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CHAPTER 1

3 1-3 in 1 ^
iii) H&) = log

^ + log = .77 bits

(d) i) H(fair die) = log 6 = 2.58 bits

ii) P(k) = kC k = 1,2,3,4,5,6
6 6

cx; k = i &amp;gt; c = J-

k=i

X) 2^
lo ^ = 2 39 bits

k=l

1.2 Inequality (1.1.8) gives

2 PN (u)lo g -^-r-
u N V ~ ;

-E PM (u)log -r-r-r- -

(= iff Q (-) = p (.))

Choose QN (u) - TT p (u ) where

n=l



P
(n)

(&quot;n
) =Z Z P

N (u) n = 1,2,...,N

u

are the marginal probability distributions. Then

TT &quot;

\~~i p(n (,,
&amp;gt;

\n=l ^u *n

N

I
n=l\ u

n

u

n=l

N
*^\

with equality iff P
N (U) r JJ* p (l4w^

nr|

1.3 (a) Given discrete random variables x,y e ^Tx^with joint

probability P(x,y), we can define marginal probabilities

P(x) =J^P(x,y), P(y) =^P(x,y) and conditional probability
y x

P(y/x) = P(x,y)/P(x). Then using inequality (1.1.8),

p
x y

y

x

x

y \ x

(1)

Now fix N and consider sequences ue^ =ty/ x...x^ where

(k) &amp;gt;,=
&amp;lt;%/ is the alphabet of the ktn term in the sequence. Using

2



the relations

Vu
i,

= P(UN

N

TTPCu.
n=2

n 1,
u ) P(u )

. , n 1 l

we have

and

n=2

(2)

(3)

Note that from (1) we have

where the second equality comes from the stationary property.

(3) is bounded by

(A)

Hence

(5)

Using (5) in (2) gives

or

Then

(6)

for k &amp;lt; n.
n k

(b) This follows directly from the proof of Theorem 1.1.1

when we define

S(N, ) =u :~ &amp;lt;PH (u) &amp;lt;

M ~n

and use lim F
N

= from (1.1.31) to (1.1.33).
N-K)



1.4 (a) a
2 = E{(x-m)

2
}

= E{(x-m)
2

E{(x-m)

&amp;gt; E{(x-m)

N

jx-ml &amp;gt; e} Pr{ |x-m &amp;gt; e}

x-m &amp;lt; e} Pr{|x-m| &amp;lt; e}

x-m e} Pr{|x-m &amp;gt; e} &amp;gt; e Pr{|x-m &amp;gt; e}.

(b) n I E Z
n

-
Z| ^ e&amp;gt;

Var/1 V Z I

(N ^ nf
n=l

n=l

2

N

n=l1.5 For ue S(N,e) we have 1
&amp;lt;_

2 , s &amp;gt; 0.

rA l
Hence, S E z ~N (H+e)

r-4- ^r ^ T^ ^n=l
n

Fj = E P
N (u) &amp;lt; E P

N (u)2

ue S(N,e)+ ue S(N,e)+

S
[E Z

n-N(H+e)J

N

U

= 2
-NG(

where G(s )
= s(H+e) - log

= s(H+e) -log

and G(0) = 0.

Next note that

-N(H+e)
1
h
J --

k=l

dS
1-S



where

dG(5)
dS

= e &amp;gt;

5=0

and
2 A

(ak ) log

k-l
P

&amp;lt;V.

&amp;lt;

since this is negative of the variance of log . . with respect to

distribution

Q
5
(u) = P(u)

1-3

k-1

Thus, there is a unique maximum of G(s) for some
$*&amp;gt; where

G(S*) &amp;gt; 0. Then we have F* 2~
1G ^S \ Similarly we get

2
**

where G(s&quot;~) &amp;gt; 0. Then

F = F
+

-f F- &amp;lt; 2~NG(S) + 2-
N N N - L

1.6 Multiply the inequalities

log (u) &amp;lt;

-

by Px,(u) and sum over all ue^. T . Then
N ~ ~ N

&amp;lt;L

N
&amp;gt;

But from (1.1.14), H(^N &amp;gt;

= NH(^) giving us (a) and (b)

(c) note that in (a) the inequality log -^-r- (u) &amp;lt;=&amp;gt;

Hence we satisfy the Kraft-McMillan inequality,

2
~ (u)

p(u )
= 1.

