Solutions to Exercises, Section 5.1

You should be able to do Exercises 1-4 without a calculator.

- 1 Evaluate $\cos^{-1} \frac{1}{2}$.
 - **solution** $\cos \frac{\pi}{3} = \frac{1}{2}$; thus $\cos^{-1} \frac{1}{2} = \frac{\pi}{3}$.

2 Evaluate $\sin^{-1} \frac{1}{2}$.

solution
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
; thus $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$.

3 Evaluate $tan^{-1}(-1)$.

solution
$$\tan(-\frac{\pi}{4}) = -1$$
; thus

$$\tan^{-1}(-1) = -\frac{\pi}{4}.$$

4 Evaluate $tan^{-1}(-\sqrt{3})$.

solution
$$\tan(-\frac{\pi}{3}) = -\sqrt{3}$$
; thus $\tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}$.

Exercises 5–16 emphasize the importance of understanding inverse notation as well as the importance of parentheses in determining the order of operations.

5 For x = 0.3, evaluate each of the following:

(a)
$$\cos^{-1} x$$

(c)
$$\cos(x^{-1})$$

(b)
$$(\cos x)^{-1}$$

(d)
$$(\cos^{-1} x)^{-1}$$

(a)
$$\cos^{-1} 0.3 \approx 1.2661$$

(b)
$$(\cos 0.3)^{-1} = \frac{1}{\cos 0.3} \approx 1.04675$$

(c)
$$\cos(0.3^{-1}) = \cos\frac{1}{0.3} \approx -0.981674$$

(d)
$$(\cos^{-1} 0.3)^{-1} = \frac{1}{\cos^{-1} 0.3} \approx 0.789825$$

6 For x = 0.4, evaluate each of the following:

(a) $\cos^{-1} x$

(c) $\cos(x^{-1})$

(b) $(\cos x)^{-1}$

(d) $(\cos^{-1} x)^{-1}$

solution

(a) $\cos^{-1} 0.4 \approx 1.15928$

(b)
$$(\cos 0.4)^{-1} = \frac{1}{\cos 0.4} \approx 1.0857$$

(c)
$$\cos(0.4^{-1}) = \cos\frac{1}{0.4} \approx -0.801144$$

(d)
$$(\cos^{-1} 0.4)^{-1} = \frac{1}{\cos^{-1} 0.4} \approx 0.862605$$

7 For $x = \frac{1}{7}$, evaluate each of the following:

(a) $\sin^{-1} x$

(c) $\sin(x^{-1})$

(b) $(\sin x)^{-1}$

(d) $(\sin^{-1} x)^{-1}$

solution

(a) $\sin^{-1} \frac{1}{7} \approx 0.143348$

(b)
$$(\sin \frac{1}{7})^{-1} = \frac{1}{\sin \frac{1}{7}} \approx 7.02387$$

(c)
$$\sin\left(\left(\frac{1}{7}\right)^{-1}\right) = \sin 7 \approx 0.656987$$

(d)
$$(\sin^{-1}\frac{1}{7})^{-1} = \frac{1}{\sin^{-1}\frac{1}{7}} \approx 6.97605$$

8 For $x = \frac{1}{8}$, evaluate each of the following:

(a) $\sin^{-1} x$

(c) $\sin(x^{-1})$

(b) $(\sin x)^{-1}$

(d) $(\sin^{-1} x)^{-1}$

solution

(a) $\sin^{-1} \frac{1}{8} \approx 0.125328$

(b)
$$(\sin \frac{1}{8})^{-1} = \frac{1}{\sin \frac{1}{8}} \approx 8.02087$$

(c)
$$\sin\left(\left(\frac{1}{8}\right)^{-1}\right) = \sin 8 \approx 0.989358$$

(d)
$$\left(\sin^{-1}\frac{1}{8}\right)^{-1} = \frac{1}{\sin^{-1}\frac{1}{8}} \approx 7.97907$$

