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CHAPTER 1

1.1 (a) #(p) = - pinp - (1-p) 2n(l-p) nats.
2
d 1-p . 1 d L
—_— = = T = e— d'—" = — < .
T 7 (p) = &n . 0 p =7 an dpzej?(P) i) 0
. 1
(b) 2 P H(%,) = p°log — + 1-p)1 L
2 )) =P gpz p(1-p)log = —s
2
1 2
a.a P + p(1-p)lo + (1- lo
11 p{l-p)log —1— (1-p) "log 2
p(1-p) (1-p)
il 1
a.a )- =2[ 1 = 4 " —
122 P(-p) ERLoEs- (1-p)log l-p]
% Pdp) = 2.2 ()
2
a,a, (1-p)
(c) 1) HGH = log 52 = 5.7 bits
ii) H@) = log 13 = 3.7 bits
" _3 .13 .10, 13 _ .
iii) H@) = 13 log + 13 log 10 .77 bits
(d) i) H(fair die) = log 6 = 2.58 bits
ii) P(k) = kC k =1,2,3,4,5,6
6 6
ZP(k)=CZk=1——-~—>c=z'.‘.
k=1 k=1

& x
== H(JZ[) =2-2—l-10g
k=1

21

1.2 Inequality (1.1.8) gives

i)

ne@d) .. aM'W)

< - i : o8\ es
"%E Py(u)log agzgy i ((SREEERRE NS

Choose Qu(u) z ﬁ- P(n) (u)

n=1

1
= %: Py(u)log P

o 2.39 bits

P ()

where



P(n)oﬁg =2 > P, (w) n=1,2,...,N.

1+n uy
are the marginal probability distributions. Then

H(‘7/(];) 50 ,OZ/(N)) f_ZPN(u)( % log —l——)
u n=]1

P(n)(un)

- 1
= Z(ZP (u) log —-——)
AT P ()

N
-2 (ZP‘“) (u)log — )
n=1‘y P(n) (u)

N
=3 na™).

n=1

ith lity iff P _(u) o - L
with equality i y e 'n;P (H")
n

1.3 (a) Given discrete random variables x,y € & x % with joint

probability P(x,y), we can define marginal probabilities

P(x) =ZP(X,Y), P(y) =ZP(x,y) and conditional probability
y X

P(y/x) = P(x,y)/P(x). Then using inequality (1.1.8),

H(% |2) 22,0, P(x,y)1og 1
el P(y[x)

: 1

=) P(x) P(y|x)log )
%“, (; P(y[x)

§ZP(x>(ZP(ny>1og %},))
X y

1
;2(}}{: P(X)P(le)) log 1)

H(Z). o))

(1)

Now fix N and consider sequences geﬁ?/N =9 x...xo?/(N) where

k
52/( ) =39/ is the alphabet of the ktP term in the sequence. Using

2



the relations

Pnlug, .. 00) © “1,...,“N-1) ER Lo
N
=TrP(un ul nl) P(U)
n=2 D O00p
we have
H(asy) = By p) + H(OZ/(N) u?;1)}{._.}{,2/@—1)) x
and ‘ 8 )
weg) = n(#fV)+ 3 H(@;ml,”u)xmx%m n) o
n=2

Note that from (1) we have

H(J <l) }?Zl(n-l))_{ (szn) OZ}Z)X. c .x@/(n—l) )
= H&éb-l)‘qél)x...qu(n_z)) (4)

where the second equality comes from the stationary property. Hence

(3) is bounded by
HGy) > (3

Using (5) in (2) gives

@}l)x...qu(N_l)) (5)

HO4) < B 1) + 3 H@L).
or 1 ) 1
N M%< 77 B ) - ©

Then
HOZ)  H@4)
n B k

for k < n.

