 25
- 88. a. $4^5 = 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$ = 1,024
 - b. $5^4 = 5 \cdot 5 \cdot 5 \cdot 5$ = 625

89. a.
$$7^3 = 7 \cdot 7 \cdot 7$$

= 343

b.
$$3^7 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

= 2,187

90. a.
$$8^2 = 8 \cdot 8$$

= 64

91. a.
$$9^1 = 9$$

b.
$$1^9 = 1$$

92. a.
$$20^1 = 20$$

b.
$$1^{20} = 1$$

93.
$$2 \cdot 3 \cdot 3 \cdot 5 = 90$$

94.
$$2 \cdot 2 \cdot 2 \cdot 7 = 56$$

95.
$$7 \cdot 11^2 = 7 \cdot 121$$

= 847

96.
$$2 \cdot 3^4 = 2 \cdot 81$$

= 162

97.
$$3^2 \cdot 5^2 = 9 \cdot 25$$

= 225

98.
$$3^3 \cdot 5^3 = 27 \cdot 125$$

= 3,375

99.
$$2^3 \cdot 3^3 \cdot 13 = 8 \cdot 27 \cdot 13$$

= 2,808

100.
$$2^3 \cdot 3^2 \cdot 11 = 8 \cdot 9 \cdot 11$$

= 792

APPLICATIONS

101. Factors of 28: 1, 2, 4, 7, 14, 28
$$1 + 2 + 4 + 7 + 14 = 28$$

102. 79 and 97 are factors of 7,663.

103. 2^2 square units, 3^2 square units, 4^2 square units

104. a.
$$2 \cdot 2 \cdot 2 \cdot 2 = 2^4$$

= 16 cells

b. base
$$= 2$$

c.
$$2^{12} = 4,096$$
 cells

WRITING

105. Multiply the factors together to verify you get the original number.

106. Factors are any whole number that divides the number. Prime factors must be prime. 4 and 7 are factors of 28, but 2, 2, and 7 are the prime factors of 28.

107.
$$1^2 = 1^3 = 1^4 = 1$$
. Any power of 1 is 1.

108. There are infinitely many prime numbers that exist.

REVIEW

109.
$$8 \cdot 15 + 5 = 120 + 5$$

= 125 band members

110.
$$33,480 - 9,650 = $23,830$$
 per year $23,830 \cdot 4 = $95,320$ for 4 years

Section 1.6: The Least Common Multiple and the Greatest Common Factor

VOCABULARY

- 1. The <u>multiples</u> of a number are the products of that number and 1, 2, 3, 4, 5, and so on.
- 2. Because 12 is the smallest number that is a multiple of both 3 and 4, it is the <u>least common</u> multiple of 3 and 4.
- 3. One number is <u>divisible</u> by another number if, when dividing them, we get a remainder of 0.
- **4.** Because 6 is the largest number that is a factor of both 18 and 24, it is the <u>greatest common factor</u> of 18 and 24.

CONCEPTS

- **5.** a.12
 - b. In general, the LCM of two whole numbers is the <u>smallest</u> whole number that is divisible by both numbers.
- **6.** a. 6 and 12
 - b. 6
- 7. a. 20
 - b. 20
- **8.** The blank should be a 6.
- **9.** a. 2 appears twice with 36.
 - b. 3 appears twice with 90 and with 36.
 - c. 5 appears once with 90.

d. LCM =
$$2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$$

= 180

- 10. a. 2 appears twice with 140.
 - b. 5 appears once with 140 and with 70.
 - c. 7 appears once in all 3.

d. LCM =
$$2 \cdot 2 \cdot 5 \cdot 7$$

= 140

- 11. a. 2 appears twice with 12.
 - b. 3 appears three times with 54.

c. LCM =
$$2^2 \cdot 3^3$$

= 108

12. a. 1, 3, and 9 are common to both.

b.
$$GCF = 9$$

13. a. 2, 3, and 5 are common to both.

b.
$$GCF = 2 \cdot 3 \cdot 5$$

= 30

14. a. 2, 2, and 3 are common to all.

b. GCF =
$$2 \cdot 2 \cdot 3 = 12$$

NOTATION

- **15.** a. The abbreviation for the greatest common factor is <u>GCF</u>.
 - b. The abbreviation for the least common multiple is <u>LCM</u>.
- 16. a. We read LCM(2,15) = 30 as "The <u>least</u> common multiple of 2 and 15 is 30."
 - b. We read GCF(18, 24) = 6 as "The greatest common factor of 18 and 24 is 6."

GUIDED PRACTICE

- **17.** 4, 8, 12, 16, 20, 24, 28, 32
- **18.** 2, 4, 6, 8, 10, 12, 14, 16
- **19.** 11, 22, 33, 44, 55, 66, 77, 88
- **20.** 10, 20, 30, 40, 50, 60, 70, 80
- **21.** 8, 16, 24, 32, 40, 48, 56, 64
- **22.** 9, 18, 27, 36, 45, 54, 63, 72
- **23.** 20, 40, 60, 80, 100, 120, 140, 160
- **24.** 30, 60, 90, 120, 150, 180, 210, 240
- **25.** 5 is not divisible by 3.

10 is not divisible by 3.

15 is divisible by 3.

$$LCM(3,5) = 15$$

26. 9 is not divisible by 6.

18 is divisible by 6.

$$LCM(6,9)=18$$

27. 12 is not divisible by 8.

24 is divisible by 8.

$$LCM(8,12)=24$$

28. 25 is not divisible by 10.

50 is divisible by 10.

$$LCM(10,25) = 50$$

- 26 Tussy/Koenig Prealgebra, 5e
- **29.** 11 is not divisible by 5.
 - 22 is not divisible by 5.
 - 33 is not divisible by 5.
 - 44 is not divisible by 5.
 - 55 is divisible by 5.
 - LCM(5,11) = 55
- **30.** 11 is not divisible by 7.
 - 22 is not divisible by 7.
 - 33 is not divisible by 7.
 - 44 is not divisible by 7.
 - 55 is not divisible by 7.
 - 66 is not divisible by 7.
 - 77 is divisible by 7.
 - LCM(7,11) = 77
- **31.** 7 is not divisible by 4.
 - 14 is not divisible by 4.
 - 21 is not divisible by 4.
 - 28 is divisible by 4.
 - LCM(4,7) = 28
- **32.** 8 is not divisible by 5.
 - 16 is not divisible by 5.
 - 24 is not divisible by 5.
 - 32 is not divisible by 5.
 - 40 is divisible by 5.
 - LCM(5,8) = 40
- **33.** 6 is not divisible by 3 and 4.
 - 12 is divisible by 3 and 4.
 - LCM(3,4,6) = 12

- **34.** 8 is not divisible by 2 and 3.
 - 16 is not divisible by 2 and 3.
 - 24 is divisible by 2 and 3.
 - LCM(2,3,8) = 24
- **35.** 10 is not divisible by 2 and 3.
 - 20 is not divisible by 2 and 3.
 - 30 is divisible by 2 and 3.
 - LCM(2,3,10) = 30
- **36.** 15 is not divisible by 3 and 6.
 - 30 is divisible by 3 and 6.
 - LCM(3,6,15) = 30
- 37. $16 = 2^4$
 - $20 = 2^2 \cdot 5$
 - $LCM = 2^4 \cdot 5$
 - =16.5
 - =80
- 38. $14 = 2 \cdot 7$
 - $21 = 3 \cdot 7$
 - $LCM = 2 \cdot 3 \cdot 7$
 - =42
- 39. $30 = 2 \cdot 3 \cdot 5$
 - $50 = 2 \cdot 5^2$
 - $LCM = 2 \cdot 3 \cdot 5^2$
 - =6.25
 - =150
- 40. 21 = 3.7
 - $27 = 3^3$
 - $LCM = 3^3 \cdot 7$
 - $=27 \cdot 7$
 - =189

- 41. $35 = 5 \cdot 7$ $45 = 3^{2} \cdot 5$ $LCM = 3^{2} \cdot 5 \cdot 7$ $= 9 \cdot 35$ = 315
- 42. $36 = 2^{2} \cdot 3^{2}$ $48 = 2^{4} \cdot 3$ $LCM = 2^{4} \cdot 3^{2}$ $= 16 \cdot 9$ = 144
- 43. $100 = 2^{2} \cdot 5^{2}$ $120 = 2^{3} \cdot 3 \cdot 5$ $LCM = 2^{3} \cdot 3 \cdot 5^{2}$ = 600
- 44. $120 = 2^{3} \cdot 3 \cdot 5$ $180 = 2^{2} \cdot 3^{2} \cdot 5$ $LCM = 2^{3} \cdot 3^{2} \cdot 5$ = 360
- 45. $6 = 2 \cdot 3$ $24 = 2^{3} \cdot 3$ $36 = 2^{2} \cdot 3^{2}$ $LCM = 2^{3} \cdot 3^{2}$ = 72
- 46. $6 = 2 \cdot 3$ $10 = 2 \cdot 5$ $18 = 2 \cdot 3^{2}$ $LCM = 2 \cdot 3^{2} \cdot 5$ = 90
- 47. 5 = 5 $12 = 2^{2} \cdot 3$ $15 = 3 \cdot 5$ $LCM = 2^{2} \cdot 3 \cdot 5$ = 60

- 48. $8 = 2^{3}$ $12 = 2^{2} \cdot 3$ $16 = 2^{4}$ $LCM = 2^{4} \cdot 3$ = 48
- 49. $4 = \underline{2} \cdot 2$ $6 = \underline{2} \cdot 3$ GCF = 2
- 50. $6 = 2 \cdot \underline{3}$ $15 = \underline{3} \cdot 5$ GCF = 3
- 51. $9=3\cdot\underline{3}$ $12=2\cdot2\cdot\underline{3}$ GCF=3
- 52. $10 = \underline{2} \cdot 5$ $12 = \underline{2} \cdot 2 \cdot 3$ GCF = 2
- 53. $22 = 2 \cdot 11$ $33 = 3 \cdot 11$ GCF = 11
- 54. $14 = 2 \cdot \underline{7}$ $21 = 3 \cdot \underline{7}$ GCF = 7
- 55. $15 = \underline{3} \cdot \underline{5}$ $30 = 2 \cdot \underline{3} \cdot \underline{5}$ $GCF = 3 \cdot 5$ = 15
- 56. $15 = \underline{3} \cdot \underline{5}$ $75 = \underline{3} \cdot \underline{5} \cdot 5$ $GCF = 3 \cdot 5$ = 15

- 28 Tussy/Koenig Prealgebra, 5e
- 57. $18 = \underline{2} \cdot \underline{3} \cdot 3$ $96 = \underline{2} \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot \underline{3}$ $GCF = 2 \cdot 3$ = 6
- 58. $30 = \underline{2} \cdot \underline{3} \cdot 5$ $48 = \underline{2} \cdot 2 \cdot 2 \cdot 2 \cdot \underline{3}$ $GCF = 2 \cdot 3$ = 6
- 59. $28 = \underline{2} \cdot 2 \cdot \underline{7}$ $42 = \underline{2} \cdot 3 \cdot \underline{7}$ $GCF = 2 \cdot 7$ = 14
- 60. $63 = 3 \cdot \underline{3} \cdot \underline{7}$ $84 = 2 \cdot 2 \cdot \underline{3} \cdot \underline{7}$ $GCF = 3 \cdot 7$ = 21
- 61. $16 = 2 \cdot 2 \cdot 2 \cdot 2$ $51 = 3 \cdot 17$ GCF = 1
- 62. $27 = 3 \cdot 3 \cdot 3$ $64 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ GCF = 1
- 63. $81 = 3 \cdot 3 \cdot 3 \cdot 3$ $125 = 5 \cdot 5 \cdot 5$ GCF = 1
- 64. 57 = 3.19 125 = 5.5.5GCF = 1
- 65. $12 = 2 \cdot 2 \cdot 3$ $68 = 2 \cdot 2 \cdot 17$ $92 = 2 \cdot 2 \cdot 23$ $GCF = 2 \cdot 2$ = 4

