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Chapter 2

Signal and Linear System Analysis

2.1 Problem Solutions
Problem 2.1

a. For the single-sided spectra, write the signal as

z1(t) = 10cos(4nt + 7/8) + 6sin(8nt + 3m/4)
= 10cos(4nt + 7/8) + 6 cos(8nt + 37 /4 — 7/2)
= 10cos(4nt + 7/8) + 6 cos(8nt + m/4)

—  Re |10eit4nt+m/8) 661(8wt+w/4>]

For the double-sided spectra, write the signal in terms of complex exponentials using Euler’s
theorem:

z1(t) = bexpl[j(dnt + 7/8)] + Sexp[—j(4nt + 7/8)]
+3exp[j (87t + 37/4)] + 3exp|—;j (87t + 37/4)]

The spectra are plotted in Fig. 2.1.
b. Write the given signal as
22 (1) = Re Red (@mtm/3) | 4ej(67rt+77/4)}
to plot the single-sided spectra. For the double-side spectra, write it as
T (t) — 4ej(27rt+7r/3) + 4efj(27rt+7r/3) + 26j(67rt+71’/4) + 267]'(67Tt+71'/4)

The spectra are plotted in Fig. 2.2.
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c. Change the sines to cosines by subtracting 7/2 from their arguments to get
x3(t) = 2cos(dnt+7/8 —7/2)+ 12cos (107t — w/2)
= 2cos (4nt — 37/8) + 12 cos (107t — 7/2)
— Re [2€j(47rt—37r/8) n 12ej(107rt—7r/2)]

_ ej(47rt—37r/8) +e—j(47rt—37r/8) _|_6€j(107rt—7r/2) +66—j(107rt—7r/2)

Spectral plots are given in Fig. 2.3.
d. Use a trig identity to write

3sin (187t + 7/2) = 3 cos (187t)

and get

x4 (t) = 2cos(7Tnt+ m/4) + 3cos (187t)
—  Re |2e3(Tmttm/4) 4 3ej187rt]

ej(77rt+7r/4) +e—j(7ﬂ't+ﬂ’/4) +1.5€j187rt+ 1.5€_j187rt

From this it is seen that the singe-sided amplitude spectrum consists of lines of amplitudes
2 and 3 at frequencies of 3.5 and 9 Hz, respectively, and the phase spectrum consists of
a line of height /4 at 3.5 Hz. The double-sided amplitude spectrum consists of lines of
amplitudes 1, 1, 1.5, and 1.5 at frequencies of 3.5, -3.5, 9, and -9 Hz, respectively. The
double-sided phase spectrum consists of lines of heights 7/4 and —x/4 at frequencies 3.5
Hz and —3.5 Hz, respectively.

e. Use sin (27t) = cos (27t — w/2) to write

x5 (t) = bcos(2nt —7/2) + 4cos (5rt + w/4)
— Re|5ei@rt—m/2) 4 4ej(57rt+7r/4)]

— 2.5€j(27rt—7r/2)+2.5e—j(27rt—7r/2)+2€j(57rt+7r/4)+2€—j(57rt+7r/4)

From this it is seen that the singe-sided amplitude spectrum consists of lines of amplitudes
5 and 4 at frequencies of 1 and 2.5 Hz, respectively, and the phase spectrum consists of
lines of heights —7/2 and 7/4 at 1 and 2.5 Hz, respectively. The double-sided amplitude
spectrum consists of lines of amplitudes 2.5, 2.5, 2, and 2 at frequencies of 1, -1, 2.5, and
-2.5 Hz, respectively. The double-sided phase spectrum consists of lines of heights —m /2,
/2, w/4, and —m/4 at frequencies of 1, -1, 2.5, and -2.5 Hz, respectively.
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f. Use sin (107t 4+ 7/6) = cos (107t + 7/6 — w/2) = cos (107t — 7/3) to write

x6(t) = 3cos(4dnt +7/8) + 4cos (107t — 7/3)
—  Re |3eint+n/8) 4 4ej(107rt77r/3)]

1'5ej(47rt+ﬂ'/8)+1.5efj(4ﬂ't+ﬂ/8)+26j1071't7ﬂ'/3)+267j(10ﬂ't77r/3)

From this it is seen that the singe-sided amplitude spectrum consists of lines of amplitudes
3 and 4 at frequencies of 2 and 5 Hz, respectively, and the phase spectrum consists of
lines of heights 7/8 and —n/3 at 2 and 5 Hz, respectively. The double-sided amplitude
spectrum consists of lines of amplitudes 1.5, 1.5, 2, and 2 at frequencies of 2, -2, 5, and -5
Hz, respectively. The double-sided phase spectrum consists of lines of heights 7/8, —m/8,
—m/3, and 7/3 at frequencies of 2, -2, 5, and -5 Hz, respectively.
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Problem 2.2
By noting the amplitudes and phases of the various frequency components from the plots,
the result is

x(t) — 4ej(87rt+7r/2) + 4efj(87rt+7r/2) + 26j(47rt77r/4) + 267]'(47”5777/4)
= 8cos (87t + m/2) + 4cos (4wt — 7/4)
= —8sin (87t) + 4 cos (4t — 7/4)

Problem 2.3

a.

b.

Not periodic because f; = 1/m Hz and fo = 3 Hz are not commensurable.

Periodic. To find the period, note that

Therefore

6 30
1:3:711]00 andl:15:n2fo
27 27

15 _m

3 _n1

Hence, take nqy = 1, ne = 5, and fo = 3 Hz (we want the largest possible value for fy with
ny and ng integer-valued).

C.

Periodic. Using a similar procedure as used in (b), we find that ny = 4, ng = 21, and
fo=0.5 Hz.

. Periodic. Using a similar procedure as used in (b), we find that ny = 4, ny = 7,

ng = 11, and fop = 0.5 Hz.

. Periodic. We find that ny = 17, no = 18, and fo = 0.5 Hz.

Periodic. We find that n1 = 2, ng = 3, and fy = 0.5 Hz.

Periodic. We find that ny =7, no = 11, and fy = 0.5 Hz.

. Not periodic. The frequencies of the separate terms are incommensurable.
. Periodic. We find that ny = 19, no = 21, and fo = 0.5 Hz.

. Periodic. We find that ny =6, ng =7, and fy = 0.5 Hz.
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Problem 2.4

a. The single-sided amplitude spectrum consists of a single line of amplitude 5 at 6 Hz
and the phase spectrum consists of a single line of height —7/6 rad at 6 Hz. The
double-sided amplitude spectrum consists of lines of amplitude 2.5 at frequencies +6
Hz. The double -sided phase spectrum consists of a line of height 7/6 at -6 Hz and
a line of height —7/6 at 6 Hz.

b. Write the signal as

x2(t) = 3cos(12nt — 7/2) + 4 cos(167t)

From this it is seen that the single-sided amplitude spectrum consists of lines of heights 3
and 4 at frequencies 6 and 8 Hz, respectively, and the single-sided phase spectrum consists
of a line of height —7 /2 radians at frequency 6 Hz (the phase at 8 Hz is 0). The double-
sided amplitude spectrum consists of lines of height 1.5 and 2 at frequencies of 6 and 8 Hz,
respectively, and lines of height 1.5 and 2 at frequencies —6 and —8 Hz, respectively. The
double-sided phase spectrum consists of a line of height —7/2 radians at frequency 6 Hz
and a line of height 7/2 radians at frequency —6 Hz.

c. Use the trig identity cosx cosy = 0.5cos (z + y) + 0.5 cos (x — y) to write

x3 (t) = 2 cos 207t + 2 cos 4mt

From this we see that the single-sided amplitude spectrum consists of lines of height 2 at 2
and 10 Hz, and the single-sided phase spectrum is 0 at these frequencies. The double-sided
amplitude spectrum consists of lines of height 1 at frequencies of —10, —2, 2, and 10 Hz.
The double-sided phase spectrum is 0.

d. Use trig identies to get

x4 (t) = 4sin(2nt) [1 + cos (107t)]

4sin (27t) — 2sin (87t + 7) + 2sin (127t)

= 4cos(2nt —7/2) 4+ 2cos (87t + w/2) + 2 cos (127t — 7/2)
— Re [4ej<2wt—w/2> 1 0ed(Bmttm/2) 4 er(lzwt—w/m]

_ 2€j(27rt77r/2)+267j(27rt77r/2)+€j(87rt+71'/2)+e*j(87rt+7r/2)+6j(127rt77r/2)+e*j(127rt77r/2)

From this we see that the single-sided amplitude spectrum consists of lines of heights 4,
2, and 2 at frequencies 1, 4, and 6 Hz, respectively and the single-sided phase spectrum is
—m/2 radians at 1 and 6 Hz and 7/2 radians at 4 Hz. The double-sided amplitude spectrum
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consists of lines of height 2 at frequencies of 1 and —1 Hz and of height 1 at frequencies of
4, -4, 6, and -6 Hz. The double-sided phase spectrum is 7 /2 radians at -1, 4, and -6 Hz and
—m/2 radians at 1, -4, and 6 Hz.

e. Clearly, from the form of the cosine sum, the single-sided amplitude spectrum has
lines of heights 1 and 7 at frequencies of 3 and 15 Hz, respectively. The single-sided
phase spectrum is zero. The double-sided amplitude spectrum has lines of heights 0.5,
0.5, 3.5, and 3.5 at frequencies of 3, -3, 15, and -15 Hz, respectfully. The double-sided
phase spectrum is zero.

f. The single-sided amplitude spectrum has lines of heights 1 and 9 at frequencies of
2 and 10.5 Hz, respectively. The single-sided phase spectrum is —m/2 radians at
10.5 Hz and 0 otherwise. The double-sided amplitude spectrum has lines of heights
0.5, 0.5, 4.5, and 4.5 at frequencies of 2, -2, 10.5, and -10.5 Hz, respectfully. The
double-sided phase spectrum is /2 radians at -10.5 Hz and —x/2 radians at 10.5 Hz
and 0 otherwise.

g. Convert the sine to a cosine by subtracting /2 from its argument. It then follows
that the single-sided amplitude spectrum is 2, 1, and 6 at frequencies of 2, 3, and
8.5 Hz and 0 otherwise. The single-sided phase spectrum is —7/2 radians at 8.5 Hz
and 0 otherwise. The double-sided amplitude spectrum is 1, 1, 0.5, 0.5, 3, and 3
at frequencies of —2, 2, —3, 3 —8.5, and 8.5 Hz, respectively, and 0 otherwise. The
double-sided phase spectrum is 7/2 radians at a frequency of —8.5 Hz and —m/2
radians at a frequency of 8.5 Hz. It is 0 otherwise.

Problem 2.5

a. This function has area

/ [ (rt/e) }

- [ e

where a tabulated integral has been used for sinc?u. A sketch shows that no matter how

small € is, the area is still 1. With € — 0, the central lobe of the function becomes narrower
and higher. Thus, in the limit, it approximates a delta function.
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b. The area for the function is

Area :_/ %exp(—t/e)u (t)dt = 0/exp(—u)du =1

A sketch shows that no matter how small € is, the area is still 1. With € — 0, the function
becomes narrower and higher. Thus, in the limit, it approximates a delta function.

c. Area = [ 1(1—t|/e)dt = f A(t)dt = 1. As e — 0, the function becomes
narrower and higher, so it approx1mates a delta function in the limit.