(b) This follows directly from the proof of Theorem 1.1.1

when we define

S(N,e)

|

{E . 2—N[H+e] S-PN(En) §>2—N[H—e]}.

and use lim FN =0 from (1.1.31) to (1.1.33).
N->0



1.4 (a) 02 = E{(x—m)z} = E{(x-—m)2| |x-m| > e} Pr{|x-m| > €}

+ E{(x—m)zl |x-m| < €} Pr{|x-m| < €}

> E{(x-—m)2 |x-m| > €} Pr{|x-m| > €} > ezPr{lx-mI > el
N
Var{l EZ }
1 . 1y - Noa®
(b)Pr{g:ﬁz_zni Z+el <prily Lz - 2| >e¢) 5
n=1 n=1 &
2
X _©
N€2

N
s[): z - N(H+€)j|
. For ue S(N,€)+ we have 1 < 2 L , 8 > 0.
| —— - N

s[z Zn-N(H+€)]
FN*' =T ¢ T pyw2 "

ye S(N,e) . ue S(N,e)

N
s [Z z N (H+s)]

n=1
<2 Byw?
u

Hence,

N
ey

{Zs[zn-(me)]}

n=1
_ ,~NG()
where G(s) = s(Hte) - log E{Z"Z}.
& 1-s
= g(H+€) -log{z P(ak) }
k=1

and G(0) = 0.
Next note that

A
1-s 1
PO ELE Tow

.di(_s_)_ =H 4+ ¢ - =l
ds A 1-s
2, Blay)
k=1
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where

ds
$=0
and
2 A ‘) A 2
d 6G)_ _| 30, (a)(1o0g )_ >0 (a,) log
252 -t s ‘A P(a,) = s 3y P(a,)
<0

since this is negative of the variance of log i%ﬁ? with respect to
distribution

P(u)l—’
A

E:P(ak)l—s
k=1

Q (u) =

Thus, there is a unique maximum of G(s) for some 5*> 0 where

*
G(s*) > 0. Then we have F; 5_2~NG(5 ). Similarly we get
_ N2 **k -
FN <2 NGE(s™) where G(s**) > 0. Then
* %o kk
> = -NG(s™) -NG(s™")
= <
BT L IE 2 + 2

.6 Multiply the inequalities
log == < £(u) < log —0— + 1
Py(w) = 7~ = Py (w)

by PN(u) and sum over all gequ. Then

H(%N) < <L, > < H(JZ/N) e

N
But from (1.1.14), H(@VN) = NH(%) giving us (a) and (b). To show

< L(u) == 272 (w)

(c) note that in (a) the inequality log §%GY'— < P(u)

Hence we satisfy the Kraft-McMillan inequality,

Bet o @ =k
u u



The solution is best understood in terms of a tree diagram where
left directed branches correspond to "0" and right to "1". Each
node corresponds to a binary sequence so that code words can be

represented as nodes in a tree such as

0 =« -1

000 001 100 101 110 111

If node (a) is selected as a codeword of length 2, then in order
that no other codeword have 0l as a prefix no nodes that branch out
from node (a) can ever be selected as a codeword. Hence we can ter-
minate the branching at this node. Thus uniquely decodable codes
with the property that no codeword is a prefix of another codeword
corresponds to nodes in a tree where no codeword node branches out

2 2, be the

17 “ps sty
A :
set of codeword lengths where £ 2o < 0o £ 8,. If E 2_52'1 =1
i=1

from a shorter codeword node. In general, let %
<

I = "2 A

then we can easily find such a code with these lengths where all

branch paths of the code tree terminate in a codeword node. If
A

2: 2“5Ll < 1 then some branch paths can continue forever without

i=1

encountering a codeword node. Let §1 be any node sequence with Kl



branches leading to it and denote it the first codeword. There re-
main 2£l—l unterminated nodes at the same level that can be a code-

word or a prefix of a codeword. If Rz = 21 choose any one of these

remaining nodes as the codeword node of sequencelgz. I3 22 > 21

then use any one of these as a prefix and proceed along any 22 - 21

additional branches to find a codeword node of EZ' There now remains

(er_l) 221“21

-1 nodes at the level KZ that can be a codeword or a

prefix of a codeword. Continue in this manner until XA is selected.