9 For x = 2, evaluate each of the following:

(a) $tan^{-1} x$

(c) $tan(x^{-1})$

(b) $(\tan x)^{-1}$

(d) $(\tan^{-1} x)^{-1}$

solution

(a) $tan^{-1} 2 \approx 1.10715$

(b)
$$(\tan 2)^{-1} = \frac{1}{\tan 2} \approx -0.457658$$

(c)
$$tan(2^{-1}) = tan \frac{1}{2} \approx 0.546302$$

(d)
$$(\tan^{-1} 2)^{-1} = \frac{1}{\tan^{-1} 2} \approx 0.903221$$

10 For x = 3, evaluate each of the following:

(a) $\tan^{-1} x$

(c) $\tan(x^{-1})$

(b) $(\tan x)^{-1}$

(d) $(\tan^{-1} x)^{-1}$

solution

(a) $tan^{-1} 3 \approx 1.24905$

(b)
$$(\tan 3)^{-1} = \frac{1}{\tan 3} \approx -7.01525$$

(c) $tan(3^{-1}) = tan \frac{1}{3} \approx 0.346254$

(d)
$$(\tan^{-1} 3)^{-1} = \frac{1}{\tan^{-1} 3} \approx 0.800611$$

11 For x = 4, evaluate each of the following:

(a)
$$(\cos(x^{-1}))^{-1}$$

(c)
$$(\cos^{-1}(x^{-1}))^{-1}$$

(b)
$$\cos^{-1}(x^{-1})$$

(a)
$$\left(\cos(4^{-1})\right)^{-1} = \left(\cos\frac{1}{4}\right)^{-1} = \frac{1}{\cos\frac{1}{4}} \approx 1.03209$$

(b)
$$\cos^{-1}(4^{-1}) = \cos^{-1}\frac{1}{4} \approx 1.31812$$

(c)
$$\left(\cos^{-1}(4^{-1})\right)^{-1} = \left(\cos^{-1}\frac{1}{4}\right)^{-1} = \frac{1}{\cos^{-1}\frac{1}{4}} \approx 0.758659$$

12 For x = 5, evaluate each of the following:

(a)
$$(\cos(x^{-1}))^{-1}$$

(c)
$$(\cos^{-1}(x^{-1}))^{-1}$$

(b)
$$\cos^{-1}(x^{-1})$$

(a)
$$\left(\cos(5^{-1})\right)^{-1} = \left(\cos\frac{1}{5}\right)^{-1} = \frac{1}{\cos\frac{1}{5}} \approx 1.02034$$

(b)
$$\cos^{-1}(5^{-1}) = \cos^{-1}\frac{1}{5} \approx 1.36944$$

(c)
$$\left(\cos^{-1}(5^{-1})\right)^{-1} = \left(\cos^{-1}\frac{1}{5}\right)^{-1} = \frac{1}{\cos^{-1}\frac{1}{5}} \approx 0.730226$$

13 For x = 6, evaluate each of the following:

(a)
$$(\sin(x^{-1}))^{-1}$$

(c)
$$\left(\sin^{-1}(x^{-1})\right)^{-1}$$

(b)
$$\sin^{-1}(x^{-1})$$

(a)
$$\left(\sin(6^{-1})\right)^{-1} = \left(\sin\frac{1}{6}\right)^{-1} = \frac{1}{\sin\frac{1}{6}} \approx 6.02787$$

(b)
$$\sin^{-1}(6^{-1}) = \sin^{-1}\frac{1}{6} \approx 0.167448$$

(c)
$$\left(\sin^{-1}(6^{-1})\right)^{-1} = \left(\sin^{-1}\frac{1}{6}\right)^{-1} = \frac{1}{\sin^{-1}\frac{1}{6}} \approx 5.972$$

14 For x = 9, evaluate each of the following:

(a)
$$(\sin(x^{-1}))^{-1}$$

(c)
$$\left(\sin^{-1}(x^{-1})\right)^{-1}$$

(b)
$$\sin^{-1}(x^{-1})$$

solution

(a)
$$\left(\sin(9^{-1})\right)^{-1} = \left(\sin\frac{1}{9}\right)^{-1} = \frac{1}{\sin\frac{1}{9}} \approx 9.01855$$

(b)
$$\sin^{-1}(9^{-1}) = \sin^{-1}\frac{1}{9} \approx 0.111341$$

(c)

$$(\sin^{-1}(9^{-1}))^{-1} = (\sin^{-1}\frac{1}{9})^{-1}$$
$$= \frac{1}{\sin^{-1}\frac{1}{9}}$$
$$\approx 8.98142$$