Problem 2.6

a. Make use of the formula § (at) = fa ‘5( ) to write 6 (2t —5) = §[2(t—5/2)] =
%6 (t — %) and use the sifting property of the J-function to get

1/5\% 1 5 25 1
[a_2<2> +§exp [—2 <2>:|—8+2€Xp[—5]—3.1284

b. Impulses at —10, —5, 0, 5, 10 are included in the integral. Use the sifting property
after writing the expression as the sum of five integrals to get

Iy= (=10 + 1+ (=5 + 1+ 0% + 1 + 52 + 1+ 10% + 1 = 255

c. Matching coefficients of like derivatives of d-functions on either side of the equation
gives A =5, B=10, and C = 3.

d. Use d (at) = |¢11\5( ) to write (5(4t +3) = 26 (t+3). The integral then becomes

I = 1] 4m(=3/4) 4 tan (107 x (=3))] = L [&3™ + tan (=7.57)] = —9.277 x 1013.
4 4

e. Use property 5 of the unit impulse function to get

d2
I, = (-1)?2— [cos57rt+e_3t

dt?
= [~y

T [—577 sin bt — 36_3t] o

cos bt + 96_3t:| L= (5m)? cos 107 4 9% = —246.73
t—

Jies
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Problem 2.7

(a), (c), and (e) are periodic. Their periods are 2 s (fundamental frequency of 0.5 Hz),
2 s, and 3 s, respectively. The waveform of part (c) is a periodic train of triangles,
each 2 units wide, extending from -oco to oo spaced by 2 s ((b) is similar except that it
is zero for ¢ < —1 thus making it aperiodic). ~Waveform (d) is aperiodic because the
frequencies of its two components are incommensurable. The waveform of part (e) is a
doubly-infinite train of square pulses, each of which is one unit high and one unit wide,
centered at - --, —6, —3, 0, 3, 6, ---. Waveform (f) is identical to (e) for t > —1/2 but 0
for t < —1/2 thereby making it aperiodic.

Problem 2.8

a. The result is

x(t) = cos (6mt)+2 cos (107t — 7/2) = Re (ejG’Tt)—i—Re (26j(10”t_7r/2)) = Re [ej&rt + 2¢7(10mt=m/2)
b. The result is

flf(t) — e—j(lOTrlf—w/?) + le—jﬁwt + 1€j67rt + ej(107rt—7r/2)

2
c. The single-sided amplitude spectrum consists of lines of height 1 and 2 at frequencies
of 3 and 5 Hz, respectively. The single-sided phase spectrum consists of a line of height
—7/2 at frequency 5 Hz. The double-sided amplitude spectrum consists of lines of
height 1, 1/2, 1/2, and 1 at frequencies of —5, —3, 3, and 5 Hz, respectively. The
double-sided phase spectrum consists of lines of height 7/2 and —7/2 at frequencies
of —5 and 5 Hz, respectively.

Problem 2.9

a. Power. Since it is a periodic signal, we obtain
I

P=—
1 TOO

1 [T
4cos® (4nt 4 21/3) dt = = / 2[1 + cos (87t + 47/3)] dt =2 W
0Jo
where Ty = 1/2 s is the period. The cosine in the above integral integrates to zero because
the interval of integratation is two periods.

b. Energy. The energy is

o0 oo 1
Ey = / e 22 (t)dt = / e 2t qt = %0 J
—00 0

«
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c. Energy. The energy is

00 0 1
B3 = / > (—t)dt = / et = —J

—00

d. Energy. The energy is

T at 1T dt
E, = lim —— = lim — -—
T—oo J_T (042 + t2) T—00 02 _T (1 4+ (t/a)2>

(% T—oo

- ()=

e. Energy. Since it is the sum of x3(t) and x3(t), its energy is the sum of the energies
of these two signals, or E5 = 1/a J.

= lim ltan_1 [t]T = lim 1 [taua_1 (T/a) — tan™* (-T/a)]

f. Energy. The energy is

T

2
Es = lim [e*atu (t) — e Dy (¢ — 1)] dt
T*)OO 7T

T
= lim [e_zo‘tu2 (t) —e e Dy () u(t — 1) + e 20Dy 2 (¢ — 1)} dt
T

T—oo J_

T T T
= lim {/ e_2atdt—6_°‘/ e_QO‘(t_l)dt—l—/ 6_2O‘(t—1)dt}
T—o0 0 1 1
T T-1 , T-1 ,
= lim {/ e 2t qt — e_o‘/ e~ 2t gy —I—/ e 20t dt'}
T—oo (Jo 0 0

_ T - ;1 T—1 T-1
e 2at e 2at

—2at’
o e

= Ilim < —
T—o0 2a

e
0 2
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Problem 2.10

a. Power. Since the signal is periodic with period 27 /w, we have

27w 2w A2 2

A% |sin (wt + 0)* dt = / —{1—005[ (wt—i—ﬁ)]}dtz%w

L w
27

b. Neither. The energy calculation gives

T T 2
E = lim (A7)" dt lim / (Ar)7dt
T—oo J_p Wﬁ =Y RV

The power calculation gives

T 2 D) D)
P fim [ A7 (A7)* m( AT VIHTYT )
T—oo 2T [ 1 /72 + 12 T—oo 2T —1++/1+12/72

c. Energy:

— OO

o
1
E = / A?t? exp (=2t/7) dt = §A27' % W (use a table of integrals)
0

d. Energy: This is a "top hat" pulse which is height 2 for [t| < 7/2, height 1 for
7/2 < |t| < 7, and 0 everywhere else. Making use of the even symmetry about ¢ = 0,

the energy is
/2 T
E=2 / 22dt+/ 12dt | =57 ]
0 /2

e. Energy. The signal is a "house" two units wide and one unit up to the eves with a
equilateral triangle for a roof. Because of symmetry, the energy calculation need be
carried out for positive t and doubled. The calculation is

1i_g+2><8 14
o 3 3 3

E_2/1(2—t)2dt— —%(2—t)3
0

f. Power. Since the two terms are harmonically related, we may add their respective
powers and get
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Problem 2.11

a. Using the fact that the power contained in a sinusoid is its amplitude squared divided
by 2, we get

22
P=—=2W
2

b. This is a periodic train of "box cars" 3 units high, 2 units wide, and occurring every
4 units (period of 4 seconds). The power calculation is

1 /! 32 x 2
4/13 1 5W

c. This is a train of triangles 1 unit high, 4 s wide, and occuring every 6 s. Using the
waveform period centered at 0, the power calculation is

2 2 3|2
P_l/ 1_3 dt:_lg 1_£
6/ o 2 63 2 0

d. This is a train of "houses" each of which is 2 s wide, 1 unit high to the eves, with an
isoceles triangle on top for the roof. They are separated by 4 s (the period). Using
the even symmetry of each house, the power calculation is

2 [ 5 1(2—75)31
Pi== [ 2-t)dt=—= = -
d 4/0( ) 2 3 |

2
=W
9

Problem 2.12

a. The energy is

o0
P — / ’66(—3+j47r)t
0

2 it = 36 /00 6(_3+j47r)t€(—3_j47r)tdt
0

=6J

(e} efﬁt
= 36 / e Odt = —36 ——
0 0

6

The power is 0 W.

b. This signal is a "top hat" pulse whichis 2 for 2 <t <4, 1for0 <t <2and4 <t <6,
and 0 everywhere else. It is clearly an energy signal with energy

E=2x12+2x224+2x12=12J
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Its power is 0 W.

c. This is a power signal with power

T : 49 (T 49
= lim —— [ 49¢/%™e 30y (¢) dt = 1i / dt=—=245W
Tl—rgo?T/_T e Mu ) dt = Him o | 2
Its energy is infinite.
d. This is a periodic signal with power P = - =2 W. Its energy is infinite.

e. This is neither an energy nor a power signal. Its energy is infinite and its power is

1 (7 t3 1 273
P = lim / £2dt = lim — — = lim ———
T—o0 2T J_p T _p T—o 2T 3

f. This is neither an energy nor a power signal. Its energy is
B= / e = In (1)) — oo
and its power is

P =1l 1/Tt_1dt—1 L t)°=0
T e 2T M2 MW T

Problem 2.13

a. This is a cosine burst from t = —6 to t = 6 seconds. The energy is Fy = f ¢ COS 2 (6mt) dt =
2 3L+ Lcos(12mt)] dt =6 J

b. The energy is

0 2 0

By, = / [e—lt\/?’} dt = 2/ e 23t (by even symmetry)
oo 0

o—2t/3 %

= =2
2/3

=37

Since the result is finite, this is an energy signal.

c. The energy is

(o) 8
= u(t) —u(t— 2 dt = =
Eg_/oo (2[u(t) — u(t - 8)}2 dt /0 Adt =32 ]
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Since the result is finite, this is an energy signal.

t
0,t<0
r(t)é/ u()\)d)\:{ >0

—00

d. Note that

which is called the unit ramp. Thus the given signal is a triangle between 0 and 20. The
energy is

310_2000
t 0 =3 J

E4:/_Z[r(t)2r(t1O)+r(t20)]2dt:2/010t2dt:§

where the last integral follows because the integrand is a symmetrical triangle about ¢ = 10.
Since the result is finite, this is an energy signal.

Problem 2.14

a. This is a cosine burst nonzero between 0 and 2 seconds. Its power is 0. Its energy is
2 1 2
B = / cos? (107t) dt = 3 / [1 + cos (207t)]dt =1 J
0 0

b. This is a periodic sequence of triangles of period 3 s. Its energy is infinite. Its power
is

2 [? 5 4
P,=- 1—-t/2)"dt==-1J
v 5 |-t

c. This is an energy signal. Its power is 0. Using evenness of the integrand, its energy
is

oo o0 oo
Es = 2/ e 2t cos? (2mt) dt = / e 2dt + / e~ 2 cos (4rt) dt
0 0 0

1+ 2 J
2 4+ 1672

d. This is an energy signal. Its energy is

1
2
E4—2/ 22—t dt=—-02-0)?° =—=1J
0 3 3
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Problem 2.15

a. Use the exponential representation of the sine to get the Fourier coefficients as (note

that the period = %%)
ed2mfot _ g—j2mfot\ 2 1 A ,
t) = - _= ( —janfot _ 9 J47rfot>
R e 1 C ve
from which we find that . )
X 1=X1=—17— Xog=—-
1 1 47 0 2

All other coefficients are zero.

b. Use the exponential representations of the sine and cosine to get

2o (1) = eimhor | Lo—gpmpor L angor _ L —jarpor

2 2 2j 2j

Therefore, the Fourier coefficients for this case are

All other coefficients are zero.

c. Use a trig identity to write this signal as

1 1 . 1 )
3 (t) = = sin 8 fot = —IS™fot _ =387 /ot
®) 2 45 4y

The fundamental frequency is 4fy Hz. From this it follows that the Fourier coeflicients are

. 1
XlZX_IIIj

All other coefficients are zero.

d. Use trig identities and the exponential forms of cosine to write this signal as

3 1
x4 (t) = 7 608 27 fot + 7 608 67 fot

_ Bggenfor |3 g-grmpor L jempor L ~jonsor

8 8 8 8
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The fundamental frequency is fo Hz. It follows that the Fourier coefficients for this case
are

3 1
X_ :X = —: X_ :X — —
1 1 87 3 3 ]

All other Fourier coefficients are zero.

e. Use trig identies to write

1 1 1
x5 (t) = 5 sin (27 fot) — 1 sin (67 fot) + 1 sin (107 fot)
= Lot L ompor _ L gompor ¢ L gomsor | L jrompor _ L —jronfor
4j 4j 8j 8j 8j 8j

The fundamental frequency is fo Hz. It follows that the Fourier coefficients for this case
are

R J J
XilzXlz_Z’ X73:X3:§; Xi5:X5:—§
All other Fourier coefficients are zero.
f. Use trig identities to write
1 1 1
ze (t) = 5 C08 (67 fot) — 708 (7 fot) — 7% (11w fot)
= Lgensor X —jempor _ L mpor _ L —gmpor L jiimpor _ L —juimfor
4 4 8 8 8 8

The fundamental frequency is fo/2 Hz. It follows that the Fourier coefficients for this case

are 1 1 1
X5 = Xp = == X* = Xio = ~3 X¥gp— Xop— ——
-1 1 8’ —12 12 47 —22 22 3

All other Fourier coefficients are zero.