If at any point this procedure cannot be completed because of no

A

remaining nodes then z: 2—Ri > 1, which is a contradiction.
i=1

1.7 (a) (25 %) = P log 2Xr.x) _

1.7 (a) (25 %) ZE 7,0 108 534 G

_ZEP(y x)log ZZP(y x)log——(;l—y—

: V
H(Z) H(.'Zl”l &)

-

But H(Z'|#) > 0 (see 1.1.9) so I(X;%) < H(Z) and by symmetry
(%) < H(%).
(b) Use P(x,y) = P(y)q(x|y) in

1
H Q", = 5 P = B
(X, %) E:%:P(x y) log P(x,y)

1 1
§§P(x’y)1°g PG " };?P(X’ynog aGx[y)

H(%) + H(Z'|%).

1.8@gq 0o e © 0 P(0) = q(l-p)
P E P(E) = P
1-q 1 1-p o1l P(1) = (1-q)(1-p)



. - " 1P P - P
(A5 %) = q(1 F')l°g(q(1—‘p))+ qp log (P)+ (1-9)p log(P)
‘ 1-p
+ (1-q) (1-p)log (m)
= (1-p)#(q)
q = %-maximizestzf(q) so C = 1-p.
®aq 0 o V2o 0 p0)=2%4
1/2
1 s
l-q 1 o— o 1 P(1) =1 - 2 4
1 1
I(a;%) = -]2; q log lL +%q log -]—_2—- + (1-q) log ll
7 ¢ 2 e

1 ' 2
log = + (1-q) log {=—
G (1-q) g(z_q

& raia) =Liog (29 1-0=>q=2
5
Hence C = log Z

1.9 Since the encoder keeps sending the information symbol until an
unerased channel output is achieved there is no error and Pe = 0.

The probability that n channel symbols are transmitted for an infor-

n-1

mation symbol is Pn = (1-plp . The average length of a codeword
is thus - o
-1 1
L= nP = n(1l-p) P
r?:‘l B nz—:l 2 Lp

Thus R = %—= 1 -p bits per channel use is the rate which also equals

the channel capacity (see problem 1.8a).

. oy o !
1.10 There are two coins Cl and C2 where P(HICl) A and P(H|C2) 4

Here Q(Cl) = q(Cz) = %'are the probabilities of selecting each coin.



1
We can interpret this as a BSC with p =73 s follows:

i 3/4 pegn |
2 C1 o] 172 o H P(H) = >
1/4

1 3/4 21
2 C20 O’Il P(T)_z

Y = 3/4 _ 3 4;

(a) I(Cl,H) = log 12 = log 2 bit
. _ 1/4 _ N .
I(CZ’H) = log 172 = log > 1 bit

®) I@X;%) =1 —x(%) bits.

1.11 (a) There are 13 ways one coin may be heavier, 13 ways one coin
abmted

may be lighter, and the possibility that all coins weigh the same.
Thus we are attempting to determine one of 27 possible situations
using a balance and a known standard coin. We are thus asked to ob-
tain at most log 27 = 3 log 3 bits of information on the average.
Each weighing has 3 possible outcomes (left, right, balance) and
provides at most log 3 bits of average information. Two weighings
has 9 possible outcomes and at most 2 log 3 bits of average informa-
tion. Three weighings has 27 possible outcomes. Clearly two weigh-
ings cannot guarantee determining one of 27 possible situations
while with three it may be possible.

(b) The maximum amount of average information from three weigh-
ings is log 27 which is achieved if all 27 weighing sequences are
equally probable. This means that we must choose a weighing strategy
where the outcomes of each weighing are equal probable and each

weighing outcome is independent of other weighing outcomes. Clearly



each weighing must reduce the number of possible cases by 1/3.
Strategy: Let S denote the standard coin, C denote a coin that can
be heavy, light, or normal, h denote a coin that is heavy or normal,
and 2 denote a coin that is light or normal. We start with 13C and
an S.