15 For x = 0.1, evaluate each of the following:

(a)
$$(\tan(x^{-1}))^{-1}$$

(c)
$$(\tan^{-1}(x^{-1}))^{-1}$$

(b)
$$tan^{-1}(x^{-1})$$

solution

(a)
$$\left(\tan(0.1^{-1})\right)^{-1} = \left(\tan 10\right)^{-1} = \frac{1}{\tan 10} \approx 1.54235$$

(b)
$$\tan^{-1}(0.1^{-1}) = \tan^{-1} 10 \approx 1.47113$$

(c)

$$(\tan^{-1}(0.1^{-1}))^{-1} = (\tan^{-1}10)^{-1}$$
$$= \frac{1}{\tan^{-1}10}$$
$$\approx 0.679751$$

16 For x = 0.2, evaluate each of the following:

(a)
$$(\tan(x^{-1}))^{-1}$$

(c)
$$(\tan^{-1}(x^{-1}))^{-1}$$

(b)
$$tan^{-1}(x^{-1})$$

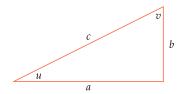
solution

(a)
$$\left(\tan(0.2^{-1})\right)^{-1} = \left(\tan 5\right)^{-1} = \frac{1}{\tan 5} \approx -0.295813$$

(b)
$$\tan^{-1}(0.2^{-1}) = \tan^{-1} 5 \approx 1.3734$$

(c)

$$(\tan^{-1}(0.2^{-1}))^{-1} = (\tan^{-1}5)^{-1}$$
$$= \frac{1}{\tan^{-1}5}$$
$$\approx 0.72812$$



Use the right triangle above for Exercises 17–24. This triangle is not drawn to scale corresponding to the data in the exercises.

17 Suppose a = 2 and c = 3. Evaluate u in radians.

solution Because the cosine of an angle in a right triangle equals the length of the adjacent side divided by the length of the hypotenuse, we have $\cos u = \frac{2}{3}$. Using a calculator working in radians, we then have

$$u = \cos^{-1} \frac{2}{3} \approx 0.841$$
 radians.

18 Suppose a = 3 and c = 4. Evaluate u in radians.

solution Because the cosine of an angle in a right triangle equals the length of the adjacent side divided by the length of the hypotenuse, we have $\cos u = \frac{3}{4}$. Using a calculator working in radians, we then have

$$u = \cos^{-1} \frac{3}{4} \approx 0.722734$$
 radians.

19 Suppose a = 2 and c = 5. Evaluate v in radians.

solution Because the sine of an angle in a right triangle equals the length of the opposite side divided by the length of the hypotenuse, we have $\sin v = \frac{2}{5}$. Using a calculator working in radians, we then have

$$v = \sin^{-1}\frac{2}{5} \approx 0.412$$
 radians.

20 Suppose a = 3 and c = 5. Evaluate v in radians.

solution Because the sine of an angle in a right triangle equals the length of the opposite side divided by the length of the hypotenuse, we have $\sin v = \frac{3}{5}$. Using a calculator working in radians, we then have

$$v = \sin^{-1} \frac{3}{5} \approx 0.643501$$
 radians.

21 Suppose a = 5 and b = 4. Evaluate u in degrees.

solution Because the tangent of an angle in a right triangle equals the length of the opposite side divided by the length of the adjacent side, we have $\tan u = \frac{4}{5}$. Using a calculator working in degrees, we then have

$$u = \tan^{-1} \frac{4}{5} \approx 38.7^{\circ}.$$

22 Suppose a = 5 and b = 6. Evaluate u in degrees.

solution Because the tangent of an angle in a right triangle equals the length of the opposite side divided by the length of the adjacent side, we have $\tan u = \frac{6}{5}$. Using a calculator working in degrees, we then have

$$u = \tan^{-1} \frac{6}{5} \approx 50.1944^{\circ}.$$

23 Suppose a = 5 and b = 7. Evaluate v in degrees.

solution Because the tangent of an angle in a right triangle equals the length of the opposite side divided by the length of the adjacent side, we have $\tan v = \frac{5}{7}$. Using a calculator working in degrees, we then have

$$v = \tan^{-1}\frac{5}{7} \approx 35.5^{\circ}.$$

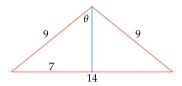
24 Suppose a = 7 and b = 6. Evaluate v in degrees.

solution Because the tangent of an angle in a right triangle equals the length of the opposite side divided by the length of the adjacent side, we have $\tan v = \frac{7}{6}$. Using a calculator working in degrees, we then have

$$v = \tan^{-1} \frac{7}{6} \approx 49.3987^{\circ}$$
.