Problem 2.16
The expansion interval is Tp = 4 so that fy = 1/4 Hz. The Fourier coefficients are

1 [? : 2 [?
X, = 4/ 22T /2t gt — 4/ t? (cosmmt/2 — jsinnnt/2) dt =
-2 -2

2 (2 t
= / 2t2 cos (mr) dt
4 /o 2

which follows by the oddness of the second integrand and the eveness of the first integrand.
Let u = nwt/2 to obtain the form

92 3 rnm 1
X, = (> / u? cosu du = 6 (=)™ n#0 (use a table of integrals)
0

nmw (nﬂ')2
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If n = 0, the integral for the coefficients is

1 2
Xo—/ 262dt = —
4/,

The Fourier series is therefore

8 = n 16 in(m
zt)=c+ >, (-1 7)2@“/2)'5

Problem 2.17

Parts (a) through (c) were discussed in the text. For (d), break the integral for X, up into
a part for t < 0 and a part for t > 0. Then use the odd half-wave symmetry condition.

The development follows:

1 [ fTo/2 . 0 .
X = 7 / x (t) e~ 2oty 4 / ) e~ J2mniotqy
0 L 0 T0/2
1 To/2 . To/ /
— o / z () e—d2mnfot gy +/ t + T0/2) —j2mnfo(t'+To/2) g4 R To/2
0 0 0
1 T()/2 . T()/2
- / T (t) 67j27rnf0tdt / fj27rnf0t jmrdt fO — 1/T0
To |Jo 0

1 [ T()/2 . T0/2 . ’
= / x (t) e I2mniotgy — (—1)" / a (V') e~ d2mnhot gy
0 0

O n even
OTO/2 (t) e=92mnfotdt n odd
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Problem 2.18
This is a matter of integration. Only the solution for part (b) will be given here. The
integral for the Fourier coefficients is

A To/2 Jnwot A To/2 Jwot Jwot Jnwot
X, = — S t) e IMwol Jp — ol _ ,—Jjwo —Jnwot gy
n T Jo sin (wot) e 255Ts Jo (e e )e
[ T2 To/2

- A / " ettt gy / " ity

25To | Jo 0
C 2T (A -n)wo|, (I n)wol

A ej(l—n)Tr -1 e—j(1+n)7r 1
= +1 To/2 =

—47 1—n * 1+n N7 (woTo/ )

A[(=D"+1 -1 41
_ A"+ D+ n 41

47 1—n 1+n
B 0, n odd and n # +1
o ﬁ, n even

For n =1, the integral is
X, = A o (700t — g Iwol) gmdwol gy
2710 Jo
A [To/2 : jA
fd - 1 —_ _]2w0t dt N X*
QjTO 0 ( € ) 4 -1

This is the same result as given in Table 2.1.
Problem 2.19

a. Use Parseval’s theorem to get
al N AT\ 2
Pupi<1/e= Y 1Xal>= > <T> sinc® (n for)
n=—N n=—N 0

where N is an appropriately chosen limit on the sum. We are given that only frequences for
which |nfo| < 1/7 are to be included. This is the same as requiring that |n| < 1/(7fy) =
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To/7T = 2. Also, for a pulse train, Pya = A?7/Tp and, in this case, Poial = A2/2. Thus

P|nf0\ <1/t 2 2 <A>2 .9
_ = —= — SINC™ (N JoT
Ptotal A2 ng_:z 2 ( fO )

2

= Z sinc? (n.for)

n=-—2

[1+ 2 (sinc? (1/2) + sinc? (1))]

2\ 2
142 () ] = 0.9053
T

b. In this case, |n| <5, Piotal = A2/5, and

N~ N = N

P‘”f0| <1/t _ 1 i sinc2 (n/5)
Ptotal 5 n——_s
1
- < {1 +2 [(0.9355)2 +(0.7568)2 + (0.5046)2 + (0.2339)2} }
— 0.9029

c. In this case, |n| < 10, Pt = A2%/10, and

]D|nf0\§1/7' o 1 0

- inc2 1
P 10 sinc” (n/10)

n=-—10

L[y o[ (0.9836)° + (0.9355)° + (0.8584)" + (0.7568)" + (0.6366)"
10 +(0.5046)% + (0.3679) + (0.2339)% + (0.1093)?

= 0.9028

d. In this case, |n| < 20, Pt = A2/20, and

20
P)\nf0| <1/t 1

E— 1 2
P 50 sinc” (n/20)

n=-—20

20
1 . 2
= 20{1+2?§:15mc (n/QO)}

= 0.9028
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Problem 2.20

a. The integral for Y, is

1

Y, = —

) 1 To .
/ y (t) e Imolgr = — / z (t — tg) e I"0ldt, wo = 21 fy
T To Jo
Let t/ =t — tg, which results in

1 To—to ) , ) .
Yn _ [T/ z (t,) e—]nwot dt,:| e—]nwoto — Xne—j%rnfoto
0

—to

b. Note that

y (t) = Acoswot = Asin (wot + 7/2) = Asin [wo (t + 7/2wp)]

Thus, tp in the theorem proved in part (a) here is —7/2wgy. By Euler’s theorem, a sine wave

can be expressed as

1 . 1 :
; t) = Jjwol __ —Jjwot
sin (wot) 2] e o 2

Its Fourier coefficients are therefore X7 = % and X_1 = —2%. According to the theorem

proved in part (a), we multiply these by the factor

e—jnwoto _ 6—jnw0(—7r/2w0) _ 6jn7r/2

For n = 1, we obtain
Y] = i‘ejﬂﬂ — 1

27 2
For n = —1, we obtain
Vo= Leumr_ L
2j 2
which gives the Fourier series representation of a cosine wave as
1 jwot 1 _ jwot
y(t)zie] 0 —|—§e JWOt — cos wot

We could have written down this Fourier representation directly by using Euler’s theorem.
Problem 2.21

a. Use the Fourier series of a square wave (specialize the Fourier series of a pulse train)
with A = 1 and ¢t = 0 to obtain the series

1_4 ) 1+1 1+
o 3 5 7



22 CHAPTER 2. SIGNAL AND LINEAR SYSTEM ANALYSIS

Multiply both sides by 7 to get the series in the problem statement. Hence, the sum is 7.

b. Use the Fourier series of a triangular wave as given in Table 2.1 with A=1and ¢t =10
to obtain the series

4 4 4 4 4 4
1=+

2572 9n2 x2 T m2 o2 ' 25m2

Multiply both sides by 7%—2 to get the series in given in the problem. Hence, its sum is %2.
Problem 2.22

a. In the expression for the Fourier series of a pulse train (Table 2.1), let tgp = —Tp/8

and 7 = Tp/4 to get
X AS' c(n)e o
= —sinc | — ) ex
n=7 1 plJ 4

The spectra are shown in Fig. 2.4.

b. The amplitude spectrum is the same as for part (a) except that Xy = %. Note that

this can be viewed as having a sinc-function envelope with zeros at multiples of %.
The phase spectrum can be obtained from that of part (a) by subtracting a phase shift
of 7 for negative frequencies and adding 7 for postitive frequencies (or vice versa).
The Fourier coefficients are given by

X = % . 3777, ,37T7”Lf0
n = 1 Sic 1 exp ] 1

See Fig. 2.4 for amplitude and phase plots.
Problem 2.23

a. Use the rectangular pulse waveform of Table 2.1 specialized to

t—Tp/4

xq (t) = 2AI1 ( To/2

>—AM<%Q

and periodically extended. Hence, from Table 2.1, we have

A 2ATO/2 . nT0/2 _,27T7”LTO/4
X, = T, sinc Ty exp ]7%
= Asinc(n/2)exp (—jmn/2), n#0
Y (n7/2) exp (—jmn/2), n #0

nm/2
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Part (a) Part (b)
0.6 1 0.6
2 04 2 04
£ £
P N R O 9
%QQQV(FT T‘FV@@@Q %@@@V?T T‘FV@%Q
5 0 5 5 0 5

f, Hz f, Hz

4 4 Y

3 A?TT?TT-.ZT?TAT?T-
sk

-5 0 5 -5 0 5
f, Hz f, Hz

Phase, rad
o
o——
G_
G_
3—
o—
G_
G_
Phase, rad
N
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where the superscript A refers to x4 (t). The dc component is 0 so X64 = 0. The Fourier
coefficients are therefore

X =0

x4 —j2A/m; XA = j2A/7
X3 = 0= X4,

X3 = j24/3m X4 = —j24/3n

b. Note that
dzp (t)
t) =
ra(t) = =g
where A = T /2 = % obtained from matching the amplitude of x4 (¢) with the slope of

xzp (t) or B = TOA. The relationship between spectral components is therefore
X! = (Jnwo) X, = j2mnfoX;]

or
XA Thxi

XB
j2mnfy  j2mn

n

where the superscript A refers to x4 (t) and B refers to xp (t). For example,

B — _j2A/7r _ _@ — xB

L™ jomfe - w2 TR

Problem 2.24

a. This is a decaying exponential starting at ¢ = 0 and its Fourier transform is

X1(f) = A/ Te Il gy — A/ e~ (L/T+32mf)t g4
1/T+]27rf)t A
- WO ~ 17+ j2nf
AT

14 j2nfr
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b. Since x2 (t) = z1 (—t) we have, by the time reversal theorem, that

X2 (f) = X7(f)=X1(=))
ATt

1—j2nfr

c. Since z3 (t) = z1 (t) — x2 () we have, after some simplification, that

X3(f) = Xa(f)—X2(f)

B ATt ATt

N 1-|—j271'f7'_1—j27rf7'
_ —jdAxnfT

14 (2rfr)?

d. Since z4 (t) = 1 (t) + x2 (t) we have, after some simplification, that

Xa(f) = Xi(f)+Xa2(f)

B At N At
C l+j2nfr 1—j2nfT
B 2AT

1+ (2nf7)?

This is the expected result since x4 (t) is really a double-sided decaying exponential.

e. By part a and the delay theorem

—35107
_j1onf _ Are—i10mf

X5(f)=X1(f)e =1t 2nfr

f. By parts a and e and superposition

AT [1 — e_jw”f}
1+ j2nfr

Xo(f) = X1 (f) L= 7] =

Problem 2.25
a. Using a table of Fourier transforms and the time reversal theorem, the Fourier trans-
form of the given signal is

1 1
a+j2rf  a—j2nf

X(f) =
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Note that = (t) — sgn(¢) in the limit as @« — 0. Taking the limit of the above Fourier
transform as o — 0, we deduce that

1 11
j2nf  —j2nf  gnf

Flsgn (2)]

b. Using the given relationship between the unit step and the signum function and the
linearity property of the Fourier transform, we obtain
1 1
Flu)) = 5F e @]+ F (1)

1 1

= %‘F?S(f)

c. The same result as obtained in part (b) is obtained.

Problem 2.26

a. One differentiation gives

dzxg (t)

42 = It — 0.5) — (¢ - 2.5)

Two differentiations give

d%x4 (t)
dt?

=0(t)—d(t—1)—6(t—2)+0(t+3)
Application of the differentiation theorem of Fourier transforms gives

(27 )2 Xo(f) = 1—1-e7927 _1. =047 1. =i6nf
(ejgﬂ'f _ ejﬂ'f _ e*]’ﬂ'f 4 e*j37rf) e*j?)ﬂ'f
= 2(cos3nf —cosmf) e—I3mf

where the time delay theorem and the Fourier transform of a unit impulse have been used.
Dividing both sides by (j27rf)2, we obtain

X, (f) = 2 (cos3nf — cosmf) e I37f _ cosmf — cos37rf67j3ﬂf
(j2r f)* 2m2 f2
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Use the trig identity sin?z = % - %cos 2z or cos 2z = 1 — 2sin? z to rewrite this result as

1 —2sin? (0.57f) — 1 + 2sin? (1.57f) _j3nf
or2f2 ¢
—sin® (0.57f) + sin® (L57f) iz ¢
T2 f2 €
sin? (1.57 f) _jsnf sin? (0.57 f) _i3nf

= ——55 ¢ ——5g €
T2 f2 T2 f2

_ [1 52 (sin 1.577]‘")2 052 <sin0.57rf>2] o—i3ns
' Lonf ' 0.57 f

= [1.5%sinc? (1.5f) — 0.5%sinc? (0.5f)] e =737/

Xa(f) =

This is the same result as would have been obtained by writing

— 1. — 1.
2o () = L5A <t — 5) —0.5A <t — 5)

and using the Fourier transform of the triangular pulse along with the superposition and
time delay theorems.

b. Two differentiations give (sketch dxy, (t) /dt to see this)

d*ay (t)
dt?