1st Weighing: Set aside 4C and place 5C on the left pan and 4C + S

T Balance => 4C remain

Left => 5h, 4% remain
Right == 5%, 4h remain
5C 4C + S

Note that for each of the three possible outcomes we have 9 remain-

on the right pan.

ing unknown possibilities to be resolved with two more weighings.

2nd Weighing When lst Outcome is Balanced: Of the 4C set aside C

and place 2C on the left and C + S on the right.

f

Balance => C remain
Left => 2h, £ remain

Right = 2%, h remain
2C C+S5S

Note that here each outcome leaves only 3 remaining unknown possi-

bilities to be resolved with one more weighing. The third weighing

given the 2nd weighing outcome is as follows:

10



(i) Balance: Place C on the left and S on the right.
(1i) Left: Place h on the left and h on the right.
(iii) Right: Place & on the left and % on the right.

2nd Weighing When lst Outcome is Left: Of the 5h and 42 remaining

set aside h + 2% on the left and 2h + £ on the right.

f

Balance => h, 2% remain
Left ==> 2h, £ remain
Right == 2h, £ remain

2h + 2 2h + &

One more weighing easily resolves the 3 remaining unknown possibili-
ties by placing the same type of coin on the balance. That is, if
2h, 2 remain then place h on the left and h on the right.

(¢) Without a standard coin we cannot always reduce the number of
unknown possibilities by 1/3 with each weighing. This is a neces-
sary requirement.

1.12 Using (1.1.8) we have

Py = 1 o s =
Hi(u?/) —zu:Pi(u)log Pi(u) _{?Pi(u)log Px(u) , 1=1,2.

Hence AHl(QV) + (1-)) HZ(QV)

| A

1
N l:)\Pl(u) + (1-)) P2(u)j\ log N

u

1
= ?Pk(u)log W = H, (@).

2
L YR
2
. 1 20
1.13 Let F(y) = e Y . Then (1.1.8) gives
\/2 2
™o

y

11



o] o]

/P(y)log -P—%;)— ff’(y)log -,:—- dy fP(y) {—l— log e + l1og (Zno ﬂ
y

s P&

=1 1 2y_ 1 2
= 21og e + 21og (2ﬂ0y) 21og (2neoy)

with equality when P(y) = ﬁ(y) or y is a Gaussian random variable.

For the additive Gaussian noise channel we have

_ x)?
202

1
y|x) =——e
P JZHOZ

With input probability density q(x), the average mutual information

is

o - [ p 1
(A5 %) oo_/'P(y)log 1) dy /q(X){fp(ﬂX)log PO dy} dx
But

[o¢] oo 2
- 1 2
-;/(%(le)log FY%T;Y dy =./rp(y|x){£§;§l— ot Eiog (2mo )}dy

= %1og (Zﬂeoz)

Using this plus the above bound we have

I(a; ) f_%iog (2ﬂe0§) - %10g (2ﬂe02)

with equality if and only if y is a Gaussian random variable. It is

Gaussian if

2
= 2
qx) = ——e 2¢
Vv 2né&
2

with the result that 05 &+ 0. Hence

2



2
g

which is channel capacity.

1.14 From problem 1.6(b) we have inequalities

- log PN(g) 5_2(5) < - log PN(g) + 1.

Thus
- log Py(w) .
2(u) -
and
- log P () (u) -1
L(w) = (W L(w) — log Py (w)
But
P (u) = . P(u ) < ) = p(u*)N
x i u <TT P = P(u
n=1 n:l
and
log Py (u) < N log P(u”)
Hence
- 1 . - loi(P§(g) o
N log P (u*) £
and
1y — = Hy < 1.
N log P(u®)
- log Py(u)
If H. = 1 for all N then —m—m—————=1 for all N.
N 2(u)

Hence PN(g)= 2—1(9) for all N which is possible only if PN(E) = Z—N

and the source is a BSS.