- 66. $24 = 2 \cdot 2 \cdot 2 \cdot 3$ $36 = 2 \cdot 2 \cdot 3 \cdot 3$ $40 = 2 \cdot 2 \cdot 2 \cdot 5$ $GCF = 2 \cdot 2$ = 4
- 67. $72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$ $108 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3$ $144 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$ $GCF = 2 \cdot 2 \cdot 3 \cdot 3$ = 36
- 68. $81 = 3 \cdot 3 \cdot 3 \cdot 3$ $108 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3$ $162 = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ $GCF = 3 \cdot 3 \cdot 3$ = 27

TRY IT YOURSELF

- 69. $100 = 2 \cdot 2 \cdot 5 \cdot 5$ $120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$ $LCM = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5$ = 600 $GCF = 2 \cdot 2 \cdot 5$ = 20
- 70. $120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$ $180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$ $LCM = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$ = 360 $GCF = 2 \cdot 2 \cdot 3 \cdot 5$ = 60
- 71. $14 = 2 \cdot 7$ $140 = 2 \cdot 2 \cdot 5 \cdot 7$ $LCM = 2 \cdot 2 \cdot 5 \cdot 7$ = 140 $GCF = 2 \cdot 7$ = 14

- 72. 15 = 3.5 300 = 2.2.3.5.5 LCM = 2.2.3.5.5 = 300 GCF = 3.5= 15
- 73. $66 = 2 \cdot 3 \cdot 11$ $198 = 2 \cdot 3 \cdot 3 \cdot 11$ $242 = 2 \cdot 11 \cdot 11$ $LCM = 2 \cdot 3 \cdot 3 \cdot 11 \cdot 11$ = 2,178 $GCF = 2 \cdot 11$ = 22
- 74. $52 = 2 \cdot 2 \cdot 13$ $78 = 2 \cdot 3 \cdot 13$ $130 = 2 \cdot 5 \cdot 13$ $LCM = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 13$ = 780GCF = 2
- 75. $8 = 2 \cdot 2 \cdot 2$ $9 = 3 \cdot 3$ $49 = 7 \cdot 7$ $LCM = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 \cdot 7$ = 3,538GCF = 1
- 76. $9 = 3 \cdot 3$ $16 = 2 \cdot 2 \cdot 2 \cdot 2$ $25 = 5 \cdot 5$ $LCM = 3 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5$ = 3,600GCF = 1
- 77. $120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$ $125 = 5 \cdot 5 \cdot 5$ $LCM = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5$ = 3,000GCF = 5

- 78. $98 = 2 \cdot 7 \cdot 7$ $102 = 2 \cdot 3 \cdot 17$ $LCM = 2 \cdot 3 \cdot 7 \cdot 7 \cdot 17$ = 4,998GCF = 2
- 79. $34 = 2 \cdot 17$ $68 = 2 \cdot 2 \cdot 17$ $102 = 2 \cdot 3 \cdot 17$ $LCM = 2 \cdot 2 \cdot 3 \cdot 17$ = 204 $GCF = 2 \cdot 17 = 34$
- 80. 26 = 2.13 39 = 3.13 65 = 5.13 LCM = 2.3.5.13 = 390GCF = 13
- 81. $46 = 2 \cdot 23$ $69 = 3 \cdot 23$ $LCM = 2 \cdot 3 \cdot 23$ = 138GCF = 23
- 82. $38 = 2 \cdot 19$ $57 = 3 \cdot 19$ $LCM = 2 \cdot 3 \cdot 19$ = 114GCF = 19
- 83. $50 = 2 \cdot 5 \cdot 5$ $81 = 3 \cdot 3 \cdot 3 \cdot 3$ $LCM = 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 5$ = 4,050GCF = 1

84.
$$65 = 5.13$$

$$81 = 3 \cdot 3 \cdot 3 \cdot 3$$

$$LCM = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 13$$

$$=5,265$$

$$GCF = 1$$

LOOK ALIKES

85. a.
$$6 = 2 \cdot 3$$

$$8 = 2 \cdot 2 \cdot 2$$

$$GCF = 2$$

b. GCF =
$$2 \cdot 10$$

$$= 20$$

86. a.
$$3 = 3$$

$$9 = 3 \cdot 3$$

$$GCF = 3$$

b.
$$GCF = 3 \cdot 10$$

= 30

87.

a.
$$4 = 2 \cdot 2$$

 $6 = 2 \cdot 3$

$$GCF = 2$$

b.
$$GCF = 2$$

88. a.
$$10 = 2 \cdot 5$$

$$15 = 3 \cdot 5$$

$$GCF = 5$$

b.
$$GCF = 5$$

APPLICATIONS

89.	1 st	2 nd	3 rd
	7,500 mi.	15,000 mi.	22,500 mi.
	4 th	5 th	6 th
	30,000 mi.	37,500 mi.	45,000 mi.

- **90.** \$20, \$40, \$60, \$80, \$100, \$120, \$140, \$160, \$180, \$200
- **91.** LCM(45,60) = 180 minutes, or 3 hours

92.
$$LCM(23,28,33) = 23 \cdot 28 \cdot 33$$

= 21,252 days

(23, 28, and 33 have no common factors other than 1.)

93. LCM of 10 and 12 = 605 packs of buns, 6 packs of hot dogs

- 94. Husband has a day off every 7 days.

 Wife has a day off every 8 days.

 LCM(8,7) = 56 every 56 days together.
- 95. LCM(6,8) = 24s4 sheets wide by 3 sheets tall = 12 sheets
- **96.** a. GCF(12,21,18) = 3

The ladle should hold 3 ounces.

- b. 4 ladles, 7 ladles, 6 ladles
- **97.** a. GCF(28,21,63) = 7

The most that the art supplies cost a student is \$7.

- b. 4 students, 3 students, 9 students
- **98.** GCF of 135, 105, and 30 = 15 bears

WRITING

- **99.** Find the prime factorization of both 8 and 28, then multiply each factor present the largest number of times it appears.
- **100.** Find the prime factorization of both 8 and 28, then look for each factor common to all the smallest number of times it appears.
- **101.** Since each factor has only one 3, the LCM should only have one 3.
- **102.** If there are no common factors in the prime factorizations, then the GCF is 1.

REVIEW

103.
$$9,999+1,111=11,110$$

104.
$$10,000-7,989=2,011$$

105.
$$305 \cdot 50 = 15,250$$

106.
$$2,100 \div 105 = 20$$

Section 1.7: Order of Operations

VOCABULARY

- 1. Numbers are combined with the operations of addition, subtraction, multiplication, and division to create <u>expressions</u>.
- To *evaluate* the expression $2+5\cdot 4$ means to find its <u>value</u>.

- The grouping symbols () are called parentheses, and 3. the symbols [] are called brackets.
- 4. The rule for the order of operations guarantees that an evaluation of a numerical expression will result in a single answer.
- 5. In the expression $9+6\lceil 8+6(4-1)\rceil$, the parentheses are the inner most grouping symbols and the brackets are the <u>outer</u> most grouping symbols.
- 6. To find the mean (average) of a set of values, we add the values and divide by the number of values.

CONCEPTS

- 7. a. $5(2)^2 - 1$: square, multiply, subtract
 - b. $15+90-(2\cdot 2)^3$: multiply, cube, add, subtract
 - c. $7 \cdot 4^2$: square, multiply
 - d. $(7 \cdot 4)^2$: multiply, square
- 8. a. 50+8-40: add, subtract
 - b. 50-40+8: subtract, add
 - c. $16 \cdot 2 \div 4$: multiply, divide
 - d. $16 \div 4 \cdot 2$: divide, multiply
- 9. multiply; square
- 10. 7

NOTATION

- The fraction bar groups the numerator and 11. denominator.
- 12. 2[12-(5+4)]
- 13. We read the expression 16-(4+9) as "16 minus the quantity of 4 plus 9."
- 14. We read the expression $(8-3)^3$ as "The cube of the quantity of 8 minus 3."
- 15. $7 \cdot 4 - 5(2)^2 = 7 \cdot 4 - 5(4)$ =28-20=8

16.
$$2+(5+6\cdot2) = 2+(5+12)$$

= 2+17
= 19

17.
$$[4(2+7)]-4^2 = [4(9)]-4^2$$

$$= 36-4^2$$

$$= 36-16$$

$$= 20$$

18.
$$\frac{12+5\cdot 3}{3^2-2\cdot 3} = \frac{12+15}{9-6}$$
$$= \frac{27}{3}$$
$$= 9$$

GUIDED PRACTICE

19.
$$3 \cdot 5^2 - 28 = 3 \cdot 25 - 28$$

= $75 - 28$
= 47

20.
$$4 \cdot 2^2 - 11 = 4 \cdot 4 - 11$$

= 16-11
= 5

21.
$$6 \cdot 3^2 - 41 = 6 \cdot 9 - 41$$

= $54 - 41$
= 13

22.
$$5 \cdot 4^2 - 32 = 5 \cdot 16 - 32$$

= $80 - 32$
= 48

23.
$$52-6\cdot3+4=52-18+4$$

= $34+4$
= 38

24.
$$66-8\cdot7+16=66-56+16$$

= $10+16$
= 26

25.
$$32-9\cdot3+31=32-27+31$$

= 5+31
= 36

26.
$$62-5\cdot 8+27=62-40+27$$

= $22+27$
= 49

27.
$$192 \div 4 - 4(2)3 = 48 - 24$$

= 24

28.
$$455 \div 7 - 3(4)5 = 65 - 60$$

= 5

29.
$$252 \div 3 - 6(2)6 = 84 - 72$$

= 12

30.
$$264 \div 4 - 7(4)2 = 66 - 56$$

= 10

31. a.
$$26-2+9=24+9$$

= 33

b.
$$26 - (2+9) = 26 - 11$$

= 15

32. a.
$$37-4+11=33+11$$

= 44

b.
$$37 - (4+11) = 37-15$$

= 22

33. a.
$$51-16+8=35+8$$

= 43

b.
$$51 - (16 + 8) = 51 - 24$$

= 27

34. a.
$$73-35+9=38+9$$

= 47

b.
$$73 - (35 + 9) = 73 - 44$$

= 29

35.
$$(4+6)^2 = 10^2$$

= 100

$$(3+4)^2 = 7^2$$
= 49

37.
$$(3+5)^3 = 8^3$$

= 512

38.
$$(5+2)^3 = 7^3$$

= 343

39.
$$8+4(29-5\cdot3)=8+4(29-15)$$

= $8+4(14)$
= $8+56$
= 64

40.
$$33+6(56-9\cdot6)=33+6(56-54)$$

= $33+6(2)$
= $33+12$
= 45

41.
$$77+9(38-4\cdot6) = 77+9(38-24)$$

= $77+9(14)$
= $77+126$
= 203

42.
$$162 + 7(47 - 6 \cdot 7) = 162 + 7(47 - 42)$$
$$= 162 + 7(5)$$
$$= 162 + 35$$
$$= 197$$

43.
$$46+3[5^2-4(9-5)] = 46+3[25-4(4)]$$

= $46+3[25-16]$
= $46+3[9]$
= $46+27$
= 73

44.
$$53+5[6^2-5(8-1)]=53+5[36-5(7)]$$

= $53+5[36-35]$
= $53+5[1]$
= 58

46.
$$81+3[8^2-7(13-5)]=81+3[64-7(8)]$$

= $81+3[64-56]$
= $81+3[8]$
= $81+24$
= 105

47.
$$\frac{2(50)-4}{2(4^2)} = \frac{100-4}{2 \cdot 16}$$
$$= \frac{96}{32}$$
$$= 3$$

48.
$$\frac{4(34)-1}{5(3^2)} = \frac{136-1}{5 \cdot 9}$$
$$= \frac{135}{45}$$
$$= 3$$

$$\frac{25(8)-8}{6(2^3)} = \frac{200-8}{6 \cdot 8}$$
$$= \frac{192}{48}$$
$$= 4$$