=5 —26(t—1)+20(t—3) — 5 (t—4)

Application of the differentiation theorem gives
(j2r )2 Xy (f) = 1 — 27927 4 97907 _ o=387f
Dividing both sides by (j27rf)2, we obtain
1— 26—j27rf 4 26—j67rf _ e—j87rf
N —472 f2

Further manipulation may be applied to this result to convert it to

X (f)

X (f) = sinc? (f) [e—ﬂﬂf _ e—j67rf}
N
= 2jsin (2nf)sinc? (f) e 9/
which would have resulted from Fourier transforming the waveform written as

o () = At —1) — A(t—3)
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c. Two differentiations give (sketch dz. (t) /dt to see this)

d*xz, (1)
dt?

= 5() —20(t—1)+20(t—2) —25(t—3)+6(t — 4)

Application of the differentiation theorem gives
T c =1—2e 927 4 9e7I4TS _ 9e=I6TS 4 I8
(j2f)2X(f) 1 — 9927 4 9p—i4nf _ 9,—ibnf i8nf
Dividing both sides by (j27rf)2, we obtain

1 — 2e772mf 4 2e=747f _ 92¢=367f 4 ¢=387f
(j2mf)*

Xe (f)

This result may be further arranged to give
X, (f) = sinc®(f) |e ¥ 4 e7I07]
= 2cos (2nf)sinc? (f) e 47/
which would have resulted from Fourier transforming the waveform written as
x(t)=A{t—1)+A(t—3)
d. Two differentiations give (sketch dxg4 (t) /dt to see this)

d%zq (t)
dt?

—6(t) —20(t—1)+6(t—1.5)+ 8 (t —2.5) — 20 (t — 3) + 0 (t — 4)

Application of the differentiation theorem gives
(j27rf)2 Xd (f) -1 2€—j27rf + e—j37rf + e—j57rf _ 2e—j67rf + e—j87rf
Dividing both sides by (j27rf)2, we obtain

1 — 267j27rf + 67j37rf + eijﬂ-f — 267]'677]0 + €7j87rf

) (j2rf)?

This result may be further arranged to give
Xa (f) = sine? (f) |77 4+ 0567947 4 =301
which would have resulted from Fourier transforming the waveform written as

2a(t) = A(t—1)+ 0.5 (t—2) + A (t — 3)
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Problem 2.27
See the solutions to Problem 2.26.

Problem 2.28

a. The steps in finding the Fourier transform for (i) are as follows:

I1(t) «— sinc(f)
I1(t) exp [jdmt] «— sinc(f —2)
II(t—1)exp[jdr (t —1)] «— sinc(f —2)exp(—j27f)

The steps in finding the Fourier transform for (ii) are as follows:

II(t) «— sinc(f)
II(t) exp [jdnt] «— sinc(f —2)
II(t+1)exp[jdm (t+1)] «— sinc(f —2)exp (j2rf)

b. The steps in finding the Fourier transform for (i) are as follows:

II(t) «— sinc(f)
II(t—1) «— sinc(f)exp(—j2nf)
II(t—1)exp[jdnr (t—1)] = II(t—1)exp (j4nt)
—— sinc(f —2)exp[—j27 (f — 2)] = sinc (f — 2) exp (—j27f)

which follows because exp(+jn27) = 1 where n is an integer. The steps in finding the
Fourier transform for (ii) are as follows:

I1(t) «— sinc(f)
IM(t+1) «— sinc(f)exp (j27f)
IM(t+1)exp[jdr (t+1)] = TII(t+1)exp (j4nt)
«—— sinc(f —2)exp [j27 (f — 2)] = sinc (f — 2) exp (527 f)
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Problem 2.29

a. The time reversal theorem states that x (—t) «— X (—f) # X* (f) if z (¢) is complex,
S0

valt) —— 3X2(f)+ X0 (~f) = gsine(f —2)exp (~2nf) + psine (~f — 2) exp (j2n1)

= %sinc (f—2)exp(—j27rf)+%sinc(f+2) exp (527 f)

Note that

2o (t) = %n (t— 1) exp [jdr (t — 1)] + %H (=t — 1) exp [jdr (—t — 1)]

1 1
= 51‘[ (t — 1) exp (jdnt) + 51_[ (t +1)exp (—j4nt) (by the eveness of II (u) )

b. Similarly to (a), we obtain

7 (1) > 3 X ()45 Xa () = gsine (f — 2) exp (2 )+ gsine (f +2) exp (2 )
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Problem 2.30

a. The result is
X1 (f) = 2sinc (2f) exp (—j2m )

b. The result is

Xo(f)=2x %H <'§) exp (—j2m f)

c. The result is

X3 (f) = 8sinc® (8f) exp (—jrf)

d. The result is
X4 (f) =4A(4f)exp (—jb7f)

e. The result is

X5(f) = 5x %H (“;) exp (—j2rf) + 5 x %H <£> exp (j2mf)
= bII (JQC) cos (27 f)
f. The result is
Xg(f) = 16sinc? (8f)exp (—jdn f) + 16sinc? (8f) exp (jdx f)

= 32sinc? (8f) cos (47 f)

Problem 2.31

a. This is an odd signal, so its Fourier transform is odd and purely imaginary.
b. This is an even signal, so its Fourier transform is even and purely real.

c. This is an odd signal, so its Fourier transform is odd and purely imaginary.
d. This signal is neither even nor odd, so its Fourier transform is complex.

e. This is an even signal, so its Fourier transform is even and purely real.

f. This signal is even, so its Fourier transform is real and even.
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Problem 2.32
In the Poisson sum formula, we identify p (¢) = II (¢/2) which has Fourier transform P (f) =
2sinc(2f). Thus, for this case, the Poisson sum formula becomes

= > t—dam\ 1 & 2
E p(t —mTs) = E II ( 5 ) =1 E 2sinc (4) eI2m(n/4)t = fs E P (nfs) eﬂﬂnfs
m=—0oQ m=—0o0 n=—oo n=-—oo
or
o0 (o.9]
t—4m 1 ny
— P w (n/2)¢
Z H( 2 >_ Z Qsmc<2)eﬁrn
m=—0oQ n=—oo

The fundamental frequency is 0.25 Hz and the Fourier coefﬁcients are Xo = 1/2, X =

X_ 1= %sinc(%) = %, Xo=X9=0,X35=X_3= %sinc(%) = 37r, etc.

Problem 2.33

a. The Fourier transform of this signal is

10 2

Xlf) = 5+j2nf 1+ 52rnf/5

Thus, the energy spectral density is

Thus, the energy spectral density is

Xa (f) = 25112 <£> — 951 <J2”)

¢. The Fourier transform of this signal is

X (f) = ;sinc (é)

so the energy spectral density is G (f) = %Sinc2 (%)



2.1. PROBLEM SOLUTIONS
d. The Fourier transform of this signal is

() = 2 fome (£52) sne (122)]

so the energy spectral density is
9. (f=5\ . . [(f+5\]
G4(f) = 16 [smc <2) + sinc <2>]

Problem 2.34

a. Use the transform pair

1

t)=e “u(t —
m(t) =eult) — oo

Using Rayleigh’s energy theorem, we obtain the integral relationship

[e%S) ) d 00 0o o 1
/_OO|X1(f)|2df:/_ooMdf:/_oo|$1(t)|2dt=/o e ? tdt:%

b. Use the transform pair

1 t
x9 (t) = —10 <> ——sinc (7f) = Xo (f)
Rayleigh’s energy theorem gives

[ rewts = [ end = [ woPa

—00 —

© 1 [t T2 a1
—00 —7/2

c. Use the transform pair

¢ 2a e—altl 1
et or ——

a2 + (2nf)? 20 o? + (27 f)?

33
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The desired integral, by Rayleigh’s energy theorem, is

; /oo |: 1 :|2df /oo e—20¢|t\dt
P el @rn? U ) 42

B 9 0o —2atdt 1 672011? 00_ 1

402 202 —2a 403

d. Use the transform pair
1 t
—A <> s sinc? (7f)
T A\T

The desired integral, by Rayleigh’s energy theorem, is

L = /oo X4 ()2 df = / " sinc () df

:_/ A% (t)7)dt /1—t/7

_ T/O (1_u)2du=f_[—3(1—u2)]0=;

Problem 2.35

a. The convolution operation gives

0, t<7t-1/2
=1 [l r 1<y
é [efa(t7771/2) _ efa(tff+1/2)} , t>T+1)/2

b. The convolution of these two signals gives
y2 (t) = A (t) + trap (1)
where trap(¢) is a trapezoidal function given by

0, t<—=3/2ort>3/2
1, 1/2<t<1)2
3/24t, —3/2<t<—1/2
321,  1/2<t<3/2

trap (t) =
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c. The convolution results in
t+1/2

Y3 (t):/ eO‘MH()\—t)d/\:/ e Mg\
—00 t

—-1/2

Sketches of the integrand for various values of ¢ give the following cases:

SR e, t<—1/2
ys (1) = [ perdr+ [T eoran, —1/2 <1 <1/2
SR e, t>1/2

Integration of these three cases gives

1 [ealt+1/2) _ calt=1/2)] t< —1/2
ys (1) = Llealt=1/2) —emaltl/2)] - 1/2 <t < 1/2
é [e—a(t—l/Q) _ 6—04(75—}—1/2)] 7 t> 1/2

d. The convolution gives

t
ya (1) =/ (M) dA

—00

Problem 2.36

a. The inverse FT of II(f) is sinc(t). By the time delay theorem, the inverse Fourier
transform of II (f) exp (—jdm f) is sinc(t — 2). The product of this and 2 cos (27 f) in
the frequency domain has an inverse Fourier transform which is the convolution of
their respective Fourier transforms. Thus

x1(t) = sinc(t—2)*[6(t—1)+06(t+1)]
= sinc (¢t —3) +sinc(t — 1)

b. The inverse Fourier transform of A (f/2) is 2sinc? (2t). By the time delay theorem
T (t) = 2sinc? [2 (t — 2.5)]
c. The inverse Fourier transform of II(f/2) is 2sinc(2t). By the modulation theorem,

the inverse Fourier transform of II (%) +1I (%) is sinc(2t) cos (8nt). By the time

delay theorem
x3 (t) = sinc [2 (t — 4)] cos [27 (t — 4)]
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Problem 2.37

a. From before, the total energy is K total = i The Fourier transform of the given
signal is
1

Xl(f):rj%rf

so that the energy spectral density is

1

_ 2 _
G (1) =X (NP =

By Rayleigh’s energy theorem, the normalized inband energy is

El(f|<W):2a/W df 2 <W>

= —tan
Ex, total _wa+ (2nf)? 7 a

b. The total energy is Fy total = 7. The Fourier transform of the given signal and its
energy spectral density are, respectively,

Xy (f) = 7sinc (f7) and Ga (f) = | X (f)|* = 72sinc? (f7)

By Rayleigh’s energy theorem, the normalized inband energy is

< w W
M = 1 / 72sinc? (fr)df = 2/ sinc? (u) du
-E27 total TJ-w 0

The integration must be carried out numerically.

c. The total energy is

E3, total — /OOO |:€_at — e_ﬁt:| ? dt = /Ovoo |:€_2at — 26—(04—1—5)15 —+ 6_25tj| 2 dt
_ b2 1 Bla+B)—daB+a(a+p) (B —a)?
T 92a a+p Zﬁ_ 208 (a+ ) _2045(044‘5)

The Fourier transform of the given signal and its energy spectral density are, respectively,

1 1
a+j2nf  B+jonf

X3(f) =
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and
Gotr) = Maf=|—L L[
sV = s = jonf ~ B jonf

I 9Re [ 1 1 ] N 1

a2+ (2nf) la+j2nfB—g2nf] " B2+ (2nf)

= ;—QRG- Oé—j27Tf ﬂ+J27Tf :|+ 1
a? + (27 f)? Lo? + @rf)? B2+ @2nf)?] B2+ (2nf)?