25 Find the angle between the two sides of length 9 in an isosceles triangle that has one side of length 14 and two sides of length 9.

solution Create a right triangle by dropping a perpendicular from the vertex to the base, as shown in the figure below.



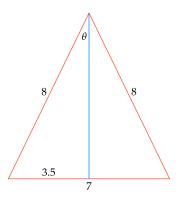
Let θ denote the angle between the perpendicular and a side of length 9. Because the base of the isosceles triangle has length 14, the side of the right triangle opposite the angle θ has length 7. Thus $\sin \theta = \frac{7}{9}$. Hence

$$\theta = \sin^{-1} \frac{7}{9} \approx 0.8911.$$

Thus the angle between the two sides of length 9 is approximately 1.7822 radians $(1.7822 = 2 \times 0.8911)$, which is approximately 102.1° .

26 Find the angle between the two sides of length 8 in an isosceles triangle that has one side of length 7 and two sides of length 8.

solution Create a right triangle by dropping a perpendicular from the vertex to the base, as shown in the figure below.



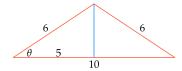
Let θ denote the angle between the perpendicular and a side of length 8. Because the base of the isosceles triangle has length 7, the side of the right triangle opposite the angle θ has length 3.5. Thus $\sin \theta = \frac{3.5}{8}$. Hence

$$\theta = \sin^{-1} \frac{3.5}{8} \approx 0.4528.$$

Thus the angle between the two sides of length 8 is approximately 0.9056 radians $(0.9056 = 2 \times 0.4528)$, which is approximately 51.9° .

27 Find the angle between a side of length 6 and the side with length 10 in an isosceles triangle that has one side of length 10 and two sides of length 6.

solution Create a right triangle by dropping a perpendicular from the vertex to the base, as shown in the figure below.



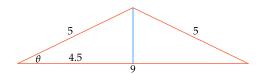
Let θ denote the angle between the side of length 10 and a side of length 6. Because the base of the isosceles triangle has length 10, the side of the right triangle adjacent to the angle θ has length 5. Thus $\cos \theta = \frac{5}{6}$. Hence

$$\theta = \cos^{-1} \frac{5}{6} \approx 0.58569.$$

Thus the angle between a side of length 6 and the side with length 10 is approximately 0.58569 radians, which is approximately 33.6°.

28 Find the angle between a side of length 5 and the side with length 9 in an isosceles triangle that has one side of length 9 and two sides of length 5.

solution Create a right triangle by dropping a perpendicular from the vertex to the base, as shown in the figure below.



Let θ denote the angle between the side of length 9 and a side of length 5. Because the base of the isosceles triangle has length 9, the side of the right triangle adjacent to the angle θ has length 4.5. Thus $\cos \theta = \frac{4.5}{5} = 0.9$. Hence

$$\theta = \cos^{-1} 0.9 \approx 0.451027.$$

Thus the angle between a side of length 5 and the side with length 9 is approximately 0.451027 radians, which is approximately 25.8°.

29 Find the smallest positive number θ such that $10^{\cos \theta} = 6$.

solution The equation above implies that $\cos \theta = \log 6$. Thus we take $\theta = \cos^{-1}(\log 6) \approx 0.67908$.

30 Find the smallest positive number θ such that $10^{\sin \theta} = 7$.

solution The equation above implies that $\sin \theta = \log 7$. Thus we take $\theta = \sin^{-1}(\log 7) \approx 1.00675$.

31 Find the smallest positive number θ such that $e^{\tan \theta} = 15$.

solution The equation above implies that $\tan \theta = \ln 15$. Thus we take $\theta = \tan^{-1}(\ln 15) \approx 1.21706$.

32 Find the smallest positive number θ such that $e^{\tan \theta} = 500$.

solution The equation above implies that $\tan \theta = \ln 500$. Thus we take $\theta = \tan^{-1}(\ln 500) \approx 1.41125$.

33 Find the second smallest positive number θ such that $4^{\sin \theta} = 3$.

solution Take the log of both sides of the equation above, getting

$$(\sin\theta)(\log 4) = \log 3,$$

which implies that

$$\sin\theta = \frac{\log 3}{\log 4}.$$

The smallest positive number θ satisfying this equation is $\sin^{-1}\frac{\log 3}{\log 4}$. The second smallest positive number satisfying this equation is $\pi - \sin^{-1}\frac{\log 3}{\log 4} \approx 2.22673$.