50.
$$\frac{6(31)-26}{4(2^3)} = \frac{186-26}{4(8)}$$
$$= \frac{160}{32}$$
$$= 5$$

$$\frac{6+9+4+3+8}{5} = \frac{30}{5}$$
= 6

$$\frac{7+1+8+2+2}{5} = \frac{20}{5}$$
= 4

53. $\frac{3+5+9+1+7+5}{6} = \frac{30}{6}$ = 5

54.
$$\frac{8+7+7+2+4+8}{6} = \frac{36}{6}$$
$$= 6$$

$$\frac{19+15+17+13}{4} = \frac{64}{4}$$
= 16

$$\frac{11+14+12+11}{4} = \frac{48}{4}$$
= 12

57.
$$\frac{5+8+7+0+3+1}{6} = \frac{24}{6}$$
= 4

$$\frac{9+3+4+11+14+1}{6} = \frac{42}{6}$$
= 7

TRY IT YOURSELF

59.
$$(8-6)^2 + (4-3)^2 = 2^2 + 1^2$$

= 4+1
= 5

60.
$$(2+1)^2 + (3+2)^2 = 3^2 + 5^2$$

= 9 + 25
= 34

61.
$$2 \cdot 3^4 = 2 \cdot 81$$

= 162

62.
$$3^3 \cdot 5 = 27 \cdot 5$$

= 135

63.
$$7+4\cdot 5 = 7+20$$

= 27

64.
$$6 \cdot 8 - 3 = 48 - 3$$

= 45

65.
$$(7-4)^2 + 1 = 3^2 + 1$$

= 9+1
= 10

66.
$$(9-5)^3 + 8 = 4^3 + 8$$

= $64 + 8$
= 72

67.
$$\frac{10+5}{52-47} = \frac{15}{5}$$
$$= 3$$

$$\frac{18+12}{61-55} = \frac{30}{6}$$
= 5

69.
$$5 \cdot 10^{3} + 2 \cdot 10^{2} + 3 \cdot 10^{1} + 9$$
$$= 5 \cdot 1000 + 2 \cdot 100 + 3 \cdot 10 + 9$$
$$= 5,000 + 200 + 30 + 9$$
$$= 5,239$$

70.
$$8 \cdot 10^{3} + 0 \cdot 10^{2} + 7 \cdot 10^{1} + 4$$
$$= 8 \cdot 1000 + 7 \cdot 10 + 4$$
$$= 8,000 + 70 + 4$$
$$= 8,074$$

71.
$$20-10+5=10+5$$

= 15

72.
$$80-5+4=75+4$$

= 79

73.
$$25 \div 5 \cdot 5 = 5 \cdot 5$$

= 25

74.
$$6 \div 2 \cdot 3 = 3 \cdot 3$$

= 9

75.
$$150-2(2\cdot6-4)^{2} = 150-2(12-4)^{2}$$
$$= 150-2\cdot8^{2}$$
$$= 150-2\cdot64$$
$$= 150-128$$
$$= 22$$

76.
$$760-2(2\cdot 3-4)^{2} = 760-2(6-4)^{2}$$
$$= 760-2\cdot 2^{2}$$
$$= 760-2\cdot 4$$
$$= 760-8$$
$$= 752$$

77.
$$190-2[10^{2}-(5+2^{2})]+45$$

$$=190-2[100-(5+4)]+45$$

$$=190-2[100-9]+45$$

$$=190-2[91]+45$$

$$=190-182+45$$

$$=53$$

78.
$$161-8[6(6)-6^{2}]+2^{2}(5)$$

$$=161-8[36-36]+4(5)$$

$$=161-8[0]+20$$

$$=181$$

79.
$$2+3(0)=2$$

80.
$$5(0)+8=8$$

81.
$$\frac{(5-3)^2 + 2}{4^2 - (8+2)} = \frac{2^2 + 2}{4^2 - 10}$$
$$= \frac{4+2}{16-10}$$
$$= \frac{6}{6}$$
$$= 1$$

82.
$$\frac{(4^3 - 2) + 7}{5(2 + 4) - 7} = \frac{(64 - 2) + 7}{5(6) - 7}$$
$$= \frac{62 + 7}{30 - 7}$$
$$= \frac{69}{23}$$
$$= 3$$

83.
$$4^2 + 3^2 = 16 + 9$$

= 25

85.
$$3+2\cdot3^4\cdot5=3+2\cdot81\cdot5$$

= 3+810
= 813

86.
$$3 \cdot 2^3 \cdot 4 - 12 = 3 \cdot 8 \cdot 4 - 12$$

= $96 - 12$
= 84

87.
$$60 - \left(6 + \frac{40}{2^3}\right) = 60 - \left(6 + \frac{40}{8}\right)$$
$$= 60 - \left(6 + 5\right)$$
$$= 60 - 11$$
$$= 49$$

88.
$$7 + \left(5^3 - \frac{200}{2}\right) = 7 + (125 - 100)$$
$$= 7 + 25$$
$$= 32$$

89.
$$\frac{(3+5)^2 + 2}{2(8-5)} = \frac{8^2 + 2}{2(3)}$$
$$= \frac{64+2}{6}$$
$$= \frac{66}{6}$$
$$= 11$$

90.
$$\frac{25 - (2 \cdot 3 - 1)}{2 \cdot 9 - 8} = \frac{25 - (6 - 1)}{18 - 8}$$
$$= \frac{25 - 5}{10}$$
$$= \frac{20}{10}$$
$$= 2$$

91.
$$(18-12)^3 - 5^2 = 6^3 - 5^2$$

= 216-25
= 191

92.
$$(9-2)^2 - 3^3 = 7^2 - 3^3$$

= $49-27$
= 22

93.
$$30(1)^2 - 4(2) + 12 = 30 - 8 + 12$$

= 34

94.
$$5(1)^3 + (1)^2 + 2(1) - 6 = 5 + 1 + 2 - 6$$

= 2

95.
$$16^2 - \frac{25}{5} + 6(3)4 = 256 - 5 + 72$$
$$= 323$$

96.
$$15^2 - \frac{24}{6} + 8(2)(3) = 225 - 4 + 48$$
$$= 269$$

97.
$$\frac{3^2 - 2^2}{(3 - 3)^2} = \frac{9 - 4}{0^2}$$
$$= \frac{5}{0}$$
: undefined

98.
$$\frac{5^2 + 17}{4 - 2^2} = \frac{25 + 17}{4 - 4}$$
$$= \frac{42}{0}$$
: undefined

99.
$$3\left(\frac{18}{3}\right) - 2(2) = 18 - 4$$

100.
$$2\left(\frac{12}{3}\right) + 3(5) = 8 + 15$$

= 23

101.
$$4[50-(3^3-5^2)]=4[50-(27-25)]$$

= $4[50-2]$
= $4[48]$
= 192

102.
$$6[15+(5\cdot2^2)]=6[15+(5\cdot4)]$$

= $6[15+20]$
= $6[35]$
= 210

103.
$$80-2[12-(5+4)]=80-2[12-9]$$

= $80-2[3]$
= $80-6$
= 74

104.
$$15+5[12-(2^2+4)]=15+5[12-(4+4)]$$

= $15+5[12-8]$
= $15+5[4]$
= $15+20=35$

LOOK ALIKES

105. a.
$$50 \div 5 \div 5 = 10 \div 5$$

= 2
b. $50 \div (5 \div 5) = 50 \div 1$
= 50
c. $50 \div 5 \cdot 5 = 10 \cdot 5$
= 50
d. $50 \div (5 \cdot 5) = 50 \div 25$
= 2

106. a.
$$25 - 5^2 = 25 - 25$$

= 0
b. $(25 - 5)^2 = 20^2$
= 400

107. a.
$$(4-2^2)/(50-32) = (4-4)/18 = 0/18$$

= 0
b. $(50-32)/(4-2^2) = 18/(4-4)$
= $18/0$
= Undefined

108. a.
$$100 - 53 + 18 = 47 + 18$$

= 65
b. $100 - (53 + 18) = 100 - 71$
= 29
c. $(100 - 53) + 18 = 47 + 18$
= 65

APPLICATIONS

109.
$$3 \cdot 7 + 4 \cdot 4 + 2 \cdot 3 = 21 + 16 + 6$$

= \$43

110.
$$24 \cdot 1 + 6 \cdot 5 + 10 \cdot 10$$

 $+12 \cdot 20 + 2 \cdot 50 + 1 \cdot 100 = 594

111.
$$3(8+7+8+8+7)=3(38)$$

= 114

112.
$$2 \cdot 9 + 2 \cdot 16 + 4 \cdot 4 + 15$$

= $18 + 32 + 16 + 15$
= 81 in.

113. brick:
$$3 \cdot 3 + 1 + 1 + 3 + 3 \cdot 5 = 29$$

aphid: $3[1+2(3)+4+1+2]=42$

114.
$$1776 + 4 \cdot 20 + 7 = 1776 + 80 + 7$$

= 1863

115.
$$2^2 + 3^2 + 5^2 + 7^2 = 4 + 9 + 25 + 49$$

= 87

116.
$$27 \cdot 19 - 125 = 513 - 125$$

= 388 ft².

117.
$$\frac{75+80+83+80+77+72+86}{7}$$
$$=\frac{553}{7}$$
$$=79^{\circ}$$

118.
$$\frac{94+85+81+77+89+0}{6}$$
$$=\frac{426}{6}$$
$$=71$$

119.
$$\frac{39+40+\dots+42}{12} = \frac{372}{12}$$
$$= 31 \text{ therms}$$

$$\frac{120.}{9} = \frac{45}{9} = 5$$

122. (19,368,000 + ... + 40,044,000)/7= 22,847,000 viewers per game

123. a.
$$1+4+35+85=125$$

b. $1 \cdot 2,500+4 \cdot 500+35 \cdot 150+85 \cdot 25$
 $= 2,500+2,000+5,250+2,125$
 $= 11,875$

c.
$$\frac{11,875}{125}$$
 = \$95

b.
$$1 \cdot 4 + 2 \cdot 1 + 3 \cdot 5 + 4 \cdot 1 + 5 \cdot 4$$

 $= 4 + 2 + 15 + 4 + 20$
 $= 45$
 $\frac{45}{15} = 3$

a. 4+1+5+1+4=15

WRITING

123.

124.

- 125. Order of operations is necessary so that different people don't come up with different answers to the same problem.
- Reading the problem from left to right, perform the 126. first operation you come to, regardless of whether it is addition or subtraction.
- The multiplication of 2 and 3 takes precedence over 127. the addition.
- 128. Working left to right, subtraction should have been done first.

REVIEW

- 129. Two hundred fifty-four thousand, three hundred nine
- 130. Five hundred four million, fifty-two thousand, forty

Section 1.8: Solving Equations Using Addition and **Subtraction**

VOCABULARY

An equation is a statement indicating that two expressions are equal. All equations contain an = symbol.

- A number that makes an equation true when 2. substituted for the variable is called a solution of the equation. Such numbers are said to satisfy the equation.
- 3. To solve an equation means to find all values of the variable that make the equation true.
- 4. To solve an equation, we isolate the variable on one side of the equal symbol.
- 5. Equations with the same solutions are called equivalent equations.
- To check the solution of an equation, we substitute 6. the value for the variable in the original equation and determine whether the result is a true statement.

CONCEPTS

- a. x + 6
 - b. neither
 - c. $5+6 \neq 12$, so no.
 - d. 6+6=12, so ves.
- 8. a. no b. yes
 - c. no d. no
- a. The addition property of equality: Adding the 9. same number to both sides of an equation does not change its solution.
 - b. If a = b, then a + c = b + c.
- 10. a. The subtraction property of equality: Subtracting the same number from both sides of an equation does not change its solution.
 - b. If a = b, then a c = b c.
- a. To solve x-8=24, we add 8 to both sides of the equation.
 - b. To solve x + 4 = 11, we subtract 4 from both sides of the equation.
- 12. a. x + 7 7 = x
 - b. y-2+2=y

NOTATION

13.
$$x-5=45$$

$$x-5+5=45+5$$

$$x = 50$$

Check:
$$x - 5 = 45$$

$$50-5=45$$

$$45 = 45$$
 True

50 is the solution.