_ b p | aB-(a=p)i2nf+ @2nf) 1
o + (2mf)” (02 + (2nf?) (8% + C2np)?) | OF+(2nf)”

1 aB + (2nf)? 1

@) (a2 + (27rf)2> (,32 n (27rf)2) T nf)?

The normalized inband energy is

By (1f| < W) !/ G (f
E3, total E3 total

The first and third terms may be integrated easily as inverse tangents. The second term
may be integrated after partial fraction expansion:

aﬁ+(27rf)2 A B

2 = -
(a2 + 2n)?) (82 + (2nf)?) a2+ (2nf)? B+ (2nf)°
where )
A:2Oé22l§ andB—QOCIB:gZ
Therefore
B (fl<W) _ 1 /W{ LA B 1 }df
E3. total E3 total J_w +@2rf)? a2+ @2rf) B2+ @nf)? pE+(2nf)?
L[ bt () At (220
- ;E:;; _gumA(%¥)+%nm4(%g)
_ L e (Y 4y (2
B 7TE3 total |:Oé ( « >+ﬁ(1 B)tan ( B >:|
o m Cx ) [ ) e ()
B 7TE3 total \ @+ 3 G B o B

- ot e () ()
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Pulse Fraction of total energy
1 1
g
<, 05 W' 05
x ~~
w
0 0
-2 0 2 4 0 2 4 6
at W/a
1 1
g
2 05 w05
x N
L
0 0
-2 0 2 4 0 2 4 6
t/t tWwW
1 1
_
% 05 W’ 05
X ~
N L
0 0
2 0 2 4 0 2 4 6
at W/a

Plots of the signals and inband energy for all three cases are shown in Fig. 2.5
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Problem 2.38

a. By the modulation theorem

X5 = % {SinC [(f—fo) 1;0] + sinc [(erfO) 1;0]}

ALy [ (1 f e
- a5 ) e )}
b. Use the superposition and modulation theorems to get
X(f)= % {sinc <2“;)> + % [Sinc [; <J{; — 2)] + sinc B (;; +2>H }
c. In this case, p(t) = z(t) and P(f) = X(f) of part (a) and Ts = Tp. From part (a),

we have AT ) .
_Alo | . n— . n+
P(nfy) = e l:SlIlC ( 5 ) + sinc ( 5 ﬂ

Using this in (2.149), we have the Fourier transform of the half-wave rectified cosine wave-

form as X5 — i % [sinc (”;1) + sinc <n—21—1>} 6 (f —nfo)

n=—oo

Note that sinc(z) = 0 for integer values of its argument and it is 1 for its argument 0. Also,
use sinc(1/2) = 2/7, sinc(3/2) = —2/3m, etc. to get

X(F) = 20+ o) +6(+ )+ = 5(f —260) +6(F +2fo)

A ) (s

Problem 2.39

Signals x1 (t), z2 (t), and x¢ (t) are real and even. Therefore their Fourier transforms are
real and even. Signals x3 (t), x4 (t), and x5 () are real and odd. Therefore their Fourier
transforms are imaginary and odd. Using the Fourier transforms for a square pulse and a
triangle along with superposition, time delay, and scaling, the Fourier transforms of these
signals are the following.

a. X1 (f) = 2sinc? (2f) + 2sinc(2f)
b. X (f) = 2sinc(2f) —sinc? (f)
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c. X3 (f) = sinc(f) e™ —sinc(f) e 9™/ = 2j sin (7 f)sinc(f)
d. X4 (f) = sinc? (f) e 727/ —sinc? (f) e7?™f = —2jsin (27 f)sinc? (f)

e. By duality sgn(t) «— j/ (7 f) so, by the convolution theorem of Fourier transforms,
X5 (f) =sinc? (f) % j/ (rf). The convolution cannot be carried out in closed form,
but it is clear that the result is imaginary and odd.

f. By the modulation theorem Xg (f) = 3sinc? (f — 1) + 3sinc? (f + 1) which is real and

even.
Problem 2.40

a. Write

6 cos (207t) + 3sin (20mt) = Rcos (207t — 6)

Thus

= Rcosfcos (207t) + Rsin 0 sin (207t)

Rcosf = 6cos(207t)
Rsinf = 3sin (207t)

Square both equations, add, and take the square root to obtain

R =+/62+ 32 =+/45 = 6.7082

Divide the second equation by the first to obtain

So

tanf = 0.5
0 = 0.4636 rad

z (t) = 3 4+ /45 cos (20mt — 0.4636)

Following Example 2.19, we obtain

4
R, (1) =3+ ?5 cos (207T)

b. Taking the Fourier transform of R, (7) we obtain

S0 (F) =95 (f) + 2 [5.(f — 10) + 5 (7 +10)]
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Problem 2.41
Use the facts that the power spectral density integrates to give total power, it must be even,
and contains no phase information.

a. The total power of this signal is 22/2 = 2 watts which is distributed equally at the
frequencies +10 hertz. Therefore, by inspection we write

S1(f) =08 (f —10) + 6 (f +10) W/Hz

b. The total power of this signal is 32/2 = 4.5 watts which is distributed equally at the
frequencies +15 hertz. Therefore, by inspection we write

Sa (f) = 2.256 (f — 15) + 2.250 (f + 15) W/Hz

c. The total power of this signal is 52/2 = 12.5 watts which is distributed equally at the
frequencies +5 hertz. Therefore, by inspection we write

S5 (f) =6.258 (f —5) +6.250 (f +5) W/Hz

d. The power of the first component of this signal is 32/2 = 4.5 watts which is distributed
equally at the frequencies +15 hertz. The power of the second component of this
signal is 52/2 = 12.5 watts which is distributed equally at the frequencies +5 hertz.
Therefore, by inspection we write

Sy (f) =2.256 (f — 15) 4 2.256 (f + 15) + 6.256 (f — 5) + 6.250 (f + 5) W /Hz

Problem 2.42
Since the autocorrelation function and power spectral density of a signal are Fourier trans-

form pairs, we may write down the answers by inspection using the Fourier transform pair
Acos (27 fot) «— %5 (f = fo)+ 35 (f + fo)- The answers are the following.

a. Ry (1) = 8cos (307T); Average power = Ry (0) =8 W.

b. Ry (7) = 18 cos (407T); Average power = R (0) = 18 W.

c. Rz (1) =32cos (1077); Average power = R3 (0) =32 W.
()

d. R4 (1) = 18cos (407T) + 32 cos (1077); Average power = Ry (0) =50 W.
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Problem 2.43
The autocorrelation function must be (1) even, (2) have an absolute maximum at 7 = 0,
and (3) have a Fourier transform that is real and nonnegative.

a. Acceptable - all properties satisfied;

b. Acceptable - all properties satisfied;

c. Not acceptable - none of the properties satisfied;
d. Acceptable - all properties satisfied;

e. Not acceptable - property (3) not satisfied;

f. Not acceptable - none of the properties satisfied.

Problem 2.44
Given that the autocorrelation function of z (t) = A cos (27 fot + 6) is R, (1) = ATQ cos (2 fo)
(special case of Ex. 2.19), the results are as follows.

a. Ry (1) = 2cos (1077);
b. Ry (1) = 2cos (1077);
c. R3 (1) = 5cos (10m7) (write the signal as z3 (t) = Re [5exp (j tan™" (4/3) exp (j107t))]);

d. Ra(1)= % cos (1077) = 4 cos (107T).

Problem 2.45
This is a matter of applying (2.151) by making the appropriate identifications with the
parameters given in Example 2.20

Problem 2.46
Fourier transform both sides of the differential equation using the differentiation theorem
of Fourier transforms to get

2nf +a]Y (f) = [527bf + ] X (f)
Therefore, the frequency response function is

Y (f)  c+j2nbf
S X(f) a+j2nf
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The amplitude response function is

()] \/02 27rbf
a2 + (2n f)?

and the phase response is

arg [H (f)] = tan™" <2”bf> ~tant <27rf>

C a

43

Amplitude and phase responses for various values of the constants are plotted in Figure 2.6.

Problem 2.47

a. Use the transform pair

Ae™ %y (t) ——

to find the unit impulse response as
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b. Long division gives
7

H2(f):1—m

Use the transform pair ¢ (¢) «— 1 along with superposition and the transform pair in part
(a) to get
ho (t) = 0 (t) — Te” "u(t)
c. Use the time delay theorem along with the result of part (a) to get
hs (t) = e T3y (t — 3)

d. Use superposition and the results of parts (a) and (c) to get

ha(t) = e T (t) — e T3y (t — 3)

Problem 2.48
Use the transform pair for a sinc function to find that

_n(L\o(L
Y(f)_H<2B T o
a. If W < B, it follows that

Y(f)zﬂ(m‘};/>

because 11 <%) = 1 throughout the region where II (%) is nonzero.

vin-1(5;)

because 11 <%) = 1 throughout the region where II <%) is nonzero.

b. If W > B, it follows that

c. Part (b) gives distortion because the output spectrum differs from the input spectrum.

In fact, the output is
y (t) = 2Bsinc (2Bt)

which clearly differs from the input for W > B.
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Problem 2.49

a. Replace the capacitors with 1/jwC which is their ac-equivalent impedance. Call
the junction of the input resistor, feedback resistor, and capacitors 1. Call the
junction at the positive input of the operational amplifier 2. Call the junction at the
negative input of the operational amplifier 3. Write down the KCL equations at these
three junctions. Use the constraint equation for the operational amplifier, which is
Vo = V3, and the definitions for wg, (), and K to get the given transfer function as
H (jw) =V, (jw) /Vi (jw). The node equations are

Ww-vi . w-v, .
L WOV + 2 4 jwC(Vi = Va) = 0

) \%

JwC (Vo — V1) + Ez =0
V3 V3=V,
V3 -0
Rb * R,

(constraint on op amp input) Vo = V3

b. See plot given in Figure 2.7.

c. In terms of f, the transfer function magnitude is

o~ K (F14)

It can be shown that the maximim of |H(f)| is at f = fo. By substitution, this maximum
is |[H(fo)] = KQ/v2. To find the 3-dB bandwidth, we must find the frequencies for which
|H(f)| = |H(fo)|/v/2. This results in

which reduces to the quadratic equation

J%‘*_( 1><f> _
<f0> 2+Q2 fo =0
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Using the quadratic formula, the solutions to this equation are

fiz\? 1 1 1
() = 2(rg)=(2g)
1 1 1 1 1
- 2<2+Q?)iQ H@%li@
f+3 N 1 1
(ﬁ)) ~ 1:|:QN1:|:—2Q, Q>>1

Therefore, the 3-dB bandwidth is, for large @), approximately
1 1 Jo
B=f3—f3~|1 —(1- -
f3— -3 ( +2Q>fo ( 2Q)fo 0

d. Combinations of components giving

RC = 2.2508 x 10~* seconds

and
2 — 25757

will work.