To show

J ^
&amp;lt; P(u)



The solution is best understood in terms of a tree d /agram where

left directed branches correspond to &quot;0&quot; and right to &quot;1&quot;. Each

node corresponds to a binary sequence so that code words can be

represented as nodes in a tree such as

11

000 001 100 101 110 111

If node (a) is selected as a codeword of length 2, then in order

that no other codeword have 01 as a prefix no nodes that branch out

from node (a) can ever be selected as a codeword. Hence we can ter

minate the branching at this node. Thus uniquely decodable codes

with the property that no codeword is a prefix of another codeword

corresponds to nodes in a tree where no codeword node branches out

from a shorter codeword node. In general, let JL , _;...,. be the
A
V* -i

set of codeword lengths where JL
&amp;lt;_

JL
&amp;lt;_

...
_&amp;lt;

.. If /. 2

then we can easily find such a code with these lengths where all

branch paths of the code tree terminate in a codeword node. If
A

53 2~
&quot;

&amp;lt; 1 then some branch paths can continue forever without

encountering a codeword node. Let
X.-i

be any node sequence with JL



branches leading to it and denote it the first codeword. There re-

main 2 1-1 unterminated nodes at the same level that can be a code

word or a prefix of a codeword. If = _ choose any one of these

remaining nodes as the codeword node of sequence X_ . If ~ &amp;gt; JL

then use any one of these as a prefix and proceed along any _ -
^t _L

additional branches to find a codeword node of X . There now remains
A*

o

(2 * -1) 2 ^ 1-1 nodes at the level - that can be a codeword or a

prefix of a codeword. Continue in this manner until X. is selected.
A

If at any point this procedure cannot be completed because of no
A

remaining nodes then 2^ 2 *
&amp;gt; 1, which is a contradiction.

1.7 (a) I0r 5 *&amp;gt; P(y.x)lo8
*gy )

* )

(x)
y x

y x y x

But H(^T^)
&amp;gt;_

(see 1.1.9) so I(^T;^) H(^T) and by symmetry

) 1

(b) Use P(x,y) =
P(y)q(x|y) in

x y P(x,y)

E EP(x,y)iog^ + E EP(x,y)iog
* x y

a -i o P(0) =
q(l-p)

E P(E) =
p



qp log (l-q)p log

1
q

= TT maximizes J*f(q) so C = 1-P.
/

(b) q o&amp;lt;

1/2

iog
l-.

=
q log + (1-q) log /-M

U-q/

f- K3T;^) =
y logl-^M- 1 = =&amp;gt; q

=
y

V ?

Hence C = log .

Since the encoder keeps sending the information symbol until an

unerased channel output is achieved there is no error and P =0.
e

The probability that n channel symbols are transmitted for an infor

mation symbol is P =
(l-p)p . The average length of a codeword

is thus
oo oo

n-1 1^ % ^-^

1 1

Thus R = = 1 -p bits per channel use is the rate which also equals

the channel capacity (see problem 1.8a).

1-10 There are two coins G
I

and C
2
where P(H|C )

=
|-

and P(H|C 2
)

=
-|.

Here
q(C^)

= q(C) =
y are tne probabilities of selecting each coin.



We can interpret this as a BSC with p
=

-7- as follows:

3/4

3/4 3
(a) I(C

I;
H) = log = log bit

1/4 1
I(C

2
;H) = log f^-

= log y
= - 1 bit

(b) I(T;30 = 1 -J?z bits -

1.11 (a) There are 13 ways one coin may be heavier, 13 ways one coin

may be lighter, and the possibility that all coins weigh the same.

Thus we are attempting to determine one of 27 possible situations

using a balance and a known standard coin. We are thus asked to ob

tain at most log 27 = 3 log 3 bits of information on the average.

Each weighing has 3 possible outcomes (left, right, balance) and

provides at most log 3 bits of average information. Two weighings

has 9 possible outcomes and at most 2 log 3 bits of average informa

tion. Three weighings has 27 possible outcomes. Clearly two weigh

ings cannot guarantee determining one of 27 possible situations

while with three it may be possible.