14.
$$y+11=12$$

$$y+11-11=12-11$$

$$y = 1$$

Check: y + 11 = 12

$$1+11=12$$

$$12 = 12$$
 True

1 is the solution.

15. is possibly equal to

GUIDED PRACTICE

17.
$$x + 2 = 3$$

$$1+2=3$$

$$3 = 3$$

1 is a solution.

18.
$$x + 2 = 6$$

$$4+2=6$$

$$6 = 6$$

4 is a solution.

19.
$$a-7=0$$

$$7 - 7 \stackrel{?}{=} 0$$

$$0 = 0$$

7 is a solution.

20.
$$x-8=8$$

$$16 - 8 = 8$$

$$8 = 8$$

16 is a solution.

21.
$$50 = y - 8$$

$$50 = 40 - 8$$

$$50 = 32$$

40 is not a solution.

22.
$$16 = 10 + c$$

$$16 = 10 + 5$$

$$16 = 15$$

5 is not a solution.

23.
$$1 = x + 2$$

$$1 = 2 + 2$$

$$1 = 4$$

2 is not a solution.

24.
$$8 = x + 1$$

$$8 = 4 + 1$$

$$8 = 5$$

4 is not a solution.

25.
$$x-7=3$$

$$x-7+7=3+7$$

$$x = 10$$

Check: x-7=3

$$10 - 7 \stackrel{?}{=} 3$$

$$3 = 3$$

The solution checks.

26.
$$y-11=7$$

$$y-11+11=7+11$$

$$y = 18$$

Check: y - 11 = 7

$$18-11=7$$

$$7 = 7$$

27.
$$a-20=50$$

$$a - 20 + 20 = 50 + 20$$

$$a = 70$$

$$70-20 \stackrel{?}{=} 50$$

$$50 = 50$$

28.
$$z-31=60$$

$$z - 31 + 31 = 60 + 31$$

$$z = 91$$

Check:
$$z - 31 = 60$$

$$91-31=60$$

$$60 = 60$$

The solution checks.

29.
$$1 = b - 2$$

$$1+2=b-2+2$$

$$3 = b$$

Check:
$$1 = b - 2$$

$$1 = 3 - 2$$

$$1 = 1$$

The solution checks.

30.
$$0 = t - 1$$

$$0+1=t-1+1$$

$$1 = t$$

Check:
$$0 = t - 1$$

$$0 = 1 - 1$$

$$0 = 0$$

The solution checks.

31.
$$19 = n - 42$$

$$19 + 42 = n - 42 + 42$$

$$61 = n$$

Check:
$$19 = n - 42$$

$$19 \stackrel{?}{=} 61 - 42$$

$$19 = 19$$

The solution checks.

32.
$$17 = m - 16$$

$$17+16=m-16+16$$

$$33 = m$$

Check: 17 = m - 16

$$17 = 33 - 16$$

$$17 = 17$$

The solution checks.

33.
$$x+9=12$$

$$x+9-9=12-9$$

$$x = 3$$

Check: x + 9 = 12

$$3+9=12$$

$$12 = 12$$

The solution checks.

34.
$$x + 3 = 9$$

$$x+3-3=9-3$$

$$x = 6$$

Check: x + 3 = 9

$$6+3=9$$

$$9 = 9$$

The solution checks.

35.
$$y + 7 = 12$$

$$y + 7 - 7 = 12 - 7$$

$$y = 5$$

Check: y + 7 = 12

$$5+7=12$$

$$12 = 12$$

The solution checks.

36.
$$c+11=22$$

$$c+11-11=22-11$$

$$c = 11$$

Check: c + 11 = 22

$$11+11=22$$

$$22 = 22$$

The solution checks.

37. Analyze

- * The scroll is <u>1,700</u> years old.
- * The scroll is 425 years older than the jar.

40 Tussy/Koenig Prealgebra, 5e * How old is the <u>jar</u>?

Assign Let x =the <u>age</u> of the jar.

Form Now we look for a key word or phrase in the problem.

Key phrase: older than

Translation: addition

Scroll's age is 425 years plus jar's age

$$1,700 = 425 + x$$

Solve

$$1,700 = 425 + x$$
$$1,700 - 425 = 425 + x - 425$$
$$1,275 = x$$

State The jar is 1,275 years old.

$$1,275$$

$$\mathbf{Check} + 425$$

1,700

The result checks.

38. Analyze

- * A \$1,500 check was written.
- * The new balance in the account was \$750.
- * What was the <u>balance</u> before he wrote the check?

Assign Let x = the account balance <u>before</u> he wrote the check.

Form Now we look for a key word or phrase in the problem.

Key phrase: wrote a check

Translation: subtraction

Previous balance minus check amount is the new balance.

$$x - 1,500 = 750$$

Solve

$$x-1,500 = 750$$
$$x-1,500+750 = 1,500+750$$
$$x = 2,250$$

State The account balance before he wrote the check was \$2,250.

$$\begin{array}{r}
2,250 \\
\text{Check } -1,500 \\
\hline
750
\end{array}$$

The result checks.

TRY IT YOURSELF

39.
$$s+55=100$$

 $s+55-55=100-55$
 $x=45$
Check: $s+55=100$
 $45+55=100$
 $100=100$

The solution checks.

40.
$$n+37 = 200$$

 $n+37-37 = 200-37$
 $n = 163$
Check: $n+37 = 200$
 $163+37 = 200$
 $200 = 200$

The solution checks.

41.
$$x-4=0$$

 $x-4+4=0+4$
 $x=4$
Check: $x-4=0$
 $4-4=0$
 $0=0$

42.
$$c-3=0$$

 $c-3+3=0+3$
 $c=3$

$$3-3=0$$

$$0 = 0$$

43.
$$y-7=6$$

$$y - 7 + 7 = 6 + 7$$

$$y = 13$$

Check:
$$y - 7 = 6$$

$$13 - 7 \stackrel{?}{=} 6$$

$$6 = 6$$

The solution checks.

44.
$$a-2=4$$

$$a-2+2=4+2$$

$$a = 6$$

Check:
$$a - 2 = 4$$

$$6-2=4$$

$$4 = 4$$

The solution checks.

45.
$$70 = x - 5$$

$$70+5=x-5+5$$

$$75 = x$$

Check:
$$70 = x - 5$$

$$70 = 75 - 5$$

$$75 = 75$$

The solution checks.

46.
$$66 = b - 6$$

$$66+6=b-6+6$$

$$72 = b$$

Check:
$$66 = b - 6$$

$$66 = 72 - 66$$

$$66 = 66$$

The solution checks.

47.
$$312 = x - 428$$

$$312 + 428 = x - 428 + 428$$

$$740 = x$$

Check: 312 = x - 428

$$312 = 740 - 428$$

$$312 = 312$$

The solution checks.

48.
$$113 = x - 307$$

$$113 + 307 = x - 307 + 307$$

$$420 = x$$

Check:
$$113 = x - 307$$

$$113 = 420 - 307$$

$$113 = 113$$

The solution checks.

49.
$$x-117=222$$

$$x-117+117=222+117$$

$$x = 339$$

Check:
$$x - 117 = 222$$

$$339-117 = 222$$

$$222 = 222$$

The solution checks.

50.
$$y-27=317$$

$$y - 27 + 27 = 317 + 27$$

$$y = 344$$

Check:
$$y - 27 = 317$$

$$344 - 27 = 317$$

$$317 = 317$$

The solution checks.

51.
$$t+19=28$$

$$t+19-19=28-19$$

$$t = 9$$

Check:
$$t + 19 = 28$$

$$9+19=28$$

$$28 = 28$$

52.
$$s + 45 = 84$$

$$s + 45 - 45 = 84 - 45$$

$$s = 39$$

Check:
$$s + 45 = 84$$

$$39 + 45 \stackrel{?}{=} 84$$

$$84 = 84$$

The solution checks.

53.
$$23 + x = 33$$

$$23 + x - 23 = 33 - 23$$

$$x = 10$$

Check
$$23 + x = 33$$

$$23+10=33$$

$$33 = 33$$

The solution checks.

54.
$$34 + y = 34$$

$$34 + y - 34 = 34 - 34$$

$$y = 0$$

Check:
$$34 + y = 34$$

$$34+0=34$$

$$34 = 34$$

The solution checks.

55.
$$5 = 4 + c$$

$$5-4=4+c-4$$

$$1 = c$$

Check: 5 = 4 + c

$$5 = 4 + 1$$

$$5 = 5$$

The solution checks.

56.
$$41 = 23 + x$$

$$41-23=23+x-23$$

$$18 = x$$

Check: 41 = 23 + x

$$41 = 23 + 18$$

$$43 = 43$$

The solution checks.

57.
$$99 = r + 43$$

$$99-43=r+43-43$$

$$56 = r$$

Check:
$$99 = r + 43$$

$$99 = 56 + 43$$

$$99 = 99$$

The solution checks.

58.
$$92 = r + 37$$

$$92 - 37 = r + 37 - 37$$

$$55 = r$$

Check:
$$92 = r + 37$$

$$92 = 55 + 37$$

$$92 = 92$$

The solution checks.

59.
$$512 = 428 + x$$

$$512 - 428 = 428 + x - 428$$

$$84 = x$$

Check:
$$512 = 428 + x$$

$$512 = 428 + 84$$

$$512 = 512$$

The solution checks.

60.
$$513 = 307 + x$$

$$513 - 307 = 307 + x - 307$$

$$206 = x$$

Check:
$$513 = 307 + x$$

$$513 = 307 + 206$$

$$513 = 513$$

The solution checks.

61.
$$x+117=222$$

$$x+117-117=222-117$$

$$x = 105$$

Check:
$$x + 117 = 222$$

$$105+117=222$$

$$222 = 222$$

62.
$$y + 38 = 321$$

$$y + 38 - 38 = 321 - 38$$

$$y = 283$$

$$283 + 38 = 321$$

$$321 = 321$$

63.
$$3 + x = 7$$

$$3 + x - 3 = 7 - 3$$

$$x = 4$$

Check:
$$3 + x = 7$$

$$3+4=7$$

$$7 = 7$$

The solution checks.

64.
$$4+b=8$$

$$4+b-4=8-4$$

$$b=4$$

Check:
$$4+b=8$$

$$4+4=8$$

$$8 = 8$$

The solution checks.

65. y - 5 = 7

$$y - 5 + 5 = 7 + 5$$

$$y = 12$$

Check
$$y-5=7$$

$$12-5\stackrel{?}{=}7$$

$$7 = 7$$

The solution checks.

66.
$$z-9=23$$

$$z-9+9=23+9$$

$$z = 32$$

Check:
$$z - 9 = 23$$

$$32-9=23$$

$$23 = 23$$

The solution checks.

67.
$$4 + a = 12$$

$$4+a-4=12-4$$

$$a = 8$$

Check: 4 + a = 12

$$4+8=12$$

$$12 = 12$$

The solution checks.

68.
$$5 + x = 13$$

$$5 + x - 5 = 13 - 5$$

$$x = 8$$

Check:
$$5 + x = 13$$

$$5+8=13$$

$$13 = 13$$

The solution checks.

69.
$$x-13=34$$

$$x-13+13=34+13$$

$$x = 47$$

Check:
$$x - 13 = 34$$

$$47-13=34$$

$$34 = 34$$

The solution checks.

70.
$$x-23=19$$

$$x-23+23=19+23$$

$$x = 42$$

Check:
$$x - 23 = 19$$

$$42-23=19$$

$$19 = 19$$

The solution checks.