13



1.15 For u € S(N,¢),

N[H(%) + €] < 2(u) < N[H(%) + €] +1

and
N[H(%) - €] < - log P (w) < N[H(®%) + €]

Thus for u € S(N,¢),

N[H@) - €] 108 By(W

= log Py (u)

(1

(2)

: <1
1+ N[H(%) + €] — 2 (u) -
For u € S(N,¢),
N log A < f(uw) <N logA+1
and
- N log P(u*) < - log PN(g) < = N log P(u*¥)
where P(u**) = min P(u) > 0. Thus for u € S(N,g),
S
- N log P(u®) < - log PN(E) < =N log'P(u**)
N logA+1 — 2 (u) = N log A
Define FN = Pr {g € S(N,e) }and using the form
H =EP W |~ log PN(E)
NG NI\~
- log P_(u)
N ~
Enew (), 2 e
ue S(N, &) Y€ S(Ng)

we have from inequalities (1) and (2),

*
HN>M(1_FN)+—N1°gP(u)F

— 1 + N[H+e] Nlog A+ 1 °N

*
__H -~ el (1_FN) £ = log P(ul} F
H+ ¢ +-§ log A +'§

N

m;I;g since R— 0,

N = o

14
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and

- N log P(u*) A
N log A N

< Q-F) +

=a

1 - F. - log P(u**)
N log A N

Hence for any £ > 0,

H-¢€
< lim <1
H+ € = e HN =
or
lim =1
N—rooHN

-] —

15



CHAPTER 2

2.1 (a) ] ; | The noise compo-
Xl * Xga”‘ X3{ X4 nents in the per-
l
— __*__~.I___ _— e ~4. — e pendicular coordi-
l l nate directions are
a3 =%
Xs! Xe X7| Xs
L % ; ) | 1 L independent with
T T ] T -
-3a | -a a ! 3a variance NO/Z.
X, | Xat X | X
9 | 10 11! 12 Let q = Pr{n>a}
SR _r —_— 4_ —_—— -
x -Q\/—Z—a)
X | Xat X, X I\
13 14 15 16
| o) l . i &
a o) L3 oo &
av 16 i1 i
= lOa2
2 =
P, =P, =P, =P = Pr{n,<a,n. <a} = (1-q)
© %% Ci3 C L
P, =P, =P, =P =P =P, =P, =P =Pr{n <a,-a<n.<a} = (1-q)(1-2q)
C2 C3 C5 C8 C9 C12 C14 C15 1 2
2
P, =P, =P =P = Pr{-a<n <a,-a<n,<a} = (1-2q)
C6 C7 ClO Cll 1 2
Hence
it 2 2
P = 15 [40-9)% + 8(1-q) (1-2q) + 4(1-20)°]
l,[ 2 2]
=% | -9)" + 2(1-q) (1-2q) + (1-2q)
1 2 _ (2-39)? 3 )2
- 7 [ao+ a2 = (B2 - (1-24
and

a9 2
Pp =3¢ -74q

(b) Rotation and translation does not change PE'

16



(b) Am = {Z:llx’x_,mlllz < llz-§m“ fFor Q“ h\.#Mi m = 1’2,"'97 are

the optimum decision boundaries. We have

s = {y: H:/_-zcmll2 < VE2Ye A m=1,2,...,7.

Hence
PEm - Pr{ziAm|§m} < Pr{z¢5ml§m}
<
_ 2, 2 é”}_ Y
= Pr{nl+n2 > i e 0 =1,2, 57/
L 1 '_(15_
PE=—7' PE e 0
m=1l m

17



2.3 PE < 2: PE(Eﬁm‘) where
- m m'+m
(ot Q(|l§m-_m|||> . .
P (mrm?) = |8 ere we have
£ \/ZNO
|’§1"§ml!l =v4§_ m' = B0 a6 54

l'§2_§mlll = VCé— m'" = 3,7

[18,=S0 1] = V3& ' =46
lIs,=sa || = 2v& o =5

Pp 2 X2 1"1~:(1*”")=6Q( 2(1\?)