34 Find the second smallest positive number θ such that $7^{\cos \theta} = 5$.

solution Take the log of both sides of the equation above, getting

$$(\cos\theta)(\log 7) = \log 5,$$

which implies that

$$\cos\theta = \frac{\log 5}{\log 7}.$$

The smallest positive number θ satisfying this equation is $\cos^{-1}\frac{\log 5}{\log 7}$. The second smallest positive number satisfying this equation is $2\pi - \cos^{-1}\frac{\log 5}{\log 7} \approx 5.68629$.

35 Find the smallest positive number y such that cos(tan y) = 0.2.

solution The equation above implies that we should choose $\tan y = \cos^{-1} 0.2 \approx 1.36944$. Thus we should choose $y \approx \tan^{-1} 1.36944 \approx 0.94007$.

36 Find the smallest positive number *y* such that sin(tan y) = 0.6.

solution The equation above implies that we should choose $\tan y = \sin^{-1} 0.6 \approx 0.643501$. Thus we should choose $y \approx \tan^{-1} 0.643501 \approx 0.571793$.

$$\sin^2 x - 3\sin x + 1 = 0.$$

solution Write $y = \sin x$. Then the equation above can be rewritten as

$$y^2 - 3y + 1 = 0.$$

Using the quadratic formula, we find that the solutions to this equation are

$$y = \frac{3+\sqrt{5}}{2} \approx 2.61803$$

and

$$y = \frac{3 - \sqrt{5}}{2} \approx 0.381966.$$

Thus $\sin x \approx 2.61803$ or $\sin x \approx 0.381966$. However, there is no real number x such that $\sin x \approx 2.61803$ (because $\sin x$ is at most 1 for every real number x), and thus we must have $\sin x \approx 0.381966$. Thus $x \approx \sin^{-1} 0.381966 \approx 0.39192$.

$$\sin^2 x - 4\sin x + 2 = 0.$$

solution Write $y = \sin x$. Then the equation above can be rewritten as

$$y^2 - 4y + 2 = 0.$$

Using the quadratic formula, we find that the solutions to this equation are

$$y = 2 + \sqrt{2} \approx 3.41421$$

and

$$y = 2 - \sqrt{2} \approx 0.585786.$$

Thus $\sin x \approx 3.41421$ or $\sin x \approx 0.585786$. However, there is no real number x such that $\sin x \approx 3.41421$ (because $\sin x$ is at most 1 for every real number x), and thus we must have $\sin x \approx 0.585786$. Thus $x \approx \sin^{-1} 0.585786 \approx 0.62585$.

$$\cos^2 x - 0.5\cos x + 0.06 = 0.$$

solution Write $y = \cos x$. Then the equation above can be rewritten as

$$y^2 - 0.5y + 0.06 = 0.$$

Using the quadratic formula or factorization, we find that the solutions to this equation are

$$y = 0.2$$
 and $y = 0.3$.

Thus $\cos x = 0.2$ or $\cos x = 0.3$, which suggests that we choose $x = \cos^{-1} 0.2$ or $x = \cos^{-1} 0.3$. Because arccosine is a decreasing function, $\cos^{-1} 0.3$ is smaller than $\cos^{-1} 0.2$. Because we want to find the smallest positive value of x satisfying the original equation, we choose $x = \cos^{-1} 0.3 \approx 1.2661$.

$$\cos^2 x - 0.7\cos x + 0.12 = 0.$$

solution Write $y = \cos x$. Then the equation above can be rewritten as

$$y^2 - 0.7y + 0.12 = 0.$$

Using the quadratic formula or factorization, we find that the solutions to this equation are

$$y = 0.3$$
 and $y = 0.4$.

Thus $\cos x = 0.3$ or $\cos x = 0.4$, which suggests that we choose $x = \cos^{-1} 0.3$ or $x = \cos^{-1} 0.4$. Because arccosine is a decreasing function, $\cos^{-1} 0.4$ is smaller than $\cos^{-1} 0.3$. Because we want to find the smallest positive value of x satisfying the original equation, we choose $x = \cos^{-1} 0.4 \approx 1.15928$.