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Solutions to Exercises, Section 5.1

You should be able to do Exercises 1–4 without a calculator.

1 Evaluate cos−1 1
2 .

solution cos π
3 = 1

2 ; thus cos−1 1
2 = π

3 .
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2 Evaluate sin−1 1
2 .

solution sin π
6 = 1

2 ; thus sin−1 1
2 = π

6 .
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3 Evaluate tan−1(−1).

solution tan
(
−π

4
)
= −1; thus

tan−1(−1) = −π
4 .
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4 Evaluate tan−1(−
√

3).

solution tan(−π
3 ) = −

√
3; thus tan−1(−

√
3) = −π

3 .
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Exercises 5–16 emphasize the importance of understanding inverse notation as well
as the importance of parentheses in determining the order of operations.

5 For x = 0.3, evaluate each of the following:
(a) cos−1 x
(b) (cos x)−1

(c) cos(x−1)

(d) (cos−1 x)−1

solution

(a) cos−1 0.3 ≈ 1.2661

(b) (cos 0.3)−1 =
1

cos 0.3
≈ 1.04675

(c) cos(0.3−1) = cos 1
0.3 ≈ −0.981674

(d) (cos−1 0.3)−1 =
1

cos−1 0.3
≈ 0.789825
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6 For x = 0.4, evaluate each of the following:
(a) cos−1 x
(b) (cos x)−1

(c) cos(x−1)

(d) (cos−1 x)−1

solution

(a) cos−1 0.4 ≈ 1.15928

(b) (cos 0.4)−1 =
1

cos 0.4
≈ 1.0857

(c) cos(0.4−1) = cos 1
0.4 ≈ −0.801144

(d) (cos−1 0.4)−1 =
1

cos−1 0.4
≈ 0.862605
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7 For x = 1
7 , evaluate each of the following:

(a) sin−1 x
(b) (sin x)−1

(c) sin(x−1)

(d) (sin−1 x)−1

solution

(a) sin−1 1
7 ≈ 0.143348

(b) (sin 1
7 )
−1 =

1
sin 1

7
≈ 7.02387

(c) sin
(( 1

7
)−1
)
= sin 7 ≈ 0.656987

(d) (sin−1 1
7 )
−1

=
1

sin−1 1
7
≈ 6.97605
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8 For x = 1
8 , evaluate each of the following:

(a) sin−1 x
(b) (sin x)−1

(c) sin(x−1)

(d) (sin−1 x)−1

solution

(a) sin−1 1
8 ≈ 0.125328

(b) (sin 1
8 )
−1 =

1
sin 1

8
≈ 8.02087

(c) sin
(( 1

8
)−1
)
= sin 8 ≈ 0.989358

(d) (sin−1 1
8 )
−1

=
1

sin−1 1
8
≈ 7.97907
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9 For x = 2, evaluate each of the following:
(a) tan−1 x
(b) (tan x)−1

(c) tan(x−1)

(d) (tan−1 x)−1

solution

(a) tan−1 2 ≈ 1.10715

(b) (tan 2)−1 =
1

tan 2
≈ −0.457658

(c) tan(2−1) = tan 1
2 ≈ 0.546302

(d) (tan−1 2)−1 =
1

tan−1 2
≈ 0.903221
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10 For x = 3, evaluate each of the following:
(a) tan−1 x
(b) (tan x)−1

(c) tan(x−1)

(d) (tan−1 x)−1

solution

(a) tan−1 3 ≈ 1.24905

(b) (tan 3)−1 =
1

tan 3
≈ −7.01525

(c) tan(3−1) = tan 1
3 ≈ 0.346254

(d) (tan−1 3)−1 =
1

tan−1 3
≈ 0.800611
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11 For x = 4, evaluate each of the following:

(a)
(
cos(x−1)

)−1

(b) cos−1(x−1)

(c)
(
cos−1(x−1)

)−1

solution

(a)
(
cos(4−1)

)−1
=
(
cos 1

4
)−1

=
1

cos 1
4
≈ 1.03209

(b) cos−1(4−1) = cos−1 1
4 ≈ 1.31812

(c)
(
cos−1(4−1)

)−1
=
(
cos−1 1

4
)−1

=
1

cos−1 1
4
≈ 0.758659
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12 For x = 5, evaluate each of the following:

(a)
(
cos(x−1)

)−1

(b) cos−1(x−1)

(c)
(
cos−1(x−1)

)−1

solution

(a)
(
cos(5−1)

)−1
=
(
cos 1

5
)−1

=
1

cos 1
5
≈ 1.02034

(b) cos−1(5−1) = cos−1 1
5 ≈ 1.36944

(c)
(
cos−1(5−1)

)−1
=
(
cos−1 1

5
)−1

= 1

cos−1 1
5
≈ 0.730226
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13 For x = 6, evaluate each of the following:

(a)
(
sin(x−1)

)−1

(b) sin−1(x−1)

(c)
(
sin−1(x−1)

)−1

solution

(a)
(
sin(6−1)

)−1
=
(
sin 1

6
)−1

=
1

sin 1
6

≈ 6.02787

(b) sin−1(6−1) = sin−1 1
6 ≈ 0.167448

(c)
(
sin−1(6−1)

)−1
=
(
sin−1 1

6
)−1

=
1

sin−1 1
6
≈ 5.972
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14 For x = 9, evaluate each of the following:

(a)
(
sin(x−1)

)−1

(b) sin−1(x−1)

(c)
(
sin−1(x−1)

)−1

solution

(a)
(
sin(9−1)

)−1
=
(
sin 1

9
)−1

=
1

sin 1
9
≈ 9.01855

(b) sin−1(9−1) = sin−1 1
9 ≈ 0.111341

(c)

(
sin−1(9−1)

)−1
=
(
sin−1 1

9
)−1

=
1

sin−1 1
9

≈ 8.98142
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15 For x = 0.1, evaluate each of the following:

(a)
(
tan(x−1)

)−1

(b) tan−1(x−1)

(c)
(
tan−1(x−1)

)−1

solution

(a)
(
tan(0.1−1)

)−1
=
(
tan 10

)−1
=

1
tan 10

≈ 1.54235

(b) tan−1(0.1−1) = tan−1 10 ≈ 1.47113

(c) (
tan−1(0.1−1)

)−1
=
(
tan−1 10

)−1

=
1

tan−1 10

≈ 0.679751
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16 For x = 0.2, evaluate each of the following:

(a)
(
tan(x−1)

)−1

(b) tan−1(x−1)

(c)
(
tan−1(x−1)

)−1

solution

(a)
(
tan(0.2−1)

)−1
=
(
tan 5

)−1
=

1
tan 5

≈ −0.295813

(b) tan−1(0.2−1) = tan−1 5 ≈ 1.3734

(c) (
tan−1(0.2−1)

)−1
=
(
tan−1 5

)−1

=
1

tan−1 5

≈ 0.72812
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Use the right triangle above for Exercises 17–24. This triangle is not drawn to scale
corresponding to the data in the exercises.

17 Suppose a = 2 and c = 3. Evaluate u in radians.

solution Because the cosine of an angle in a right triangle equals the length of
the adjacent side divided by the length of the hypotenuse, we have cos u = 2

3 .
Using a calculator working in radians, we then have

u = cos−1 2
3 ≈ 0.841 radians.
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18 Suppose a = 3 and c = 4. Evaluate u in radians.

solution Because the cosine of an angle in a right triangle equals the length of
the adjacent side divided by the length of the hypotenuse, we have cos u = 3

4 .
Using a calculator working in radians, we then have

u = cos−1 3
4 ≈ 0.722734 radians.
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19 Suppose a = 2 and c = 5. Evaluate v in radians.

solution Because the sine of an angle in a right triangle equals the length of
the opposite side divided by the length of the hypotenuse, we have sin v = 2

5 .
Using a calculator working in radians, we then have

v = sin−1 2
5 ≈ 0.412 radians.
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20 Suppose a = 3 and c = 5. Evaluate v in radians.

solution Because the sine of an angle in a right triangle equals the length of
the opposite side divided by the length of the hypotenuse, we have sin v = 3

5 .
Using a calculator working in radians, we then have

v = sin−1 3
5 ≈ 0.643501 radians.
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21 Suppose a = 5 and b = 4. Evaluate u in degrees.