Problem 2.42

a. By voltage division, with the inductor replaced by j27fL, the frequency response

function is
Ry +j2nfL Ro/L+ j27cf

By long division
Ry/L

Hi(f)=1- %
1(f) BitRe o jorf

Using the transforms of a delta function and a one-sided exponential, we obtain

hy (6) =6 (8) — L exp (-RHLTR%> w ()
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20
10k i
[a1]
©
= or 7
T
-0k i
'] f, = 999.9959 Hz; B, = 300.0242 Hz
_202 N N ......|3 N N ......4
10 10 10
2
[2]
cC
3
o
o
T
Q
(o]
C
©
2 P | .
10° 10° 10"
f, Hz

b. Substituting the ac-equivalent impedance for the inductor and using voltage division,
the frequency response function is

Rol| (j27fL) , J2mf LRy
H. = h R 2rfL) = —————
2(f) R1+R2||(]27TfL) where 2||(] 7Tf ) R2+]27TfL
_ R j2rfL _ ( ([ Ry /L )
Ri+ Ry ufe  jorfL  Ri+ R (Ri || Re) /L + j2n f

where Ry || Ry = R]?lRRQZ. Therefore, the impulse response is

R2 R1R2 RIRZ
ha (8) = Ri + Ry o)~ (R1+R2) L P <_(R1 + Ry) Lt) B (t)]

Both have a high pass amplitude response, with the dc gain of the first circuit being R11-%k2R2

and the second being 0; the high frequency gain of the first is 1 and that of the second is
Ry

R1+R2 "

Problem 2.51
Application of the Payley-Wiener criterion gives the integral

e} BfQ
= /oo R
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which does not converge. Hence, the given function is not suitable as the frequency response
function of a causal LTI system.

Problem 2.52

a. The condition for stability is

o0

/oo Iy ()] dt :/ lexp (—alt]) cos (2 fot)| di

—0o0 —0o0

oo 00 9
= 2/ exp (—at) |cos (27 fot)| dt < 2/ exp (—at) dt = L <
0 0

which follows because |cos (27 fot)| < 1. Hence this system is BIBO stable.

b. The condition for stability is

/00 |he (B)| dt = /00 |cos (27 fot) u (t)| dt

—00 —00

= / |cos (27 fot)| dt — oo
0

which follows by integrating one period of |cos (27 fot)| and noting that the total integral is
the limit of one period of area times N as N — oo. This system is not BIBO stable.

c. The condition for stability is

[Cims@na = [ due-va

oo oo |1l

This system is not BIBO stable.

d. The condition for stability is

/Oo Iha (8)] dt /Oo et (8) — e~ Dy (¢ — 1) |t

—00 —00

IN
0\8
/N
03I

T
—
&

Il
—_
+
)
AN
8

This system is BIBO stable.
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e. The condition for stability is

/ h5(t)\dt:/ 2dt = 1 < oo
1

—0o0
This system is BIBO stable.

f. The condition for stability is
oo o . 1
/ |h6(t)|dt:/ sine (2)dt = < oc

This system is BIBO stable.

Problem 2.53
The energy spectral density of the output is

Gy (f) = H(HPIX (N

where
2 25
HOP = oo
_ L _ 2 _ 1
X() = gy G- =XDP= s
Hence
25

G lf)= [0+ 2nf)?] 16+ (2m1)?]

Plots of the input and output energy spectral densities are left to the student.

Problem 2.54
Using the Fourier coeflicients of a half-rectified sine wave from Table 2.1 and noting that
those of a half-rectified cosine wave are related by

—jnm/2
XCn - Xsne / /
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The fundamental frequency is 10 Hz. The ideal rectangular filter passes all frequencies less
than 31 Hz and rejects all frequencies greater than 31 Hz. Therefore

yt) = _ A g jaont + JA jin/2,—j20mt + A + IA in2giomt A i iton
3T 4 3
A A eI (20mt—m/2) | ,—j(20mt—m/2) 2A [ ei(d0mt—m) 4 ,—j(40mt—m)
T2 2) 3m 2
A A 24
fd — — — i 2 - 2 - 5 4 -
——5 sin (207t — w/2) o cos (407t — )
A A 2A
= — + 5 cos (207t) + 3, €08 (407t)
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Problem 2.55

a. The energy spectral density is given by
2 1

a? + (2nf)?

1

Gi(f)=IX1(f)]P = P

Since Fiota = i, the 90% energy containment bandwidth is given by

0.9 Boo 1 2 [Boo 1 2
20 2/ oY = o, ="
o o a2+ (2nf) a“ Jo 1+(%) o

R e T 1 .

= — — = tan ' (27B
Ta Jo 1+u?2 7o an”" (2w Boo /)
or By = ;tan(0.457r):1.0049a
m

b. For this case, using Xy (f) = I (f/2W) and Eipq; = 2W, we obtain

Bgo
0.9(2W) = 2 / df = 2By
0
or Bgo = 0.9W

c. For this case, using X3 (f) = 7sinc(f7) and E3 = 7, we obtain
Bgo
097 = 2/ r2sinc? (f7) df
0
TBgo
or 045 = / sinc? (u) du
0

Numerical integration gives

Bgo = 0.9/7’

d. For this case, using X4 (f) = 7sinc? (fr) and Eq = 2 [] (1 —t/7)%dt = 27/3, we
obtain

Boo
1.87/3 = 2/ r2sinct (f7) df
0

TBgo
or 03 = / sinc? (u) du
0

Numerical integration gives
Bgo = 035/7’
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e. For this case, using X5 (f) = ﬁ and E5 = 2 [;° exp (—2at) dt = 1/, we obtain

Boo 20 2
0.9/a = 2/0 [W} df

27 Bgo /a du
or 0.225r = / 5, u=27f/a
0 (1+u?)

Numerical integration gives 2w Bgg/a = 1.18 or Bgg/a = 0.188 or Bgy = 0.188c.
Problem 2.56
The outputs are the inputs phase shifted by —n/2 radians for frequencies greater than 0
and /2 for frequencies less than 0 Hz.

a. y1 (t) = exp [j1007t — jw /2] = —j exp (j1007t);

b. ya (t) = 3 exp [j100mt — jm/2] + 5 exp [—j1007t + jm /2] = sin (1007t);

c. Y3 (t) = 55 exp [j100mt — jm/2] — 5z exp [~j1007t + jm /2] = — cos (1007t);

d. The spectrum of the input is X4 (f) = 2sinc(2f). The spectrum of the output is

Ya(f) = 2sinc (2f) exp (—jm/2), f >0
PVTT 2sine (2f ) exp (j7/2), f <0
The time domain output signal is the inverse Fourier transform of this, which is
0

ya (t) = /0002sinc(2f)exp(—jw/2)exp(j27rft)df+/ 2sinc (2f) exp (j7/2) exp (j2m ft) df

00 0
= —Qj/ sinc (2f) exp (j2m ft) df + 2j/ sinc (—2u) exp (—j27ut) (—du); uw=—f
OOO OOOO
= —2j/ sinc (2f) exp (j2m ft) df + 2]'/ sinc (2u) exp (—j27ut) du; sinc2u is even
0 0
= 2/ sinc (2f) [—jexp (j27 ft) + jexp (—j2w ft)] df; rewrite 2nd int in terms of f
0
= 4/ sinc (2f) sin (27 ft) df
0

This requires numerical integration. A plot is given in Fig. 2.8.
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Problem 2.57
a. Amplitude distortion; no phase distortion.
The output for (a) is

va(t) = 4cos (487t — 242 ) + 10cos (1267t — 63 )

1 1
= 4cos4 t—— 1 512 t——
cos 48 ( 30()) + 10 cos 1267 ( 30())
b. No amplitude distortion; phase distortion.

The output for (b) is

i
w(t) = 2cos (126m - 63ﬁ> + cos (1707t)
1
= 2cos 1267 (t — 300> + cos (1707t)

c. No amplitude distortion; no phase distortion.

93
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The output for (c) is

1 1
Ye (t) = 2cos 1267 <t - 300> + 6 cos 144m (t — 300>

d. No amplitude distortion; no phase distortion.

The output for (d) is

1 1
= 4cosl S R | -
yq (t) cos 107 <t 300> + 16 cos 507 <t 300>

Problem 2.58

a. The frequency response function corresponding to this impulse response is

_ 3 B 3 o | it 2nf
Hl(f)75+j27rf7 25—|—(27rf)26 p[ J tan ( 5 ﬂ
The group delay is
1 d 2

Ty, (f) = “ordf [—tanl <7;f>}

I -

27r1+ (@)2 5
B 5
25+ (2nf)?

The phase delay is
— 2w
0 (f) tan”! (Tf)

T — -
n () 2n f 2n f
b. The frequency response function corresponding to this impulse response is
5 2

Hy (f) =

3+j2rf B+ j2nf
5(54j2nf) —2(3+ j2nf)
(3+j2nf) (5+ j2rf)
19 + j6r f
15 — (27 f)? + jl6nf

361 + (67rf)2 exp [j tan~! (%)]

15— @]+ 6ms? e [eant (222
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1 [6nf _ 167 f
0 =tan ' [ —= | — tan! <>
2(f) < 19 > 15— (2nf)”
The group delay is

- 1 d L (6rf B 167 f
T () = i [ () o ()]

1+(617r7f)2 (%)

Therefore

1
= —— 1 167r(1159—(27rf)2)—167rf[—2(27rf)(27r)}
27T - 1671 2 [15_(27”[)2]2
1+<157(27rf)2)
2
- T 9. 2 2
B OO 15— n)?] + (167 1)
57 815+ (2rf)?]

— +
361+ (6nf)* 225434 (2nf)* + (2nf)?
The phase delay is

aa (k) e ()
2rf 2rf

Tpo (f):

The group and phase delays for (a) and (b) are shown in Fig. 2.9.

¢. The frequency response is
H(f)=1 L exp (—j2mto f)
2B

The group delay is

T,(f) = —g-gl-2mtof], ~B<f<B

= ty, —B < f < B and 0 otherwise

The phase delay is

—27t
T, (f) = —(2:;‘]0) =tg9, —B < f < B and 0 otherwise
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0.2 ; :
S Group delay
;_f; 0.151- A e Phase delay []
|—:5" 0.1f
f?‘» 0.05}
0 " L Rnras
10” 10" 10° 10! 10°
f, Hz
05 . :
oo X _________
= L
}_. ! _/'/
€, 05} b
=
1 il - il Y | L
10” 10" 10° 10! 10°
f, Hz
d. The frequency response function is
H (f) : L exp (—j2ntof)
= — exp (—
3+ j2nf 3+ jonf plTJemo
2
= ———[25— —j27t
3+j27rf[ exp (—j2mto f)]
The phase shift function is
sin 27tg f i 2nf
0 i A -7J
() 2.5 — cos 2wty f an 3
The phase delay is
1 1 2nf sin 2wty f
T = t 1 =
p(f) 27rf[an 3 2.5 cos2ntof
The group delay is
1 d 1 2nf sin 27tg f
T, = —— |tan”! = =
s (f) o df { T3 T 25 —cosantof
B 3 1 —2.5co0s82rty f

Problem 2.59

(2.5 — cos 27ty f)?
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<

. The amplitude response is

H(f)] = et
\/64 + (27f)% /94 (2nf)?

o8

. The phase response is

[oB

. The group delay is
1/8 1/3 1

L= S T 1

Problem 2.60
In terms of the input spectrum, the output spectrum is

Y(f) = X(f)+01X(f)* X (f)
= 2fn(5) (5]
B (128) (1)) (159) n(159)
- 2o(15) e ()]
+0.4 :4A <f_420> +8A (ﬁ) +4A <J“;20ﬂ

where A (f) is an isoceles triangle of unit height going from -1 to 1. The student should
sketch the output spectrum given the above analytical result.

Problem 2.61
a. The amplitude response is
2m|f|
V(0 — 4722 + (0.37f)?