(b) The maximum amount of average information from three weigh

ings is log 27 which is achieved if all 27 weighing sequences are

equally probable. This means that we must choose a weighing strategy

where the outcomes of each weighing are equal probable and each

weighing outcome is independent of other weighing outcomes. Clearly



each weighing must reduce the number of possible cases by 1/3.

Strategy: Let S denote the standard coin, C denote a coin that can

be heavy, light, or normal, h denote a coin that is heavy or normal,

and denote a coin that is light or normal. We start with 13C and

an S.

1st Weighing: Set aside AC and place 5C on the left pan and 4C + S

on the right pan.

f
Balance ==&amp;gt; 4C remain

Left =&amp;gt; 5h, 4 remain

Right =&amp;gt; 5, 4h remain

Note that for each of the three possible outcomes we have 9 remain

ing unknown possibilities to be resolved with two more weighings.

2nd Weighing When 1st Outcome is Balanced; Of the 4C set aside C

and place 2C on the left and C + S on the right.

t

2C

Balance =&amp;gt; C remain

Left =&amp;gt; 2h, remain

Right ===&amp;gt; 2, h remain

Note that here each outcome leaves only 3 remaining unknown possi

bilities to be resolved with one more weighing. The third weighing

given the 2nd weighing outcome is as follows:

10



(i) Balance: Place C on the left and S on the right,

(ii) Left: Place h on the left and h on the right,

(iii) Right: Place on the left and on the right.

2nd Weighing When 1st Outcome is Left; Of the 5h and 4 remaining

set aside h + 2 on the left and 2h + on the right.

f

2h +

Balance =&amp;gt; h, 2 remain

Left =&amp;gt; 2h, remain

Right =&amp;gt; 2h, remain

2h +

One more weighing easily resolves the 3 remaining unknown possibili

ties by placing the same type of coin on the balance. That is, if

2h, remain then place h on the left and h on the right.

(c) Without a standard coin we cannot always reduce the number of

unknown possibilities by 1/3 with each weighing. This is a neces

sary requirement .

1.12 Using (1.1.8) we have

u

Hence AH. (u)
]

P
2
(u) log

1.13 Let p(y)
=

27TQ

. Then (1.1.8) gives

11



00 00

J p(y)log -^y dy J p(y)log
-

dy =

2a
L y

log e + -

dy

1 1 / 2 \ 1 / 2
= Tlog e + -log 27TQ = -log I 27iea

2 2 V y / I \ yJ

=
y

with equality when p(y)
=

p(y) or y is a Gaussian random variable

For the additive Gaussian noise channel we have

9

p(y|x)
=

With input probability density q(x), the average mutual information

is

dy -

CO _OO

But

bo dy =
/P (y
*

x)

dx

4- og (27ra)dy
2a

(27rea
2

) .

Using this plus the above bound we have

with equality if and only if y is a Gaussian random variable. It is

Gaussian if

t N
q(x) =

o
with the result that az =

y
+ a . Hence

12



a
2
\ 1.

n

max !#; ^ -
flog ^- -y- j

= ^B \
l

2

which is channel capacity.

1.14 From problem 1.6(b) we have inequalities

- log P
N (U) (u) &amp;lt;

- log P
N (U) + 1.

Thus

- log P(u)

and

- log P
N (U) (u)

- 1
x

&quot;

&quot; &quot;

(u)

&quot;

I(u)
- log P

N (u)

But
M M * *xN

P
N (U) =

f]&quot;p(un) iTT p(u }
= p(u )

n=l n=l

and

log P (u) N log P(u*)

Hence

N log P(u*)

and

1 +
&amp;lt;_

H
&amp;lt;_

1.

N log P(u )

- log P (u)

If H = 1 for all N then
(u)

N -

N
Hence P (u)= 2 ^ for all N which is possible only if P

N (U)

and the source is a BSS.

13



1.15 For u e S(N,e),

N[H(?/) + e] (u) &amp;lt;

N[H(&amp;lt;aO + e] + 1

and

N[H(W -- e] - log P
N (U) N[H(W + e]

Thus for u e S(N,e),

- e]

e]
-

(u)

For u e S(N,e) ,

N log A (u) N log A + 1

and

- N log P(u*) - log P
N (U) - N log P(u**)

**where P(u) = min P(u) &amp;gt; 0. Thus for u e S(N,e),
u

N
^

- N
Iog-P(u**)

N log A + 1 (u) N log A

Define F
N

= Pr
|u

e S(N,e) &amp;gt; and using the form

- log PN (u) - log P (u)-

we have from inequalities (1) and (2),

H &amp;gt;

N [H- ]
. n _F N .