LOOK ALIKES

71. a.
$$x + 89 = 243$$

$$x + 89 - 89 = 243 - 89$$

$$x = 154$$

$$x - 89 = 243$$

$$x - 89 + 89 = 243 + 89$$

$$x = 332$$

c.
$$243 = x - 89$$

$$243 + 89 = x - 89 + 89$$

$$332 = x$$

d.
$$243 = x + 89$$

$$243 - 89 = x + 89 - 89$$

$$154 = x$$

72. a.
$$n-47 = 108$$

 $n-47 + 47 = 108 + 47$
 $n = 155$
b. $n+47 = 108 - 47$
 $n = 61$
c. $108 = n + 47$

$$108 - 47 = n + 47 - 47$$

$$61 = n$$

$$108 = n - 47$$

d.
$$108 = n - 47$$
$$108 + 47 = n - 47 + 47$$
$$155 = n$$

73. a.
$$t+91=91$$

 $t+91-91=91-91$
 $t=0$
b. $t-91=0$
 $t-91+91=0+91$
 $t=91$

74. a.
$$a - 503 = 0$$

 $a - 503 + 503 = 0 + 503$
 $a = 503$
b. $a + 503 = 503$
 $a + 503 - 503 = 503 - 503$
 $a = 0$

APPLICATIONS

75. x = the amount of money she needs to borrow 68,500 + x = 316,500 68,500 + x - 68,500 = 316,500 - 68,500 x = 248,000

She needs to borrow \$248,000.

76.
$$x = \text{the number of invitations sent}$$

$$x-3 = 59$$

$$x-3+3 = 59+3$$

$$x = 62$$

Mia sent out 62 invitations.

77.
$$x =$$
The amount that Diddy earned in 2016 $x - 8 = 54$ $x - 8 + 8 = 54 + 8$ $x = 62$

Diddy earned \$62 million in 2016.

78. x = how much more money the man needs

$$317 + x = 345$$
$$317 + x - 317 = 345 - 317$$
$$x = 28$$

The man needs only an additional \$28.

79. r = the amount of reduction 81+r=110 81+r-81=110-81r=29

The earplugs reduce the noise by 29 decibels.

80. x = the amount of money in benefits 45 + x = 52 45 + x - 45 = 52 - 45 x = 7

The benefits package is valued at \$7,000.

81. x = the amount of increase that will shut down the system

$$60 + x = 85$$
$$60 + x - 60 = 85 - 60$$
$$x = 25$$

There must be an increase of 25 units to trigger a shutdown.

82. s =the score on the first game s + 77,420 = 105,880 s + 77,420 - 77,420 = 105,880 - 77,420 s = 28,460

His score for the first game was 28,460 points.

83. g = the amount she would have paid at the gas station

$$g-29 = 190$$
$$g-29+29 = 190+29$$
$$g = 219$$

The gas station would have charged \$219.

84. w =the length of his wait three days ago 20+15 = w 35 = w

Three days ago he waited for 35 minutes.

85. j = Jimmy's age when he had the number one single

$$j+55 = 67$$
$$j+55-55 = 67-55$$
$$j=12$$

Jimmy was 12 years old when he had the hit single.

86.
$$r =$$
the original sticker price $r-1,550 = 16,727$ $r-1,550+1,550 = 16,727+1,550$ $r = 18,277$

The original cost was \$18,277.

86.
$$r =$$
the original sticker price $r - 1,550 = 17,190$ $r - 1,550 + 1,550 = 17,190 + 1,550$ $r = 18,740$

The original cost was \$18,740.

WRITING

- 87. It means that the number makes the equation true when substituted for the variable.
- Substitute the number in the variable and simplify. 88. A solution will result in a true statement.
- 89. They are showing that doing the same thing on both sides of an equation preserves the equality.
- We obtain the same number since addition and subtraction are opposite operations.
- Bob felt isolated from the rest of the company because of his body odor.
- Checking the work, because it seems if I'm careful I won't make mistakes.
- That is true because you must perform the opposite action of the operation given in the problem.
- Translate means to rewrite an application problem as an equation.

REVIEW

96.
$$1^5 = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$$

= 1

97.
$$2 \cdot 3^2 \cdot 5 = 2 \cdot 9 \cdot 5$$

= $18 \cdot 5$
= 90

98. a.
$$4+4+4=3\cdot4$$

b. $4\cdot4\cdot4=4^3$

Chapter 1 whole Numbers 45

99.
$$8-2(2^2-1)+1^3=8-2(4-1)+1$$
 $=8-2(3)+1$
 $=8-6+1$
 $=2+1$
 $=3$

100. one thousand fifty – five

Section 1.9: Solving Equations Using Multiplication and Division

VOCABULARY

- To solve an equation means to find all values of the variable that make the equation true.
- A number that makes an equation true when 2. substituted for the variable is called a solution of the equation.
- 3. To solve an equation, we isolate the variable on one side of the equal symbol.
- 4. In this section, we used the multiplication and division properties of equality to solve the equations.

CONCEPTS

- 5. a. The multiplication property of equality: Multiplying both sides of an equation by the same nonzero number does not change its solution.
 - b. If a = b, then ca = cb. (provided c is not 0)
- 6. a. The division property of equality: Dividing both sides of an equation by the same nonzero number does not change its solution.

b. If
$$a = b$$
, then $\frac{a}{c} = \frac{b}{c}$. (provided c is not 0)

- 7. a. If we multiply x by 6 and then divide that product by 6, the result is x.
 - b. If we divide x by 8 and then multiply that quotient

by 8, the result is x.

8. a.
$$9 \cdot \frac{x}{9} = x$$
 b. $\frac{6y}{6} = y$

9.

a. To solve
$$\frac{x}{5} = 10$$
, we multiply both sides of the equation by 5.

- b. To solve 5x = 10, we <u>divide</u> both sides of the equation by 5.
- c. To solve x-5=10, we <u>add</u> 5 to both sides of the equation.
- d. To solve x+5=10, we subtract 5 from both sides of the equation.

10. a.
$$16 \neq 8.8$$
, so no.

b.
$$16 \neq \frac{2}{8}$$
, so no.

NOTATION

11.

$$\frac{x}{5} = 9$$

$$5 \cdot \frac{x}{5} = 5 \cdot 9$$

$$x = 45$$

Check: $\frac{x}{5} = 9$

$$\frac{45}{5} = 9$$

$$9 = 9$$
 True

45 is the solution.

12. 3x = 12

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

Check: 3x = 12

$$3 \cdot 4 \stackrel{?}{=} 12$$

$$12 = 12$$
 True

4 is the solution.

GUIDED PRACTICE

13.

$$\frac{x}{7} = 2$$

$$7 \cdot \frac{x}{7} = 7 \cdot 2$$

$$y = 14$$

Check:
$$\frac{x}{7} = 2$$

$$\frac{14}{7} = 2$$

$$2 = 2$$

The solution checks.

14. $\frac{x}{12} = 4$

$$12 \cdot \frac{x}{12} = 12 \cdot 4$$

$$x = 48$$

Check: $\frac{x}{12} = 4$

$$\frac{48}{12} = 4$$

$$4 = 4$$

The solution checks.

15. $\frac{y}{14} = 3$

 $14 \cdot \frac{y}{14} = 14 \cdot 3$

$$y = 42$$

Check: $\frac{y}{14} = 3$

$$\frac{42}{14} = 3$$

$$3 = 3$$

The solution checks.

16. $\frac{y}{13} = 5$

$$13 \cdot \frac{y}{13} = 13 \cdot 5$$

$$y = 65$$

Check: $\frac{y}{13} = 5$

$$\frac{65}{13} = 5$$

$$5 = 5$$

17.
$$16 = \frac{x}{24}$$

$$24 \cdot 16 = 24 \cdot \frac{x}{24}$$

$$384 = x$$

Check:
$$16 = \frac{x}{24}$$

$$16 = \frac{384}{24}$$

$$16 = 16$$

18.
$$22 = \frac{x}{18}$$

$$18 \cdot 22 = 18 \cdot \frac{x}{18}$$

$$396 = x$$

Check:
$$22 = \frac{x}{18}$$

$$22 = \frac{396}{18}$$

$$22 = 22$$

The solution checks.

19.
$$31 = \frac{t}{11}$$

$$11 \cdot 31 = 11 \cdot \frac{t}{11}$$

$$341 = t$$

Check:
$$31 = \frac{x}{11}$$

$$31 = \frac{341}{11}$$

The solution checks.

31 = 31

$$33 = \frac{m}{19}$$

$$19 \cdot 33 = 19 \cdot \frac{m}{19}$$

$$627 = m$$

$$Check: 33 = \frac{m}{19}$$

$$33 = \frac{627}{19}$$

$$33 = 33$$

The solution checks.

21.
$$3x = 3$$

$$\frac{3x}{3} = \frac{3}{3}$$

$$x = 1$$

Check: 3x = 3

$$3 \cdot 1 \stackrel{?}{=} 3$$
$$3 = 3$$

The solution checks.

22.
$$5x = 5$$

$$\frac{5x}{5} = \frac{5}{5}$$

$$x = 1$$

Check:
$$5x = 5$$

$$5 \cdot 1 = 5$$

$$5 = 5$$

The solution checks.

23.
$$9z = 90$$

$$\frac{9z}{0} = \frac{90}{0}$$

$$z = 10$$

Check: 9z = 90

$$9.10 \stackrel{?}{=} 90$$

$$90 = 90$$

The solution checks.

24.
$$3z = 60$$

$$\frac{3z}{3} = \frac{60}{3}$$

$$z = 20$$

Check: 3z = 60

$$3 \cdot 20 = 60$$

$$60 = 60$$

25. Analyze

- * 3 people shared the cash award equally.
- * Each person received \$311,000.
- * What was the amount of the Nobel Prize cash award?

Assign

Let x = the amount of the Nobel Prize award.

Form

We now look for a key phrase in the problem. Key phrase: *shared the prize money equally*

Translation: division

The cash award divided by the number of winners is equal to each person's share.

$$x \div 3 = 311,000$$

Solve

$$x/3 = 311,000$$
$$3 \cdot (x/3) = 3 \cdot 311,000$$
$$x = 933,000$$

State The amount of the Nobel Prize cash award was \$933,000.

Check: \$933,000/3 = \$311,000

The result checks.

26. Analyze

- * The number of followers doubled.
- * The current number of followers is 748.
- * What was the <u>number</u> of followers before using hashtags?

Assign

Let x = the <u>number</u> of followers on twitter.

Form

We now look for a key phrase in the problem.

Key phrase: double

Translation: multiply by 2

2 times the original number of followers is equal to the current number of followers.

$$2 \cdot x = 748$$

Solve

$$2x = 748$$
$$2x/2 = 748/2$$
$$x = 374$$

State The number of followers before using hashtags was <u>374</u>.

Check:

$$374 \cdot 2 = 748$$

The result checks.

TRY IT YOURSELF

27.
$$100 = 100x$$
$$\frac{100}{100} = \frac{100x}{100}$$
$$1 = x$$

Check:
$$100 = 100x$$

 $100 = 100 \cdot 1$
 $100 = 100$

The solution checks.

28.
$$35 = 35y$$

 $\frac{35}{35} = \frac{35y}{35}$
 $1 = y$
Check: $35 = 3$

Check:
$$35 = 35y$$

 $35 = 35 \cdot 1$
 $35 = 35$

The solution checks.

29.
$$\frac{a}{15} = 5$$

$$15 \cdot \frac{a}{15} = 15 \cdot 5$$

$$a = 75$$

Check:
$$\frac{a}{15} = 5$$

$$\frac{75}{15} \stackrel{?}{=} 5$$

$$5 = 5$$

30.
$$\frac{b}{25} = 5$$

$$25 \cdot \frac{b}{25} = 25 \cdot 5$$

$$b = 125$$
Check:
$$\frac{b}{25} = 5$$

$$\frac{125}{25} = 5$$

$$5 = 5$$

31.
$$16 = 8r$$

$$\frac{16}{8} = \frac{8r}{8}$$

$$2 = r$$
Check: $16 = 8r$

$$16 = 8 \cdot 2$$

$$16 = 16$$

The solution checks.