[H(f) =
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8
6}
g4
2+
0
-3 2 1 0 1 2 3
2
0 1
=4
8
g o0
T 4l
-2 1
-3 2 1 0 1 2 3

b. The phase response is

These are shown in Fig. 2.10.

c. The phase delay is

1d 0.3
T, (f) = Tordf [gsgn (f) — tan™" (9 _477Tr£f2>]
1 B 1 0.37 (9 — 472 f?) + (0.37 f) (87*f)
= or 71'5(.](‘) 1+ (92_4372];2)2 (9—47T2f2)2
1.35 4 0.672 f2 1

T 81 _71.91n2f2 + 1674 fE 30 ()
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Problem 2.62
Let u = 27t. We then have

y(t) = [cos (u)+ cos (3u)]?
= cos® (u) + 3cos? (u) cos (3u) + 3 cos (u) cos? (3u) + cos® (3u)

Use the trig identities

1
cos? (z) = B [1 4 cos (2z)]
, 3 1
cos® (z) = 7508 (2) + 758 (32)
1 1
cos (w)cos (z) = 5 cos (w—2z2)+ 5 cos (w+ 2)
to get
3 1 3
y(t) = 7 008 (u) + 7508 (3u) + B [1 + cos (2u)] cos (3u)
3 3 1
+ cos (uw) [1 + cos (6u)] + 7508 (3u) + 7508 (9u)
5) 3 3 1
= 3cos(u)+ 5 cos (3u) + 5 €08 (5u) + 708 (Tu) + 7% (9u)

1
= 3cos(2nt) + gcos (6mt) + gcos (107t) + Zcos (147t) + 7% (187t)

Problem 2.63
Write the transfer function as

H (f) = Hoe 7%/t — HyTI <2J;> e~J2mito

Use the inverse Fourier transform of a constant, the delay theorem, and the inverse Fourier
transform of a rectangular pulse function to get

h (t) = H05 (t — to) — QBHUSiIlC [QB (t — to)]

Problem 2.64

a. The Fourier transform of this signal is

X (f) = AV2rb? exp (—27%72 f?)
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By definition, using a table of integrals,

L /m\()\dt Vo

T 2(0) J
Similarly,
1 e 1
W=—— X df =
2X (0) /_Oo’ (Dldf 2V 2mT
Therefore,
2
2WT = V2rr =1
24/ 2mT "
b. The Fourier transform of this signal is
2A/a
() /
1+ 2nf/a)
The pulse duration is
1 [e.e]
T= dt
T
The bandwidth is . ~
W = df = —
s | Xl

Thus,

Problem 2.65

a. The poles for a second order Butterworth filter are given by

(1—-7)

w3

V2

where wj3 is the 3-dB cutoff frequency of the Butterworth filter. Its s-domain transfer
function is

S]_:SQ:

2 2
w3 w3

T g proaeg] S VRt

Letting ws = 27 f3 and s = jw = 727 f, we obtain

Am? f2 /3
47T2f2+f(27ff3)(.727Tf)+47T2f3 —f2+ V2 fsf + f2

H(j2rf) =
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b. If the phase response function of the filter is € (f), the group delay is

1 d

T, (1) = 5= 5 0 )

For the second-order Butterworth filter considered here,

0(f)=—tan! ( V2fsf >

-7
Therefore, the group delay is
1 d o V2fsf
T = —— [tan!
o) = oy [a“ (f%—f?

fs B+ _ 1 1+ (f/f)
Var f§+ 1 Verfs 1+ (f/5)'

This is plotted in Fig. 2.11.

c. Use partial fraction expansion of H (s) /s and then inverse Laplace transform it to get
the given step response. The expansion is

H(s) w3 A Bs+C

= ==+
8 s(2+V2wss+wd) s 524+ V2wss +w?
where A = 1, B=-1, C=—V2w;

This allows H (s) /s to be written as

H(s) _ 1 s + V2w
s s 82+ 2w3s + w?
1 s+ﬂw3
- ;_82+\/§w38+w§/2—w§/2+w§
_ 1_ s+\/§w3
s (s+w3/\/§)2+w§/2
1 s+ ws/vV2—wy/V2+ V2w
s (S+W3/\/§)2+w§/2
1 s +ws/V2 B w3/V?2
s (s +ws/vV2) +w?/2  (s+ws/V2) +wl/2
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Group delay for a 2nd-order BW filter Step response for a 2nd-order BW filter
0.35 T 1.4 T

0.3} E 1.2}

0.25f

0.2} 0.8}
“C/m €
e =
0.15f} 0.6}
0.1} 0.4}
0.05f 0.2}
0 0 L
0 0.5 1

fot
it 3

Using the s-shift theorem of Laplace transforms, this inverse transforms to the given ex-
pression for the step response (with ws = 27f3). Plot it and estimate the 10% and 90%
times from the plot. From the MATLAB plot of Fig. 2.10, fst199 =~ 0.08 and f3tgqe; ~ 0.42
so that the 10-90 % rise time is about 0.34/ f3 seconds.

Problem 2.66

a. Slightly less than 0.5 seconds;

b & c. Use sketches to show.

Problem 2.67

a. The leading edges of the flat-top samples follow the waveform at the sampling instants.

b. The spectrum is

Y (f)=Xs(f)H(f)
where

Xs(f)=1fs Z X (f —nfs)

n=—oo
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and

H (f) = rsinc (f7) exp (—jm f1)

The latter represents the frequency response of a filter whose impulse response is a square
pulse of width 7 and implements flat top sampling. If W is the bandwidth of X (f), very
little distortion will result if 771 >> W.

Problem 2.68

a. The sampling frequency should be large compared with the bandwidth of the signal.

b. The output spectrum of the zero-order hold circuit is

Y (f) =sinc(Tof) > X (f —nfs)exp(—jmfTs)

n=—oo
where f; = T, . For small distortion, we want Ty << W1

Problem 2.69
Use trig identities to rewrite the signal as a sum of sinusoids:

x(t) = 10cos? (6007t) cos (24007t)
5 [1 + cos (6007t)] cos (24007t)
= 5cos(24007t) 4 2.5 cos (18007t) + 2.5 cos (30007t)

The lowpass recovery filter can cut off in the range 1.5 kHz to 3~ kHz where the superscript
+ means just above and the superscript — means just below. The lower of these is the
highest frequency of z (¢) and the larger is equal to the sampling frequency minus the highest
frequency of x (¢). The minimum allowable sampling frequency is just above 3 kHz.

Problem 2.70

For bandpass sampling and recovery, all but (b) and (e) will work theoretically, although an
ideal filter with bandwidth exactly equal to the unsampled signal bandwidth is necessary.
For lowpass sampling and recovery, only (f) will work.
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Problem 2.71
The Fourier transform is

V() = 3X (o) 45X (7 + fo)
s ()X (D] # | 37— fo)e 772+ 26 (f + fo) &
= SX U= S [ =sen (= o)l + 5 X+ fo) 1+ (f + fo)
Noting that

%[1—sgn(f*fo)] = u(fo—f)
%[1+sgn(f+f0)] = u(f+/fo)

and
this may be rewritten as
Y(f)=X(f—fo)ulfo—f)+X(f+ fo)u(f+ fo)

Thus, if X (f) =11 (%) (a unit-height rectangle 2 units wide centered at f = 0) and fy = 10

Hz, Y (f) would consist of unit-height rectangles going from —10 to —9 Hz and from 9 to
10 Hz.

Problem 2.72

a. T (t) = cos (wot — m/2) = sin (wot), so

I I
TlgréoQT/Tx(t)i?(t) dt = TlféozT/T sin (wot) cos (wot) dt
1 (T
= lim — —sin (2
Jm o 2 sin (2wot) dt

1 cos (2wot)|”

Tl—rgo ﬁ 4w0

=0
-T

b. Use trigonometric identities to express z (¢) in terms of sines and cosines. Then
find the Hilbert transform of z (¢) by phase shifting by —n/2. Multiply z (¢) and
Z (t) together term by term, use trigonometric identities for the product of sines and
cosines, then integrate. The integrand will be a sum of terms similar to that of part
(a). The limit as T'— oo will be zero term-by-term.
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c. For this case z (t) = Aexp (jwot — jm/2) = —jAexp (jwot), take the product, inte-
grate over time to get

T T
lim / sOFWd = lim - / (A exp (jwot)] [ A exp (jwot)] dt
- ] 2 - T
= lim / exp (j2wot) dt =0

by periodicity of the integrand

Problem 2.73

o) = §x<t>+fﬁ<t>exl (F) = 2X () + 37 [-jsen (N X (F)
=[5+ 0] xw
_ { $X(f), f<0
X, f>0
b. It follows that
) = o0+ 13 0)] e G2rhn
= X ()=l tsm(f— RIX(F— o)

{ 05 f<f0
3X(f—fo), f>fo

c. This case has the same spectrum as part (a), except that it is shifted right by W Hz.

That is,
3 (t) = [233() ;E(t)} exp (j2rIWt)
- Xalf)= [+ - W) X (- w)
d. For this signal
o) = |32~ 33z )] exp (Gmw

— Xal) = |- s - w2 X (- Wy
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Problem 2.74
The Hilbert transform of the given signal is

Z(t) = 2sin (527t)
The signal x, (¢) is

zp(t) = a(t)+5z(t)

2 cos (527t) + j2sin (527t)
963527t

a. We have, for fo = 25 Hz,

@ (t) = xp (t) e 2ol = 9¢152mt o =380mt — 90327t — 9 cos (2nt) 4 j2sin (27t)

zr(t) = 2cos(27t)
xzr (t) = 2sin (27t)

b. For fy = 27 Hz,

T (t) = 26752 7T — 90702 — 9 cos (2nt) — j2sin (27t)

zr(t) = 2cos(2mnt)
xr(t) = —2sin(27t)

c. For fy =10 Hz,

T (t) = 2e992memI20mt — 96T32T — 9 o (32nt) + 52 sin (327t)

zr(t) = 2cos(327t)
xzr(t) = 2sin(327t)

d. For fy =15 Hz,

T (t) = 26752 mI30m — 90I22™ — 9 cos (227t) + 52 sin (227t)
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zr(t) = 2cos(22nt)
xr(t) = 2sin(227t)

e. For fo =30 Hz,

T (t) = 2752 =I00m — 9=38T — 9 cos (8t) — j2sin (87t)

zr(t) = 2cos(8nt)
xr (t) = —2sin (87t)

f. For fo = 20 Hz,

I (t) = 26757 mI40m — 90712 — 9 cos (127t) + 52 sin (127t)

zr(t) = 2cos(127t)
xr(t) = 2sin(127¢)

Problem 2.75
For t < 7/2, the output is zero. For |t| < 7/2, the result is

a2
a2 + (2rAf)?
X {COS 27 (fo+ Af)t — 0] — e 72 cos 21 (fo + Af) t + 9]}

y(t) =

For t > 7/2, the result is
(/2) e
a? 4+ (2rAf)?
X {e‘”/Q cos 27 (fo + Af)t — 0] — e /% cos 2 (fo + Af) t + 0]}

yt) =

In the above equations, 6 is given by

6 =—tan " <27rAf>

«
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2.2 Computer Exercises

Computer Exercise 2.1

% ce2 1.m: Amplitude spectra and Fourier series synthesized

% for various periodic waveforms

%

% R. Ziemer & W. Tranter, Principles of Communications, 7th edition

%

clear all; clf

N = input("Number of harmonics in Fourier sum => ’);

T = input(’Period of periodic waveform => ’);

A = input(’Amplitude of waveform => ’);

n = -N:1:N;

I type = input(’l = rect pulse train; 2 = HR sinewave; 3 = FR sinewave; 4 = triang
pulse train; 5 = triangle wave; 6 = sawtooth wave => ’);

X = zeros(size(n));

if I type ==

tau = input("Width of rectangular pulse => ");

t0 = input(’Delay of rectangular pulse center => ’);

d = tau/T;

X = A*d*sinc(n*d).*exp(-j*2*pi*n*t0/T);

elseif I type ==

I=findln==1|n==-1);

IT = find(rem(n, 2) == 0);

IIT = find(rem(abs(n), 2) ==1& (n =1 & n "= -1));

X(I) = -0.25%*n(I)*A,;