17
0)+a< ﬁf)

PL < 2 P <2+m)-za(\/2‘;~)+ za(\/h

2 l+2 0.
By symmetry P =P =P =P =P =P <P
E2 E3 E4 E5 E6 E7 E1
Hence
(o3
P <P <6Q( )
E El 2N0
_ &
4N
From problem 2.2 we have PE <e 0 which is "exponentially" the

same since Q(x) is bounded as shown in (2.3.18).
= 1 L
2.4 (a) Choose ¢m(t) =T xm(t) m=1,2,..., M as the orthonormal
basis. Then x__ = v4§é m,n = 1,2,..., M and ||x Ilz = & for all m.
mn mn -m
The decision boundries become

2 2
Am = {Z:'!IZ-x_ml| <l]Z—§m,|l for all m'4m}

{y: (y,x )>(Z,x ) for all m'+m}

. ' 2
{y: Y, >V for all m 4m} m=1,2,...,M.
Hence by symmetry,
P.=P, =1-P =1 - Pr{yl>ym for all m+l!§l}
18



(b) Given x, was sent we have probability density functions for the

i
independent random variables Yi» y2,...,yM given by

_ g-ver:
N
1 0
p. (y) = e
y1 VﬂNO 2
o
p. (y) = 1 e 0 m= 2,3, ,M
ym Vv ﬂNO

Hence
Pr{ym<yl for all m % l|§l}

o]

=fPr{ym<oL for all m+l|}~<l,yl=a} py (o) do
i

-00

(¢) Using & = (?blogzM, the fact that as € gets small 1In(l+e)

x2/2

behaves as £, and Q(x) behaves like e

lim ln[l— a(x+,/2é° logM/N )}M'l
e b 0
1im (M-1) 1nl:l- Q(x+,/2 é"blogM/No )]

for large x,

Moo
= -1lim M Q(x+,/2 é"blogM/NO)
Moo
1 2
= -lim M exp {- 7 x+ 2 eblogM/N0
Moo
£blogM
= -1im M exp < - ;—_Tf—__
Moo 0
y- ‘o
N01n2
= -1lim M
Moo
&
- o 5 ﬁh- < 1n2
- 0
&
0 { ﬁh > In2
0



Hence

&
0 o Tl In2
M-1 Yo
lim | 1- Q [(x+V/2&/N =
0 é%
Mpeo 1 3 = > 1n2
N
0
But
Pr{y _<a for allm#ihﬁjyl al
M
= TT-Pr{ym<a|§1}
mz=2
M-1
)
N0/2 ,
. _ (o= V€&
ence - M-1 N
a 1 0 d
P_=1 -f I: -Q } —— e o
-00 - 2
X
1 T2 7& \1'51
=1 -— e P:—Cl(x-k N :] dX
V 2m =eo 0
2.5 (a) K= 1= % =,/&/2 [1 1], %, = V&2 [1 -1]
1
and (x1,~2) (&/2) [1 1] [ ]= 0.
-1
Let Qéfi denote the ith row of ’HK—l and hK the i et row of HK 3
The codewords of length M = 2K are given by
e K-1
(1) (1) (1) (+2" 7)) _ [, (1) e
[ 1 on)| and b - [~ Do), am1,.,2

H

or

Suppose(héli, héii) 0

Then

héii héf), (Ji ~(fi) =0 foralli$j<

and

(€5 (

a

(3 i)
(bK—l B-10 Bxo1 &g

114 4§ < 21

) = 0 for all 1, j <

20

A
N



yields
(13121) r}éj))=o for all 1 4 j < 2K .
(b) Note that (héi), béj))= (?61j. Hence 1f we subtract the 1°°

product term of this inner product we have

(e -

(&),%,) = gajk—g/ml B
& .

“wTTwmTo itk

(c) Let a =y/&/M [100 ... 0]. Then the orthogonal signal set
{béi)}and the simplex signal set are essentilally related by a simple

translation of the signal set given by,

LT géi)— S O T S

(Since the FBt component of %

WD

~

1 is always "0" we can ignore it.) This

means the error probability of the orthogonal signal set of energy

M
£)=(§'(ﬁ:I) is the same as the error probability of the simplex signal

set of energy &'.