32.
$$44 = 11m$$

$$\frac{44}{11} = \frac{11m}{11}$$

$$4 = m$$
Check: $44 = 11m$

$$44 = 11 \cdot 4$$

$$44 = 44$$

The solution checks.

33.
$$21s = 210$$

 $\frac{21s}{21} = \frac{210}{21}$
 $s = 10$
Check: $21s = 210$
 $21 \cdot 10 = 210$
 $210 = 210$

The solution checks.

34.
$$155 = 31x$$

$$\frac{155}{31} = \frac{31x}{31}$$

$$5 = x$$

$$\text{Check: } 155 = 31x$$

$$155 = 31 \cdot 5$$

$$155 = 155$$

The solution checks.

35.

35.
$$\frac{c}{1,000} = 3$$

$$1,000 \cdot \frac{c}{1,000} = 1,000 \cdot 3$$

$$c = 3,000$$

$$\text{Check: } \frac{c}{1,000} = 3$$

$$\frac{3,000}{1,000} \stackrel{?}{=} 3$$

$$3 = 3$$

The solution checks.

36.
$$\frac{d}{100} = 11$$

$$100 \cdot \frac{d}{100} = 100 \cdot 11$$

$$d = 1,100$$
Check:
$$\frac{d}{100} = 11$$

$$\frac{1,100}{100} \stackrel{?}{=} 11$$

$$11 = 11$$

37.
$$1 = \frac{x}{50}$$
$$50 \cdot 1 = 50 \cdot \frac{x}{50}$$
$$50 = x$$

Check:
$$1 = \frac{x}{50}$$

$$1 = \frac{250}{50}$$

$$1 = 1$$

The solution checks.

38.

$$1 = \frac{x}{25}$$
$$25 \cdot 1 = 25 \cdot \frac{x}{25}$$
$$25 = x$$

Check:
$$1 = \frac{x}{25}$$

$$1 = \frac{25}{25}$$

$$1 = 1$$

The solution checks.

39.

$$7 = \frac{t}{7}$$

$$7 \cdot 7 = 7 \cdot \frac{t}{7}$$

$$49 = t$$
Check:
$$7 = \frac{t}{7}$$

$$7 = \frac{49}{7}$$
$$7 = 7$$

The solution checks.

40.

$$4 = \frac{m}{4}$$
$$4 \cdot 4 = 4 \cdot \frac{m}{4}$$
$$16 = m$$

Check:
$$4 = \frac{m}{4}$$
 $4 = \frac{16}{4}$
 $4 = 4$

The solution checks.

41.
$$7x = 21$$

$$\frac{7x}{7} = \frac{21}{7}$$
$$x = 3$$

Check:
$$7x = 21$$

$$7 \cdot 3 \stackrel{?}{=} 21$$
$$21 = 21$$

The solution checks.

42.
$$13x = 52$$

$$\frac{13x}{13} = \frac{52}{13}$$
$$x = 4$$

Check:
$$13x = 52$$

$$13 \cdot x = 52$$
$$52 = 52$$

The solution checks.

43.
$$172 = 43t$$

$$\frac{172}{43} = \frac{43t}{43}$$

$$4 = t$$

Check:
$$172 = 43t$$

$$172 \stackrel{?}{=} 43 \cdot 4$$

$$172 = 172$$

The solution checks.

44.
$$288 = 96t$$

$$\frac{288}{96} = \frac{96t}{96}$$

$$3 = t$$

Check:
$$288 = 96t$$

$$288 \stackrel{?}{=} 96 \cdot 3$$

$$288 = 288$$

$$\frac{d}{20} = 201$$
$$20 \cdot \frac{d}{20} = 20 \cdot 201$$

$$20$$

$$d = 4,020$$

46.
$$\frac{x}{60} = 106$$

$$60 \cdot \frac{x}{60} = 60 \cdot 106$$

$$x = 6,360$$
Check:
$$\frac{x}{60} = 106$$

$$\frac{6,360}{60} \stackrel{?}{=} 106$$

$$106 = 106$$

The solution checks.

47.
$$417 = \frac{t}{3}$$
$$3 \cdot 417 = 3 \cdot \frac{t}{3}$$
$$1,251 = t$$

Check:

$$417 = \frac{t}{3}$$

$$417 = \frac{1,251}{3}$$

$$417 = 417$$

The solution checks.

48.
$$259 = \frac{y}{7}$$
$$7 \cdot 259 = 7 \cdot \frac{y}{7}$$
$$1,813 = y$$

Check:

$$259 = \frac{y}{7}$$
$$259 = \frac{?}{7}$$
$$259 = 259$$

The solution checks.

49.
$$170y = 5,100$$
$$\frac{170y}{170} = \frac{5,100}{170}$$
$$y = 30$$

Check:

$$170 y = 5,100$$
$$170 \cdot 30 \stackrel{?}{=} 5,100$$
$$5,100 = 5,100$$

The solution checks.

50.
$$190y = 7,600$$

$$\frac{190y}{190} = \frac{7,600}{190}$$

$$y = 40$$
Check:
$$190y = 7,600$$

$$190 \cdot 40 = 7,600$$

$$7,600 = 7,600$$

The solution checks.

$$\frac{t}{3} = 47$$

$$3 \cdot \frac{t}{3} = 3 \cdot 47$$

$$t = 141$$
Check: $\frac{t}{3} = 47$

$$\frac{141}{3} = 47$$

$$47 = 47$$

52.
$$\frac{d}{9} = 83$$

$$9 \cdot \frac{d}{9} = 9 \cdot 83$$

$$d = 747$$
Check:
$$\frac{d}{9} = 83$$

$$\frac{747}{9} = 83$$

$$83 = 83$$

The solution checks.

53.
$$34y = 204$$

 $\frac{34y}{34} = \frac{204}{34}$
 $y = 6$
Check: $34y = 204$
 $34 \cdot 6 = 204$
 $204 = 204$

The solution checks.

54.
$$18y = 162$$

 $\frac{18y}{18} = \frac{162}{18}$
 $y = 9$
Check: $18y = 162$
 $18 \cdot 9 = 162$
 $162 = 162$

The solution checks.

LOOK ALIKES

55. a.
$$d+32=96$$

 $d+32-32=96-32$
 $d=64$
b. $d-32=96$
 $d-32+32=96+32$
 $d=128$
c. $32d=96$
 $32d \div 32=96 \div 32$
 $d=3$
d. $d \div 32=96$
 $(d \div 32) \cdot 32=96 \cdot 32$
 $d=3,072$

56. a.
$$17x = 68$$

 $17x \div 17 = 68 \div 17$
 $x = 4$
b. $x \div 17 = 68$
 $(x \div 17) \cdot 17 = 68 \cdot 17$
 $x = 1,156$
c. $x + 17 = 68$
 $x + 17 - 17 = 68 - 17$
 $x = 51$
d. $x - 17 = 68$
 $x - 17 + 17 = 68 + 17$
 $x = 85$

57. a.
$$b \div 40 = 80$$

 $(b \div 40) \cdot 40 = 80 \cdot 40$
 $b = 3200$
b. $b - 40 = 80$
 $b - 40 + 40 = 80 + 40$
 $b = 120$
c. $b + 40 = 80$
 $b + 40 - 40 = 80 - 40$
 $b = 40$
d. $40b = 80$
 $40b \div 40 = 80 \div 40$
 $b = 2$

58. a.
$$t-9 = 108$$

 $t-9+9 = 108+9$
 $t = 117$
b. $9t = 108$
 $9t \div 9 = 108 \div 9$
 $t = 12$
c. $t \div 9 = 108$
 $(t \div 9) \cdot 9 = 108 \cdot 9$
 $t = 972$
d. $t+9 = 108$
 $t+9-9 = 108-9$
 $t = 99$

APPLICATIONS

59. x = the number of words per minute she could read prior to the course

$$3x = 399$$

$$\frac{3x}{3} = \frac{399}{3}$$

$$x = 133$$

Alicia could read 133 words per minute before the course.

$$\frac{x}{3} = 32$$

$$3 \cdot \frac{x}{3} = 3 \cdot 32$$

$$x = 96$$

There are 96 students in the class.

61. x =the original estimate

$$10x = 540$$

$$\frac{10x}{10} = \frac{540}{10}$$

$$x = 54$$

The original estimate was \$54 million.

r = the number of rows per sheet

$$8r = 112$$

62.

63.

$$\frac{8r}{} = \frac{112}{}$$

$$r = 14$$

There are 14 rows of stamps per sheet.

There are 14 fows of stamps per sheet.

r = the number of rows in the spreadsheet

$$6r = 294$$

$$\frac{6r}{6} = \frac{294}{6}$$

$$r = 49$$

There are 49 rows in the spreadsheet.

64. a =the amount each received

$$\frac{480,000}{12} = a$$

$$40,000 = a$$

Each employee got \$40,000.

65. S = the number of the shelter's calls after being on the news

$$4 \cdot 8 = s$$

$$32 = s$$

The shelter received 32 calls per day after the news feature.

66. x =the number of people the principal expected

$$\frac{1}{2}x = 120$$

$$2 \cdot \frac{1}{2}x = 2 \cdot 120$$

$$x = 240$$

The principal expected 240 attendees.

67. W = the weight of the object on the moon

$$6w = 330$$

$$\frac{6w}{6} = \frac{330}{6}$$

$$w = 55$$

The scale would register 55 pounds on the moon.

8 1

68. x = the number of orders before the celebrity endorsement

$$5x = 175$$

$$\frac{5x}{5} = \frac{175}{5}$$

$$x = 35$$

Before the celebrity was involved they received 35 orders per week.

69. g =the life span of a guinea pig

$$13g = 104$$

$$\frac{13g}{13} = \frac{104}{13}$$

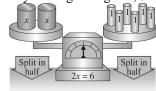
$$g = 8$$

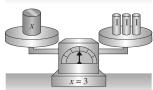
The average life span of a guinea pig is 8 years.

70. j =the Scoville rating of a jalapeño

$$40 j = 320,000$$

$$\frac{40j}{40} = \frac{320,000}{40}$$


$$j = 8,000$$


The Scoville rating of a jalapeño is 8,000 units.

WRITING

71. They are showing that multiplying both sides by the same thing preserves the balance, or equality.

72.

The figures are showing that dividing both sides by the same number preserves the balance, or equality.

73. It means to find all values of the variable which make the equation true.

74. We obtain the same number since multiplication and division are opposite operations.

REVIEW

75.
$$P = 2l + 2w$$

= $2 \cdot 8 + 2 \cdot 16$
= $16 + 32$
= 48 cm.

76.
$$A = l \cdot w$$

= 23 · 37
= 851 in².