solution Because the tangent of an angle in a right triangle equals the length of
the opposite side divided by the length of the adjacent side, we have tan u = 4

5 .
Using a calculator working in degrees, we then have

u = tan−1 4
5 ≈ 38.7◦.
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22 Suppose a = 5 and b = 6. Evaluate u in degrees.

solution Because the tangent of an angle in a right triangle equals the length of
the opposite side divided by the length of the adjacent side, we have tan u = 6

5 .
Using a calculator working in degrees, we then have

u = tan−1 6
5 ≈ 50.1944◦.
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23 Suppose a = 5 and b = 7. Evaluate v in degrees.

solution Because the tangent of an angle in a right triangle equals the length of
the opposite side divided by the length of the adjacent side, we have tan v = 5

7 .
Using a calculator working in degrees, we then have

v = tan−1 5
7 ≈ 35.5◦.
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24 Suppose a = 7 and b = 6. Evaluate v in degrees.

solution Because the tangent of an angle in a right triangle equals the length of
the opposite side divided by the length of the adjacent side, we have tan v = 7

6 .
Using a calculator working in degrees, we then have

v = tan−1 7
6 ≈ 49.3987◦.
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25 Find the angle between the two sides of length 9 in an isosceles triangle that
has one side of length 14 and two sides of length 9.

solution Create a right triangle by dropping a perpendicular from the vertex
to the base, as shown in the figure below.

Let θ denote the angle between the perpendicular and a side of length 9. Because
the base of the isosceles triangle has length 14, the side of the right triangle
opposite the angle θ has length 7. Thus sin θ = 7

9 . Hence

θ = sin−1 7
9 ≈ 0.8911.

Thus the angle between the two sides of length 9 is approximately 1.7822 radians
(1.7822 = 2× 0.8911), which is approximately 102.1◦.
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26 Find the angle between the two sides of length 8 in an isosceles triangle that
has one side of length 7 and two sides of length 8.

solution Create a right triangle by dropping a perpendicular from the vertex
to the base, as shown in the figure below.

Let θ denote the angle between the perpendicular and a side of length 8.
Because the base of the isosceles triangle has length 7, the side of the right
triangle opposite the angle θ has length 3.5. Thus sin θ = 3.5

8 . Hence

θ = sin−1 3.5
8 ≈ 0.4528.

Thus the angle between the two sides of length 8 is approximately 0.9056 radians
(0.9056 = 2× 0.4528), which is approximately 51.9◦.
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27 Find the angle between a side of length 6 and the side with length 10 in an
isosceles triangle that has one side of length 10 and two sides of length 6.

solution Create a right triangle by dropping a perpendicular from the vertex
to the base, as shown in the figure below.

Let θ denote the angle between the side of length 10 and a side of length 6.
Because the base of the isosceles triangle has length 10, the side of the right
triangle adjacent to the angle θ has length 5. Thus cos θ = 5

6 . Hence

θ = cos−1 5
6 ≈ 0.58569.

Thus the angle between a side of length 6 and the side with length 10 is
approximately 0.58569 radians, which is approximately 33.6◦.
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28 Find the angle between a side of length 5 and the side with length 9 in an
isosceles triangle that has one side of length 9 and two sides of length 5.

solution Create a right triangle by dropping a perpendicular from the vertex
to the base, as shown in the figure below.

Let θ denote the angle between the side of length 9 and a side of length 5.
Because the base of the isosceles triangle has length 9, the side of the right
triangle adjacent to the angle θ has length 4.5. Thus cos θ = 4.5

5 = 0.9. Hence

θ = cos−1 0.9 ≈ 0.451027.

Thus the angle between a side of length 5 and the side with length 9 is approxi-
mately 0.451027 radians, which is approximately 25.8◦.
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29 Find the smallest positive number θ such that 10cos θ = 6.

solution The equation above implies that cos θ = log 6. Thus we take θ =
cos−1(log 6) ≈ 0.67908.
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30 Find the smallest positive number θ such that 10sin θ = 7.

solution The equation above implies that sin θ = log 7. Thus we take θ =
sin−1(log 7) ≈ 1.00675.
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31 Find the smallest positive number θ such that etan θ = 15.

solution The equation above implies that tan θ = ln 15. Thus we take θ =
tan−1(ln 15) ≈ 1.21706.
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32 Find the smallest positive number θ such that etan θ = 500.

solution The equation above implies that tan θ = ln 500. Thus we take θ =
tan−1(ln 500) ≈ 1.41125.
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33 Find the second smallest positive number θ such that 4sin θ = 3.

solution Take the log of both sides of the equation above, getting

(sin θ)(log 4) = log 3,

which implies that

sin θ =
log 3
log 4

.