M
(d) Let W = Z %;- Then,
i=1
osww=YX% (x4,%,)
13 L
-3 (x,,%,) + 20 (x,%.)
T T
=M&+ zi,h (:Si,x )

or
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or 1
1 2 2(x5%) > -7

= —
EMM-1) i3y 4

(e) Let z Zy be an orthogonal signal set of energy & .

ZysZgsee s
Then (gi,gj) =(§GiJ

Let

:zlr—-

M
Zu

and consider the translation set formed by

Zi = Ei - §
Then
Gi0¥5) = (§i‘§’éj'§)
= (51’53) = (z ,a) - (z a) + (a, a)
- ésij - aé/M - a&/M + o &/
(d§(1—2a/M+a2/M)
T2
lé"(cx -2a) /M
Choosing
&€ and o to satisfy the equations,
& 2
&€ = & (1-20/M+0° /M)
and

2
&p =& ~20) /M ,
yields a signal set {yi} with the same energy and inner products as
the signal set {gj}. It then has the same error probability and

& _ & (1-p)
PE(NO ’ p)_PE( No 7 O).

W : _%
2.6 (a) h(t) = 1 1wt oo le 1 eJﬂWt-e jmae _ sinmWt
. 2 w e Y= 2mw i1t Wt
-TW
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z(t) y(t) v(5)

= h(t) o \W
€=
y(0 = [ -0z ar < fSRHED] , 4
0]

(o]

and y(ﬁ) =/°-° sin[TrW(% —T)] A =fz(t) sin nw( ﬁ)]

W n o
0 “w(ﬁ ’T) 0 ( "W
(c) In Figure 2.9, y(t)@zn(t) is integrated over [(n-1)T/N,nT/N]
where V2 sinfmi(e- 21]
<I>2n(t) = o sin u)OT c
W (t- W)
Thus B nT/N sin[ﬁw(t _ %)] .
Yon —f y(t) \/Z_Sinwot o dt .
(n-1)T/N “W (t - W)

Replace the integration over [(n-1)T/N,nT/N to [O, °°) we obtain

5§ sin[ﬂW(t - =
Von fy(t) ﬁ sin Wyt

n
0 TTW(t —ﬁ)

which is the process in Figure 2.11.

dt

Ei (a) Here y(t) = ynq)n(t) where ¢>n(t) = /2N/T sin wot for (n-1)T/N

<t< nT/N whereas we compute

nT/N
v = [ 3 ehoa
(n-1)T/N

where

0! (£) = V2N/T sinlw +iw) (t-(a-1)T/N) + ¢],

(n-1)T/N<t<nT/N.
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T/N wOT
Using.//.cos[(2w0+Aw)t+¢]dt = 0 since — >> 1

N
0 nT/N
we have y:l v, _/(on(t) g (t)dt
(n-1)T/N
nT/N
v, f (2N/T)sin we sin[ (W +Aw) (t=(n=1)T/N)+o]
(n-1)T/N

T/N

Y J/”(ZN/T)sin wot sin[(w0+Aw)t+¢]dt
0

T/N
yn(N/T).)/ﬁ{cos(Awt+¢) - cos[(2wO+Aw)t+¢]}dt
0

T/N
yn(N/T)/Z cos (Awt+¢) dt

0
T/N

yn(N/T)J/ﬂ {cos Awt cos¢ - sin Awt singldt .
0

We assumed here that wOT/N is a multiple of m. Also since AWI/N << |

12

we have sin Awt = 0 for 0 < t < T/N .

Hence T/N
Yr'l = yn(N/T)coscb /cos Awt dt
0
_ sin (AWT/N)
= ¥, cosé ( (AWT/N) )
(b) Here nT/N
Y;n = ~//‘Y(t) V2N/T sin(w0t+¢)dt

(n-1)T/N
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