77.
$$120 = 4 \cdot 30$$

= $2 \cdot 2 \cdot 3 \cdot 10$
= $2 \cdot 2 \cdot 3 \cdot 2 \cdot 5$
= $2^{3} \cdot 3 \cdot 5$

78.
$$150 = 3.50$$

= $3.2.25$
= $3.2.5.5$
= $2.3.5^2$

79.
$$3^2 \cdot 2^3 = 9 \cdot 8$$

= 72

80.
$$5+6\cdot 3=5+18$$

= 23

81.
$$\frac{0}{12} = 0$$

82.
$$\frac{50}{0}$$
 is undefined

Chapter 1 Review

1. a. 6

b. 7

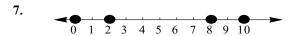
c. 1 billion

d. 8

2. a. ninety-seven thousand, two hundred eighty – three

b. five billion, four hundred forty-four million, sixty thousand, seventeen

3. a. 3,207


b. 23,253,412

4. 61,204

5. 500,000+70,000+300+2

6. 30,000,000+7,000,000+300,000

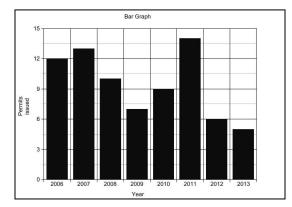
+9,000+100+50+4

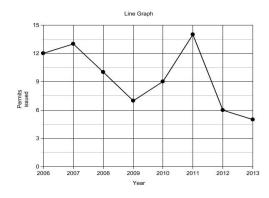
9. 9 > 7

10. 301 < 310

11. a. 2,507,300

b. 2,510,000


c. 2,507,350


d. 3,000,000

12. a. 970,000

b. 1,000,000

- Nile, Amazon, Yangtze, Mississippi-Missouri, Ob-14. Irtysh
- 15. $4\overset{\scriptscriptstyle{1}}{3}6$ <u>+27</u> 463

16.
$$4+(36+19)=4+(55)$$

= 59

18.
$$2+1+38+3+6=3+38+3+6$$

= $41+3+6$
= $44+6$
= 50

19.
$$\begin{array}{r} 1 & 2 & 2 \\ 4 & 4 & 4 & 7 \\ 7 & 4 & 7 & 8 \\ & + & 6 & 7 & 6 \\ \hline 12 & 6 & 0 & 1 \end{array}$$

20.
$$32,812$$
 $65,034$
 $+54,323$
 $152,169$

21.
$$600+800+10,000+40,000+8,000$$

= 1,400+50,000+8,000
= 51,400+8,000
= 59,400

22. a.
$$24+61=61+24$$

b. $9+(91+29)=(9+91)+29$

24.
$$226$$
859
345
+1,291
2,721

It is not correct.

25.
$$10,955$$
 $+3,706$ $14,661$

27.
$$1,695 + 772 = 2,467 \text{ sq ft}$$

28.
$$642$$
731
642
+731
2,746 ft

30.
$$\begin{array}{r}
 2/15 \\
 10,45 \\
 \hline
 -10,218 \\
 \hline
 217
\end{array}$$

31.
$$750 - 259 + 14 = 491 + 14$$

= 505

32.
$$7, 8, 0, 0$$
$$-5, 7, 2, 5$$
$$2, 0, 7, 5$$

The subtraction is incorrect.

34.
$$20-8=12$$
 because $12+8=20$.

35.
$$200,000-40,000=160,000$$

37.
$$12,975-3,800+4,270=9,175+4,270$$

= \$13,445

40.
$$5 \cdot (7 \cdot 6) = 5 \cdot 42$$

= 210

41. $72 \cdot 10,000$: Since there are 4 zeros, move the decimal point 4 units to the right: 720,000

45.
$$7,000 \cdot 400 = 2,800,000$$

46. a.
$$7+7+7+7+7=5\cdot 7$$

b. $2\cdot t=2t$

c.
$$m \cdot n = mn$$

47. a.
$$8 \cdot 0 = 0$$
 b. $7 \cdot 1 = 7$

- **48.** a. Associative Property of Multiplication
 - b. Commutative Property of Multiplication
- 49. $A = l \cdot w$ $A = 8 \cdot 4$ $A = 32 \text{ cm}^2$.
- 50. $A = l \cdot w$ $A = 78 \cdot 78$ $A = 6.084 \text{ in}^2$.
- 51. a. $365 \cdot 7 = 2,555 \text{ hr.}$ b. $365 \cdot 9 = 3,285 \text{ hr.}$

There were 330 people in the graduating class.

53. Sarah: $12 \cdot 9 = 108

Santiago: $14 \cdot 8 = 112 Santiago earned more money.

- 54. $12 \cdot 12 \cdot 100 = 144 \cdot 100$ = 14,400 eggs
- 55. $\frac{72}{4} = \frac{\cancel{A} \cdot 18}{\cancel{A}} = 18$
- 56. $\frac{37}{39)1443}$ $\frac{-117}{273}$ $\frac{-273}{0}$

- 57. 307 68)20876 -204 47 -0 476 -476 0
- 58. $\frac{19}{21)405}$ $\frac{-21}{195}$ $\frac{-189}{6}$ 19R6
- 59. $\frac{0}{10} = 0$
- 60. $\frac{165}{0}$ is undefined
- 61. $\frac{42}{127)5347}$ $\frac{-508}{267}$ $\frac{-254}{13}$ 42R13
- **62.** Begin by dividing both by 100 to eliminate two zeros:

$$\begin{array}{r}
 380 \\
 39)14820 \\
 -117 \\
 \hline
 312 \\
 -312 \\
 \hline
 0
 \end{array}$$

- 63. $40 \cdot 4 = 160$
- 64. $45 \cdot 7 + 6 = 315 + 6$ = 321

It is not correct.

- 58 Tussy/Koenig Prealgebra, 5e
- **65.** 364,545 is divisible by 3, 5, and 9.

66.
$$200,000 \div 50 = 4,000$$

67.
$$\frac{16}{45)745}$$

$$\frac{-45}{295}$$

$$\frac{-270}{25}$$

Each child will get 16 candies, with 25 left over.

68. Begin by cancelling 3 zeros from each number.

$$\begin{array}{r}
 34 \\
 25)850 \\
 \hline
 -75 \\
 100 \\
 \hline
 -100 \\
 0
\end{array}$$

They can purchase 34 cars.

- **69.** 1, 2, 3, 6, 9, 18
- **70.** 1, 3, 5, 15, 25, 75

71.
$$20 = 2.10$$

= 4.5

72.
$$54 = 2 \cdot 3 \cdot 9$$

= $3 \cdot 3 \cdot 6$

- **73.** a. prime
 - b. composite
 - c. neither
 - d. neither
 - e. composite
 - f. prime
- **74.** a. odd
 - b. even
 - c. even
 - d. odd

75.
$$42 = 2 \cdot 21$$

= $2 \cdot 3 \cdot 7$

76.
$$75 = 3.25$$

= $3.5.5$
= 3.5^2

77.
$$220 = 10 \cdot 22$$

= $2 \cdot 5 \cdot 2 \cdot 11$
= $2^2 \cdot 5 \cdot 11$

78.
$$140 = 10.14$$

= $2.5.2.7$
= $2^2.5.7$

79.
$$6 \cdot 6 \cdot 6 \cdot 6 = 6^4$$

80.
$$5(5)(5)(13)(13) = 5^3 \cdot 13^2$$

81.
$$5^3 = 5 \cdot 5 \cdot 5$$

= $25 \cdot 5$
= 125

82.
$$11^2 = 11 \cdot 11$$

= 121

83.
$$2^4 \cdot 7^2 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 7 \cdot 7$$

= $4 \cdot 4 \cdot 49$
= $16 \cdot 49$
= 784

84.
$$2^2 \cdot 3^3 \cdot 5^2 = 4 \cdot 27 \cdot 25$$

= $108 \cdot 25$
= 2700

- **86.** a. 24 and 48 are in both sets of multiples.
 - b. 1 and 2 are in both sets of factors.

$$LCM(4,6) = 2 \cdot 2 \cdot 3$$
$$= 12$$

88.
$$3 = 3$$

 $4 = 2 \cdot 2$
 $LCM(3,4) = 2 \cdot 2 \cdot 3$

89.
$$9 = 3 \cdot 3$$

 $15 = 3 \cdot 5$
 $LCM(9,15) = 3 \cdot 3 \cdot 5$
 $= 45$

90.
$$12 = 2 \cdot 2 \cdot 3$$
$$18 = 2 \cdot 3 \cdot 3$$
$$LCM(12,18) = 2 \cdot 2 \cdot 3 \cdot 3$$
$$= 36$$

91.
$$18 = 2 \cdot 3 \cdot 3$$

 $21 = 3 \cdot 7$
 $LCM(18, 21) = 2 \cdot 3 \cdot 3 \cdot 7$
 $= 126$

92.
$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$

 $45 = 3 \cdot 3 \cdot 5$
 $LCM(24, 45) = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$
 $= 360$

93.
$$4 = 2 \cdot 2$$

$$14 = 2 \cdot 7$$

$$20 = 2 \cdot 2 \cdot 5$$

$$LCM(4,14,20) = 2 \cdot 2 \cdot 5 \cdot 7$$

$$= 140$$

94.
$$21 = 3.7$$
$$28 = 2.2.7$$
$$42 = 2.3.7$$
$$LCM(21,28,42) = 2.2.3.7$$
$$= 84$$

95.
$$8 = 2 \cdot 2 \cdot 2$$

 $12 = 2 \cdot 2 \cdot 3$
 $GCF(8,12) = 2 \cdot 2$
 $= 4$

96.
$$9 = 3 \cdot 3$$

 $12 = 2 \cdot 2 \cdot 3$
 $GCF(9,12) = 3$

97.
$$30 = 2 \cdot 3 \cdot 5$$

 $40 = 2 \cdot 2 \cdot 2 \cdot 5$
 $GCF(30, 40) = 2 \cdot 5$
 $= 10$

98.
$$30 = 2 \cdot 3 \cdot 5$$

 $45 = 3 \cdot 3 \cdot 5$
 $GCF(30, 45) = 3 \cdot 5$
 $= 15$

99.
$$63 = 3 \cdot 3 \cdot 7$$

 $84 = 2 \cdot 2 \cdot 3 \cdot 7$
 $GCF(63,84) = 3 \cdot 7$
 $= 21$

100.
$$112 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 7$$
$$196 = 2 \cdot 2 \cdot 7 \cdot 7$$
$$GCF(112,196) = 2 \cdot 2 \cdot 7$$
$$= 28$$

101.
$$48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$$
$$72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$$
$$120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$$
$$GCF(48,72,120) = 2 \cdot 2 \cdot 2 \cdot 3$$
$$= 24$$

102.
$$88 = 2 \cdot 2 \cdot 2 \cdot 11$$
$$132 = 2 \cdot 2 \cdot 3 \cdot 11$$
$$176 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 11$$
$$GCF(88,132,176) = 2 \cdot 2 \cdot 11$$
$$= 44$$

103.
$$14 = 2 \cdot 7$$

$$21 = 3 \cdot 7$$

$$LCM(14, 21) = 2 \cdot 3 \cdot 7$$

$$= 42$$

They will meet on the same day 42 days later.

104.
$$32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$$
$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$
$$16 = 2 \cdot 2 \cdot 2 \cdot 2$$
$$GCF(32, 24, 16) = 2 \cdot 2 \cdot 2$$
$$= 8$$

a. 8 arrangements

b. 4 red, 3 white, 2 blue (the 'remainder' when the GCF is taken out)

105.
$$3^2 + 12 \cdot 3 = 9 + 36$$

= 45

106.
$$35-5\cdot 3+3=35-15+3$$

= 20+3
= 23

107.
$$(6 \div 2 \cdot 3)^2 \cdot 3 = (3 \cdot 3)^2 \cdot 3$$

= $9^2 \cdot 3$
= $81 \cdot 3$
= 243

108.
$$(35-5\cdot3) \div 5 = (35-15) \div 5$$

= $20 \div 5$
= 4

109.
$$2^3 \cdot 5 - 4 \div 2 \cdot 4 = 8 \cdot 5 - 2 \cdot 4$$

= $40 - 8$
= 32

110.
$$8 \cdot (5-4 \div 2)^2 = 8 \cdot (5-2)^2$$

= $8 \cdot 3^2$
= $8 \cdot 9$
= 72

111.
$$2+3\left(\frac{100}{10}-2^2\cdot 2\right) = 2+3(10-4\cdot 2)$$

= $2+3(10-8)$
= $2+3(2)$
= $2+6=8$

112.
$$4(4^2 - 5 \cdot 3 + 2) - 4 = 4(16 - 15 + 2) - 4$$

= $4(1+2) - 4$
= $4(3) - 4$
= $12 - 4$
= 8

113.
$$\frac{4(6)-6}{2(3^2)} = \frac{24-6}{2(9)}$$
$$= \frac{18}{18}$$
$$= 1$$

114.
$$\frac{6 \cdot 2 + 3 \cdot 7}{5^2 - 2(7)} = \frac{12 + 21}{25 - 14}$$
$$= \frac{33}{11}$$
$$= 3$$

115.
$$7+3[3^3-10(4-2)]=7+3[27-10(2)]$$

= $7+3[27-20]$
= $7+3[7]$
= $7+21$
= 28

116.
$$5+2\left[\left(2^{4}-3\cdot\frac{8}{2}\right)-2\right] = 5+2\left[\left(16-3\cdot4\right)-2\right]$$
$$= 5+2\left[\left(16-12\right)-2\right]$$
$$= 5+2\left[4-2\right]$$
$$= 5+2\left[2\right]$$
$$= 5+4$$
$$= 9$$

$$\frac{80 + 74 + 66 + 88}{4} = \frac{308}{4}$$
$$= 77$$

$$\frac{73+77+81+0+69}{5} = \frac{300}{5}$$

$$= 60$$

119.
$$x+2=13$$

 $5+2=13$
 $7=13$

5 is not a solution.