The smallest positive number θ satisfying this equation is sin−1 log 3
log 4 . The second

smallest positive number satisfying this equation is π − sin−1 log 3
log 4 ≈ 2.22673.
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34 Find the second smallest positive number θ such that 7cos θ = 5.

solution Take the log of both sides of the equation above, getting

(cos θ)(log 7) = log 5,

which implies that

cos θ =
log 5
log 7

.

The smallest positive number θ satisfying this equation is cos−1 log 5
log 7 . The second

smallest positive number satisfying this equation is 2π − cos−1 log 5
log 7 ≈ 5.68629.
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35 Find the smallest positive number y such that cos(tan y) = 0.2.

solution The equation above implies that we should choose tan y = cos−1 0.2 ≈
1.36944. Thus we should choose y ≈ tan−1 1.36944 ≈ 0.94007.
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36 Find the smallest positive number y such that sin(tan y) = 0.6.

solution The equation above implies that we should choose tan y = sin−1 0.6 ≈
0.643501. Thus we should choose y ≈ tan−1 0.643501 ≈ 0.571793.
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37 Find the smallest positive number x such that

sin2x− 3 sin x + 1 = 0.

solution Write y = sin x. Then the equation above can be rewritten as

y2 − 3y + 1 = 0.

Using the quadratic formula, we find that the solutions to this equation are

y =
3 +
√

5
2

≈ 2.61803

and

y =
3−
√

5
2

≈ 0.381966.

Thus sin x ≈ 2.61803 or sin x ≈ 0.381966. However, there is no real number x
such that sin x ≈ 2.61803 (because sin x is at most 1 for every real number x),
and thus we must have sin x ≈ 0.381966. Thus x ≈ sin−1 0.381966 ≈ 0.39192.
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38 Find the smallest positive number x such that

sin2x− 4 sin x + 2 = 0.

solution Write y = sin x. Then the equation above can be rewritten as

y2 − 4y + 2 = 0.

Using the quadratic formula, we find that the solutions to this equation are

y = 2 +
√

2 ≈ 3.41421

and
y = 2−

√
2 ≈ 0.585786.

Thus sin x ≈ 3.41421 or sin x ≈ 0.585786. However, there is no real number x
such that sin x ≈ 3.41421 (because sin x is at most 1 for every real number x),
and thus we must have sin x ≈ 0.585786. Thus x ≈ sin−1 0.585786 ≈ 0.62585.
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39 Find the smallest positive number x such that

cos2x− 0.5 cos x + 0.06 = 0.

solution Write y = cos x. Then the equation above can be rewritten as

y2 − 0.5y + 0.06 = 0.

Using the quadratic formula or factorization, we find that the solutions to this
equation are

y = 0.2 and y = 0.3.

Thus cos x = 0.2 or cos x = 0.3, which suggests that we choose x = cos−1 0.2 or
x = cos−1 0.3. Because arccosine is a decreasing function, cos−1 0.3 is smaller
than cos−1 0.2. Because we want to find the smallest positive value of x satisfying
the original equation, we choose x = cos−1 0.3 ≈ 1.2661.
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40 Find the smallest positive number x such that

cos2x− 0.7 cos x + 0.12 = 0.

solution Write y = cos x. Then the equation above can be rewritten as

y2 − 0.7y + 0.12 = 0.

Using the quadratic formula or factorization, we find that the solutions to this
equation are

y = 0.3 and y = 0.4.

Thus cos x = 0.3 or cos x = 0.4, which suggests that we choose x = cos−1 0.3 or
x = cos−1 0.4. Because arccosine is a decreasing function, cos−1 0.4 is smaller
than cos−1 0.3. Because we want to find the smallest positive value of x satisfying
the original equation, we choose x = cos−1 0.4 ≈ 1.15928.