X(II) = A./(pi*(1-n(II).*n(I1)));

X(IIT) = 0;

elseif I type ==

X = 2*%A./(pi*(1-4*n.*n));

elseif I type ==

tau = input("Half width of triangle pulse => ’);

t0 = input(’Delay of triangle pulse => ’);

d = tau/T;

X = A*d*sinc(n*d).*sinc(n*d). *exp(-j*2*pi*n*t0/T);

elseif | type == 5

I = find(rem(abs(n), 2) == 1);

X(I) = 4*A./(pi~2*n(I)."2);

elseif I type == 6
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I = find(n"=0);

X(T) = 2*A*(-exp(-*2*pi*n(D)+(1 - exp(-*2*pin(1)))./(*2*pi*n(1)./(F*2*pi*n(D);
end

subplot(2,1,1), stem(n, abs(X)),xlabel(’n’), ylabel(’|X n|), ...

it I type ==

title([Rectangular pulse train; period = ’, num2str(T), ’; delay = ’, num2str(t0), ’;

ampli =7, num2str(A)])
elseif I type ==
title(["Half-rectified sinewave; period = ’, num2str(T),” ; ampli = ’, num2str(A)])
elseif I type == 3
title(['Full-rectified sinewave; period = ’, num2str(T),” ; ampli = ’, num2str(A)])
elseif I type ==
title(['Triangle pulse train; ’; num2str(2*N+1), ’ terms. A =’, num2str(A), ’, \tau =,
num2str(tau), ’, T =, num2str(T) ’ s; d =, num2str(d), ’; t 0 =’ num2str(t0), ’ s’])
elseif I type == 5
title(['Triangle waveform; period = ’, num2str(T),’; ampli = ’, num2str(A)])
elseif I type ==

’ .

title(['Sawtooth waveform; period = ’, num2str(T),” ; ampli = ’, num2str(A)])

end
fn =n./T;
t = -T:T/500:T;

x = real(X*exp(j*2*pi*fn’*t));
subplot(2,1,2), plot(t, x), xlabel(’t’), ylabel(’x(t)’), ...

>>ce2_1

Number of harmonics in Fourier sum => 25

Period of periodic waveform => 2

Amplitude of waveform => 1

1 = rect pulse train; 2 = HR sinewave; 3 = FR sinewave; 4 = triang pulse train; 5 =
triangle wave; 6 = sawtooth wave => 6

>>

Computer Exercise 2.2

% ce2 2.m: Plot of line spectra for half-rectified,
% full-rectified sinewave, square wave, and triangle wave
%
% R. Ziemer & W. Tranter, Principles of Communications, 7th edition

%

clear all; clf
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Sawtooth waveform; period = 2 ; ampli = 1

-2 -1.5 -1 -0.5 0 0.5 1 15 2
t

S o¢p

X(t)
o

waveform = input("Enter type of waveform: 1 = HR sine; 2 = FR sine; 3 = square; 4
= triangle: ’);

A=1,;

n_max = 13; % maximum harmonic plot-
ted; odd

n =-n_max:l:n max;

if waveform == 1

X = A./(pi*(1+eps - n.”2)); % Offset 1 slightly to avoid divide by zero

for m = 1:2:2*n_max+1

X(m) = 0; % Set odd harmonic lines to zero
X(n_ max+2) = -j*A/4; % Compute lines forn =1 and n = -1
X(n_ max) = j*A/4;

end

elseif waveform ==

X = 2*A./(pi*(1+eps - 4*n.72));
elseif waveform == 3

X = abs(4*A./(pi*n+eps));

for m = 2:2:2*n_max+1

X(m) = 0;

end

elseif waveform ==

X = 4*A./(pi*n+eps).”2;

for m = 2:2:2*n_max+1
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X(m) = 0;

end

end

[arg X, mag X] = cart2pol(real(X),imag(X)); % Convert to magnitude and phase
if waveform ==

for m = n_max+3:2:2*n_max+1

arg X(m) = arg_ X(m) - 2*pi; % Force phase to be odd

end

elseif waveform ==

m = find(n > 0);

arg X(m) = arg_ X(m) - 2*pi; % Force phase to be odd
elseif waveform == 4

arg_ X = mod(arg_X, 2*pi);

end

subplot(2,1,1),stem(n, mag X),ylabel(’|X n|’)

if waveform == 1

title("Half-rectified sine wave spectra’)

elseif waveform ==

title("Full-rectified sine wave spectra’)

elseif waveform ==

title("Spectra for square wave with even symmetry ’)

elseif waveform ==

title(’Spectra for triangle wave with even symmetry’)

end

subplot(2,1,2),stem(n, arg_ X),xlabel(’'nf 0’),ylabel(’angle(X n)’)
>>ce2 2

Enter type of waveform: 1 = HR sine; 2 = FR sine; 3 = square; 4 = triangle: 1
>>

Computer Exercise 2.3

% ce2 3.m: FFT plotting of line spectra for half-rectified, full-rectified sinewave, square
wave,

% and triangular waveforms

%

% R. Ziemer & W. Tranter, Principles of Communications, 7th edition

%

% User defined functions used: pls_fn( ); trgl fn( )

%

clf
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Half-rectified sine wave spectra
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I wave = input(‘Enter type of waveform: 1 = positive squarewave; 2 = 0-dc level
triangular; 3 = half-rect. sine; 4 = full-wave sine: ’);

T = 2;

del t = 0.001;
t = O:del _t:T;
L = length(t);
fs = (L-1)/T;
del f=1/T,

n = 0:9;

if I wave ==1

x = pls_f(2*(t-T/4)/7T);

X _th = abs(0.5*sinc(n/2));
disp(* ")

disp(‘ 0 - 1 level squarewave’)
elseif I wave ==

x = 2%trgl fn(2*(¢-T/2)/T)-1;
X th =4./(pi"2*n."2);
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disp(* 0-dc level triangular wave’)

elseif I wave == 3

x = sin(2*pi*t/T).*pls_ fn(2*(t-T/4)/T);
X _th = abs(1./(pi*(1-n.72)));

X_th(2) = 0.25;

X th(4) =0; % Set n = odd coefficients to zero (even indexed because of MATLAB)
X_th(6) = 0;

X th(8) = 0;

X_th(10) = 0;

disp(* ’)

disp(* Half-rectified sinewave’)

elseif | wave ==

x = abs(sin(pi*t/T)); % Period of full-rectified sinewave is T/2
X _th = abs(2./(pi*(1-4*n."2)));

disp(‘ ")

disp(‘ Full-rectified sinewave’)

end

X = 0.5*ft(x)*del _t; % Multiply by 0.5 because of 1/T 0 with T 0 =2
f = 0:del fifs;

Y = abs(X(1:10));

Z=[nY X th

subplot(2,1,1),plot(t, x), xlabel(‘t"), ylabel(‘x(t)’)
subplot(2,1,2),plot(f, abs(X),’0’),axis([0 10 0 1]),...
xlabel(‘n’), ylabel(‘|X nl|’)

% Unit-width pulse function

%

function y = pls_ fn(t)

y = stp_fn(t+0.5)-stp_fn(t-0.5);

function y = stp_fn(t)
% Function for generating the unit step
%

y = zeros(size(t));
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I = find(t >= 0);
y(I) = ones(size(I));

function y = trgl fn(t)

% This function generates a unit-high triangle centered
% at zero and extending from -1 to 1

%

y = (1 - abs(t)).*pls_fn(t/2);

%

% End of script file

A typical run follows with a plot given in Fig. 2.13.

>>ce2 3
Enter type of waveform: 1 = positive squarewave; 2 = 0-dc level triangular; 3 = half-rect.
sine; 4 = full-wave sine: 3
Half-rectified sinewave

Magnitude of the Fourier coefficients
n FFT Theory
0 0.3183 0.3183
1.0000 0.2501 0.2500
2.0000 0.1062 0.1061
3.0000 0.0001 0

4.0000 0.0212 0.0212
5.0000 0.0001 0

6.0000 0.0091 0.0091
7.0000 0.0000 0

8.0000 0.0051 0.0051
9.0000 0.0000 0

Computer Exercise 2.4
Make the time window long compared with the pulse width.

Computer Exercise 2.5

% ce2 5.m: Finding the energy ratio in a preset bandwidth

%

% R. Ziemer & W. Tranter, Principles of Communications, 7th edition
%

% User defined functions used: pls fun( ); trgl fn()
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%

I _wave = input("Enter type of waveform: 1 = rectangular; 2 = triangular; 3 = half-rect.
sine; 4 = raised cosine: ’);

tau = input("Enter pulse width: ’);

per_cent = input('Enter percent total desired energy: ’);

clf

T = 20;

f=1;

G =

del t = 0.001;

t = 0:del t:T;

L = length(t);

fs = (L-1)/T;

del f=1/T;

%n=[0123456789];

iftI wave ==1
x = pls_fn((t-tau/2)/tau);
disp(’’)

disp(’ Rectangular pulse’)
elseif I wave ==
x = trgl fn(2*(t-tau/2)/tau);
disp(’ ")
disp(’ Triangular pulse’)
elseif I wave == 3
x = sin(pi*t/tau).*pls_fn((t-tau/2)/tau);
disp(’ ")
disp(’ Half sinewave’)
elseif I wave ==
x = abs(sin(pi*t/tau).”2.*pls_fn((t-tau/2)/tau));
disp(* ")
disp(’ Raised sinewave’)
end
X = fit(x)*del t;
fl = 0:del _f*tau:fs*tau;
G1 = X.*conj(X);
NN = floor(length(G1)/2);
G = GI1(1:NN);
ff = f1(1:NN);
f = f1(1:NN+1);
E_tot = sum(G);
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E f= cumsum(G);

E W=[0E {]/E_tot;

test = E_ W - per cent/100;
L_test = length(test);

k=1;
while test(k) <=0
k = k+1;
end
B = k*del f;
if I wave == 2
taul = tau/2;
else
taul = tau;
end
subplot(3,1,1),plot(t/tau, x), xlabel(’t/\tau’), ylabel(’x(t)’), axis([0 2 0 1.2])
if | wave ==
title(["Energy containment bandwidth for rectangular pulse of width ’, num2str(tau),’
seconds’])
elseif I wave == 2
title(["Energy containment bandwidth for triangular pulse of width ’, num2str(tau),’
seconds’])
elseif | wave == 3
title(["Energy containment bandwidth for half-sine pulse of width ’, num2str(tau),’
seconds’])

elseif I wave ==
title(["Energy containment bandwidth for raised cosine pulse of width ’, num2str(tau),’

seconds’])

end

subplot(3,1,2),semilogy (ff*taul, abs(G./max(G))), xlabel(’f\tau’), ylabel("G(f)’), axis([0
10 1e-5 1))

subplot(3,1,3),plot(f*taul, E_ W), xlabel(’f\tau’), ylabel CE_ W’), axis([0 4 0 1.2])

legend ([num2str(per_cent), '% bandwidth X (pulse width) = ’, num2str(B*tau)],4)

% This function generates a unit-high triangle centered
%o at zero and extending from -1 to 1
%

function y = trgl fn(t)
y = (1 - abs(t)).*pls_fn(t/2);

% Unit-width pulse function
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Energy containment bandwidth for half-sine pulse of width 2 seconds
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%o

function y = pls_ fn(t)

y = stp_fn(t+0.5)-stp_ fn(t-0.5);
%o

% End of script file

A typical run follows with a plot given in Fig. 2.14.

>>ce2 5

Enter type of waveform: 1 = positive squarewave; 2 = triangular; 3 = half-rect. sine; 4
= raised cosine: 3

Enter pulse width: 2

Enter percent total desired energy: 95

Computer Exercise 2.6

The program for this exercise is similar to that for Computer Exercise 2.5, except that the
waveform is used in the energy calculation.

Computer Exercise 2.7

Use Computer Example 2.2 as a pattern for the solution .