- N log P(u*)
^ - 1 + N[H+e]

r
N;

N log A + 1

L^ -
&quot;

los ^&quot;

&quot;nee F
N
- -

,

N -*

14



and

- N log P(u**)

_ . log P(u**)
F
N log A

F
N

Hence for any e &amp;gt; 0,

H - e

H
&amp;lt; lim H &amp;lt; 1

or
lim H,,-!.

N -*

15



CHAPTER 2

2.1 (a) The noise compo

nents in the per

pendicular coordi

nate directions are

independent with

variance NL/2.

Let q =
Pr{n&amp;gt;a}

(a)

16

= P. = P = Pr{n &amp;lt;a,n &amp;lt;a}
= (1-q)*

16

= 10a

= P =*P = Pr{n &amp;lt;a,-a&amp;lt;n &amp;lt;a}
= (1-q) (l-2q)C C C C C C

P - P - P = P = P = P

5
C
8

C
9 12

P
r

= P
rL

6
L
7 10

Hence
P
C

=
16

=
Pr{-a&amp;lt;n

1
&amp;lt;a,-a&amp;lt;n

2
&amp;lt;a}

=

8d-q)(l-2q) + 4(l-2q)
2

]

)(l-2q) + (l-2q)
2

]

-i
[a-,)

and

(b) Rotation and translation does not change P .

JL

16



2.2 (a)

(b) A
m

=

the optimum decision boundaries. We

m= are

S {y: I ly-x | |

2
&amp;lt;

m 4 i n--a &amp;gt;
i

Hence

x ; &amp;lt;

m -m

C A m = 1,2,. ..,7m

x j

-m
n

and

= Pr &amp;gt; ^1= e
N

m

&amp;lt;f

- 1,2,. ..,7

P =
&amp;gt; P &amp;lt; e

^E 7 ^ E
m=l m

17



P
E

&amp;lt; P_(m-m ) where
j

m

s -s
,-m -m 1

ysr
Here we have

r m i
m =

2, 3,..., 7

m 1 = 3,7

S -S
,-2 -m 1 m 1 = 4,6

m1 = 5

m

By symmetry P = P = P = P = P = p &amp;lt; PE
3

E
4

E
5

E
6

E
7

E
i

Hence

E 2N
o

A.
4N,&amp;lt;4JN

rom problem 2.2 we have P e which is &quot;exponentially&quot; the

same since Q(x) is bounded as shown in (2.3.18).

2.4 (a) Choose
&amp;lt;|&amp;gt; (t) =

basis. Then x

The decision boundries become

A
m

=

(t) m - 1,2,..., M as the orthonormal

2
m,n = 1,2,..., M and

| |xUU.1 _JQ

for all

for all m.

(Z5mi-) for

for m =

Hence by symmetry,

P
E

= P

E;L

= l p
c

for

18



(b) Given x was sent we have probability density functions for the
*^X

independent random variables y , y
2&amp;gt;

...,yM given by

1
e

N

p.. (y)
- m = 2,3,. . .,M

m 7TN,

Hence

Pr{y &amp;lt;y
1

for all m 4 l| x]}

CO

= /Pr{y &amp;lt;a for all m4l|x..,y =a) p (a) da
+/ j_
CO

(c) Using = S. log-M, the fact that as e gets small In(H-e)
b 2

2
-x /2

behaves as e, and Q(x) behaves like e for large x,

1M-1
lim Inl- logM/N

= lim (M-l)
ln[&quot;l- Q(x+ x/2 &amp;lt;f

b
logM/N

() jl
M-H \ /--

/ / \
= -lim M Q. x+x/2 &amp;lt;fv logM/N_ |

M-x \ /

= -lim M exp &amp;lt;

-
y ( x+ ^2 blogM/NQ

1

M^&amp;lt; i \ / Ix /

= -lim M exp &amp;lt;

-
N.

= -lim M
N
Q
ln2

C5 1_b
N

19



Hence

llm
I

1- Q
; rr- &amp;lt; In2

But

Pr{y &amp;lt;a for x-jy =a}

Hence

M

Tl
msi

P_ =

M-l

N,

da

_ 1 /
*

M-l

.5 (a) K =
-1]

and (x n ,x )
=

l /
[1 1]

-1

= 0.