120.
$$x-3=1$$

 $4-3=1$
 $1=1$

4 is a solution.

121.
$$x-7=2$$

 $x-7+7=2+7$
 $x=9$
Check: $x-7=2$
 $9-7\stackrel{?}{=}2$
 $2=2$

The solution checks.

122.
$$x-11=20$$

 $x-11+11=20+11$
 $x=31$
Check: $x-11=20$
 $31-11=20$
 $20=20$

The solution checks.

123.
$$225 = y - 115$$

 $225 + 115 = y - 115 + 115$
 $340 = y$
Check: $225 = y - 115$
 $225 = 340 - 115$
 $225 = 225$

The solution checks.

124.
$$101 = p - 32$$
$$101 + 32 = p - 32 + 32$$
$$133 = p$$

Check:
$$101 = p - 32$$

 $101 = 133 - 32$
 $101 = 101$

The solution checks.

125.
$$x+9=18$$

 $x+9-9=18-9$
 $x=9$
Check: $x+9=18$
 $9+9=18$
 $18=18$

The solution checks.

126.
$$b+12=26$$

 $b+12-12=26-12$
 $b=14$
Check: $b+12=26$
 $14+12=26$
 $26=26$

The solution checks.

127.
$$175 = p + 55$$
$$175 - 55 = p + 55 - 55$$
$$120 = p$$
$$Check: 175 = p + 55$$
$$175 = 120 + 55$$
$$175 = 175$$

The solution checks.

128.
$$212 = m + 207$$
$$212 - 207 = m + 207 - 207$$
$$5 = m$$
Check:
$$212 = m + 207$$
$$212 = 5 + 207$$
$$212 = 212$$

The solution checks.

129.
$$x = \text{how much they needed to borrow}$$

 $x + 25,500 = 122,750$
 $x + 25,500 - 25,500 = 122,750 - 25,500$
 $x = 97,250$

They had to borrow \$97,250.

130. x = the original number of patients

$$x - 13 = 172$$

$$x-13+13=172+13$$

$$x = 185$$

He had 185 patients originally.

131.
$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

Check: 3x = 12

$$3 \cdot 4 = 12$$

$$12 = 12$$

The solution checks.

132.
$$15y = 45$$

$$\frac{15y}{15} = \frac{45}{15}$$

$$y = 3$$

Check: 15y = 45

$$15 \cdot 3 = 45$$

$$45 = 45$$

The solution checks.

133.
$$105 = 5r$$

$$\frac{105}{5} = \frac{5r}{5}$$

$$21 = r$$

Check: 105 = 5r

$$105 \stackrel{?}{=} 5 \cdot 21$$

$$105 = 105$$

The solution checks.

134.
$$224 = 16q$$

$$\frac{224}{16} = \frac{16q}{16}$$

$$14 = q$$

Check: 224 = 16q

$$224 = 16.14$$

$$224 = 224$$

The solution checks.

135.
$$\frac{x}{7} = 3$$

$$7 \cdot \frac{x}{7} = 7 \cdot 3$$

$$x = 21$$

Check:
$$\frac{x}{7} = 3$$

$$\frac{21}{7} = 3$$

$$3 = 3$$

The solution checks.

136.
$$\frac{a}{3} = 12$$

$$3 \cdot \frac{a}{3} = 3 \cdot 12$$

$$a = 36$$

Check:
$$\frac{a}{3} = 12$$

$$\frac{36}{3} = 12$$

$$12 = 12$$

The solution checks.

137.
$$15 = \frac{s}{21}$$

$$15 \cdot 21 = \frac{s}{21} \cdot 21$$

$$315 = s$$

$$Check: 15 = \frac{s}{21}$$

$$15 = \frac{315}{21}$$

$$15 = 15$$

138.
$$25 = \frac{d}{17}$$

$$25 \cdot 17 = \frac{d}{17} \cdot 17$$

$$425 = d$$

139. x = the number of orders the previous week 2x = 364

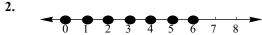
$$\frac{2x}{2} = \frac{364}{2}$$

x = 182

They received 182 orders the previous week.

140. x =the total amount cost

$$\frac{x}{4} = 32$$


$$\frac{x}{4} \cdot 4 = 32 \cdot 4$$

$$x = 128$$

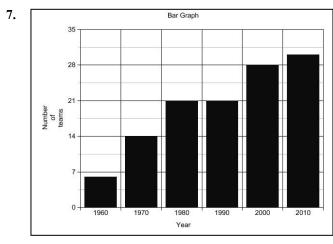
The chain cost \$128.

Chapter 1 Test

- 1. a. The set of whole numbers is $\{0,1,2,3,4,5,...\}$.
 - b. The symbols > and < are <u>inequality</u> symbols.
 - c. The <u>area</u> of a rectangle is a measure of the amount of surface it encloses.
 - d. The grouping symbols () are called <u>parentheses</u>, and the symbols [] are called <u>brackets</u>.
 - e. A <u>prime</u> number is a whole number greater than 1 that has only 1 and itself as factors.
 - f. An <u>equation</u> is a statement indicating that two expressions are equal.
 - g. A number that makes an equation true when substituted for a variable is called a <u>solution</u> of the equation.
 - h. In this chapter, we used the addition, subtraction, multiplication, and division properties of <u>equality</u> to solve equations.

3. a. 1 hundred

b. 0


4. a. seven million, eighteen thousand, six hundred forty-one

c.
$$90,000 + 2,000 + 500 + 60 + 1$$

5. a. 15 > 10 b. 1,247 < 1,427

b. 34,800,000

c. 34,760,000

Check: 248 + 287 = 535

- 64 Tussy/Koenig Prealgebra, 5e
- 11. $\begin{array}{c} 2 \\ 53 \\ \times 8 \\ \hline 424 \end{array}$
- 13. $\frac{72}{6)432}$ $\frac{-42}{12}$ $\frac{-12}{0}$
- 14. $\frac{114}{73)8379}$ $\frac{-73}{107}$ $\frac{-73}{349}$ $\frac{-292}{57}$ 114R57Check: $(73 \cdot 114) + 57$ = 8,322 + 57 = 8,379
- 15. $23 \cdot 6 = 138$, now attach 5 zeros: 13,800,000

16. Begin by dividing out 2 zeros from each:

$$\begin{array}{r}
 250 \\
 5)1250 \\
 -10 \\
 25 \\
 -25 \\
 0
\end{array}$$

- 17. 50,000-7,000=43,000
- 18. 327 + 757 + 327 + 757 = 1,084 + 1,084= 2,168 in.
- 19. $23 \cdot 23 = 529 \text{ in}^2$.
- **20.** a. 1, 2, 3, 4, 6, 12 b. 4, 8, 12, 16, 20, 24 c. 8.5
- 21. 1260 = 10.126= 2.5.9.14= 2.5.3.3.2.7= $2^2.3^2.5.7$
- **22.** 10,000-5,067=4,933 tails
- 23. $12 \cdot 8 = 96$ students
- **24.** $12,255 \div 3 = 4,085 \text{ ft}^2$.
- 25. $23 \cdot 18 = 414 \text{ mi.}$
- **26.** a. Associative Property of Multiplication
 - b. Commutative Property of Addition
- **27.** a. 0
 - b. 0
 - c. 1
 - d. undefined

28.
$$15 = 3.5$$

 $18 = 2.3.3$
 $LCM(15,18) = 2.3.3.5$
 $= 90$

29.
$$8 = 2 \cdot 2 \cdot 2$$

 $9 = 3 \cdot 3$
 $12 = 2 \cdot 2 \cdot 3$

$$LCM(8,9,12) = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$$

= 72

30.
$$30 = 2 \cdot 3 \cdot 5$$

 $54 = 2 \cdot 3 \cdot 3 \cdot 3$
 $GCF(30,54) = 2 \cdot 3$
 $= 6$

31.
$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$
$$28 = 2 \cdot 2 \cdot 7$$
$$36 = 2 \cdot 2 \cdot 3 \cdot 3$$
$$GCF(24, 28, 36) = 2 \cdot 2$$
$$= 4$$

32.
$$8 = 2 \cdot 2 \cdot 2$$

 $10 = 2 \cdot 5$
 $LCM(8,10) = 2 \cdot 2 \cdot 2 \cdot 5$
 $= 40$

a. 40 inches

b. 5 boxes of rice, 4 boxes of potatoes

33. It is divisible by 2, 3, 4, 5, 6, and 10.

$$\frac{73+52+95+70+0}{5} = \frac{290}{5}$$
= 58

35.
$$9+4\cdot 5=9+20$$

= 29

36.
$$3^4 \cdot 10 - 2(6)(4) = 81 \cdot 10 - 12(4)$$

= $810 - 48$
= 762

Chapter 1 Whole Numbers 65

37.
$$20+2[4^2-2(6-2^2)] = 20+2[16-2(6-4)]$$

 $= 20+2[16-2(2)]$
 $= 20+2[16-4]$
 $= 20+2[12]$
 $= 20+24$
 $= 44$

38.
$$\frac{3^{3} - 2(15 - 14)^{2}}{33 - 9 + 1} = \frac{27 - 2(1)^{2}}{24 + 1}$$
$$= \frac{27 - 2}{24 + 1}$$
$$= \frac{25}{25}$$
$$= 1$$

39.
$$x+13=16$$

 $3+13=16$
 $16=16$

3 is a solution.

40. To solve an equation means to find all the values of the variable that, when substituted into the equation, make a true statement.

41.
$$100 = x+1$$

$$100-1 = x+1-1$$

$$99 = x$$

$$Check: 100 = x+1$$

$$100 = 99+1$$

$$100 = 100$$

The solution checks.

42.
$$y-12=18$$

 $y-12+12=18+12$
 $y=30$
Check: $y-12=18$
 $30-12=18$
 $18=18$

43.
$$5m = 55$$

$$\frac{5m}{5} = \frac{55}{5}$$

$$m = 11$$

Check: 5m = 55

$$5.11 = 55$$

$$55 = 55$$

The solution checks.

$$\frac{q}{3} = 27$$

$$3 \cdot \frac{q}{3} = 3 \cdot 27$$

$$q = 81$$

Check:
$$\frac{q}{3} = 27$$

$$\frac{81}{3}^{?} = 27$$

$$27 = 27$$

The solution checks.

45. x = the original number of spots

$$\frac{3x}{3} = \frac{6,240}{3}$$

3x = 6,240

$$x = 2,080$$

At the time, the college had 2,080 spaces.

46.
$$x =$$
 the unfiltered intensity

$$x - 41 = 73$$

$$x-41+41=73+41$$

$$x = 114$$

The sound intensity is 114 decibels.

47.
$$x =$$
 the size of the class

$$\frac{x}{6} = 12$$

$$6 \cdot \frac{x}{6} = 6 \cdot 12$$

$$x = 72$$

There are 72 students in the class.

48. x = the amount she needs to borrow

$$x+12,500 = 27,250$$

$$x+12,500-12,500=27,250-12,500$$

$$x = 14,750$$

She needs to borrow \$14,750.