Let h^ denote the i
1&quot; 1

row of
~Jx J. . X

and h the i
A

row of

K
The codewords of length M = 2 are given by

= for all i
=)= j &amp;lt; 2

K~ 1

Then

aU i + J &amp;lt; 2
K-l

and

= for all i, j &amp;lt; 2
K-l

20



yields
/ f*\ f -sM

for

/ (i) (i)\ st
(b) Note that I h^ , h^

J
I
= 6... Hence if we subtract the 1

product term of this inner product we have

A_ll !& , j
- k

_ = _ __ A JL k
M M-l J

(c) Let a = v/^M [100 ... 0] . Then the orthogonal signal set

and the simplex signal set are essentially related by a simple

translation of the signal set given by,

- J 1 ) 9
K

x=h^ -a i=l,2,...,2~i ~K

s t ^
(Since the 1 component of x. is always &quot;0&quot; we can ignore it.) This

means the error probability of the orthogonal signal set of energy

./ M \
G =

&amp;lt;5

f

j )
is the same as the error probability of the simplex signal

set of energy &amp;lt;f
.

M
(d) Let W = X) x-r Then

**
t i 1

01 (W,W) =
(X.,x

i J

S (x. tX ) + (x ,x )

J=i

or

21



or

AV
&amp;lt;fM(M-l) ifj

(e) Let z ,z_,..., ZM be an orthogonal signal set of energy

Then (z ,z.) *&amp;lt;&amp;lt;$...

Let M
a

i=l

and consider the translation set formed by

Then

(y^.y,,)
= (z.-a z.-a)

i ~,~j

Choosing

and

/M)

-2a)/M

a

and a to satisfy the equations,

=
&amp;lt;?(l-2a/Mfa

2
/M)

yields a signal set
{y^}

with the same energy and inner products as

the signal set {x } . It then has the same error probability and

)-

-TrW

e -e sinTrWt

TTWt

22



y(t) -h(t-T)z(T)dT -

dt

(c) In Figure 2.9, y (t)&amp;lt;J&amp;gt; ^ (t) is integrated over [ (n-l)T/N,nT/N]

where

2

Thus

2n

)

/ y(t) \/2 sinw
8in[5w(t -|J]

dt .

(n-l)T/N

Replace the integration over [ (n-l)T/N,nT/N to [0,) we obtain

dt

n

which is the process in Figure 2.11.

2.7 (a) Here y(t) = y 4&amp;gt; (t) where $ (t) = x/2N/T sin con t for (n-l)T/N
n n n

_&amp;lt;

t
_&amp;lt;

nT/N whereas we compute

nT/N

y
1 = f y(t) &amp;lt;|&amp;gt;

(t)dt
n /

(n-l)T/N

where

(t) = /2N/T sin[a)+Ao))(t-(n-l)T/N) + 0] ,

(n-l)T/N&amp;lt;t&amp;lt;nT/N.

23



T/N 0) T

Using /
%

cos[(2(Jon+Aw)t+(|)]dt = since -~ 1
J

nT/N

we have yn
= y J ^nCO

&amp;lt;l&amp;gt;i(t)dt

(n-l)T/N

nT/N
= y / (2N/T)sin co^t sin[ (w_+A(jo) (t-(w-l)T/N)+d)]n ^/ U

(n-l)T/N

T/N

= yn y (2N/T)sin
u^t sin[

(WQ+AOJ) t-h})]dt

T/N
/xT/mx f r

y (N/T) / {cos(Acx3t+0) - cos[(2a)A+Au))t+&amp;lt;6]}dtn j

T/N-

= yn (N/T)y
ccos(Aa)t+(f))dt

T/N

= y (N/T) / {cos Atot cos({)
- sin Awt sin({)}dt .

+/

We assumed here that coJT/N is a multiple of IT. Also since Ao)T/N

we have sin Awt = for
&amp;lt;_

t &amp;lt; T/N .

Hence
T/N

y =
y^(N/T)cos0 /cos Aoot dtn +s

/sin(AcoT/N)

( (AcoT/N)

;

(b) Here nT/N

y n
= J y(t) \/2N/T

(n-l)T/N

24


