1. (a) As the man continues to remain at the same place with respect to the gym, it is
obvious that his net displacement is zero.

(b) In 25 min, the average velocity is

b (x,—x) 00-00 _00.
M (t,-1) 25-00

23
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2. (a) Using the fact that time = distance/velocity while the velocity is constant, we
find

_732m+732m

Vg T 732m | 732m
1.22m/s " 2.85m

=1.71m/s.

(b) Using the fact that distance = vt while the velocity v is constant, we find

_ (L22 m/s)(60s) +(3.05m/s)(605s)

=214 m/s.
a0 120's

The graphs are shown below (with meters and seconds understood). The first consists
of two (solid) line segments, the first having a slope of 1.22 and the second having a
slope of 3.05. The slope of the dashed line represents the average velocity (in both
graphs). The second graph also consists of two (solid) line segments, having the same
slopes as before — the main difference (compared to the first graph) being that the
stage involving higher-speed motion lasts much longer.
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3. Rachel’s displacement in reaching the gymnasium is
x —x0 =2.80 km — 0.00 km = 2.80 km.

and her initial speed is v, = 6.00 km/h. The time taken for her to reach the gymnasium
is

x—xy  2.80km
Vo 6.00 km/h

4= =0.467 h =28.0 min

and the time taken for her to reach back home from gymnasium is

2.80 km

=———=0.364 h =21.82 min.
7.70 km/h

2

Thus, in 28.0 + 21.82 = 49.82 min, she returns back to home and stops.

During the 7-minute time interval (between 28.0 —35.0 min), the return distance
traveled by Rachel is

7.00 min
60 min

(7.70 km/h)( ] = 0.90 km

(a) The magnitude of her average velocity during the time interval 0.00 —=35.0 min is

displacement  2.80 km —0.89 km
time (35.0/60.0) h

=3.26 km/h

(b) During the time interval 0.00 —35.0 min, the distance traveled by Rachel is

7.00 min

2.80 km +(7.70 km/h)(
60 min

] =2.80 km +0.90 km =3.70 km

distance  3.70 km
time  (35.0/60.0) h

Her average speed is = 6.34 km/h.
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4. Average speed, as opposed to average velocity, relates to the total distance, as
opposed to the net displacement. The distance D up the hill is, of course, the same as
the distance down the hill, and since the speed is constant (during each stage of the
motion) we have speed = D/t. Thus, the average speed is

Dup + Ddown 2D

tup + tdown B + D

vup vdown

which, after canceling D and plugging in vyp = 35 km/h and vgown = 60 km/h, yields 44
km/h for the average speed.
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5. THINK In this one-dimensional kinematics problem, we’re given the position
function x(7), and asked to calculate the position and velocity of the object at a later
time.

EXPRESS The position function is given as x(¢) = (3 m/s)s — (4 m/s?)# + (1 m/s%)7.
The position of the object at some instant # is simply given by x(t). For the time
interval # <¢<t,, the displacement is Ax=x(t,)—x(¢). Similarly, using Eq. 2-2,
the average velocity for this time interval is

_Ax_xlt)=x(t)
YA t,—t

ANALYZE
(a) Plugging in 7 = 1 s into x() yields
x(1s) = (B m/s)(Ls)— (4 misA)(Ls)? + (L mis*)(Ls)®=0.
(b) With 7= 2 s we get x(2 s) = (3 m/s)(2 5) — (4 m/s®) (25)*+ (1 m/s®)(25)°=-2 m.
(c) With = 3 s we have x (3 5) = (3 m/s)(3 s) — (4 m/s?) (35)?+ (1 m/s®)(3s)3= 0 m.
(d) Similarly, plugging in = 4 s gives
x(4s)= B mls)(4s)— (4 m/s?)(4s)’+ (1 mis®) (4s)®=12m.

(e) The position at z = 0 is x = 0. Thus, the displacement between r=0and r =4 s is
Ax=x(4s)-x(0)=12m-0=12 m.

(f) The position at t = 2 s is subtracted from the position at + = 4 s to give the
displacement: Ax=x(4s)—x(2s)=12 m—(-2 m)=14 m. Thus, the average velocity
is

_Ax 14m

Vg = =7m/s.
At 2s

(9) The position of the object for the interval 0 < ¢ < 4 is plotted below. The straight
line drawn from the point at (¢, x) = (2 s, =2 m) to (4 s, 12 m) would represent the
average velocity, answer for part (f).
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X(m) (4s, 12m)

(25, —2m)

LEARN Our graphical representation illustrates once again that the average velocity
for a time interval depends only on the net displacement between the starting and
ending points.
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6. Huber’s speed is

vo = (200 m)/(6.509 s) =30.72 m/s = 110.6 km/h,

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat
Huber by 19.0 km/h, his speed is v; = (110.6 km/h + 19.0 km/h) = 129.6 km/h, or 36
m/s (1 km/h = 0.2778 m/s). Thus, using Eg. 2-2, the time through a distance of 200 m
for Whittingham is

AIZE_ZOOm

= =5.554 s.
v, 36 m/s
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7. The velocity of approach of both cars (car A and car B as shown in the following
figure) that move toward each other is

25 — (~16) = 41 km/h,

The time taken to cover 40 km separation between cars is
(= (4_"} .
41

(a) The total distance covered by the pigeon is

36 x [ﬂj ~ 35km.
41

(b) In time ¢, the first car (car A) moves by a distance

(4—()) x16 =15.61~16 km.
41

Therefore, the displacement of the bird with respect to the first car (car A) is about
16 km.

— ok
CorB. Foey _ e QWY

e e e e e = ——
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8. The amount of time it takes for each person to move a distance L with speed v, is

At = L /v . With each additional person, the depth increases by one body depth d
(a) The rate of increase of the layer of people is

d _ d__dv,_(0.25m)(3.50 mis)

=—=——=—"}* =0.50 m/s
At Llv, L 1.75m
(b) The amount of time required to reach a depth of D=5.0 mis
D 50m

t:—: =
R 0.50m/s
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9. Converting to seconds, the running times are # = 147.95 s and #, = 148.15 s,
respectively. If the runners were equally fast, then

L_L

L oh

Savgy = Savg; =

From this we obtain

t 148.15
L,—L=|2-1|L=|"—>—-1|L=000135L ~1.4m
= [rl jl“ (147.95 jl“ b

where we set L; ~ 1000 m in the last step. Thus, if L, and L, are no different than
about 1.4 m, then runner 1 is indeed faster than runner 2. However, if L, is shorter
than L, by more than 1.4 m, then runner 2 would actually be faster.
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10. Let v, be the speed of the wind and v, be the speed of the car.

(a) Suppose during time interval ¢, the car moves in the same direction as the wind.

Then the effective speed of the car is given byv, ., =v +v, , and the distance

ef L
traveled is d =v,,t, = (v, +v,)1,. On the other hand, for the return trip during

time interval #, the car moves in the opposite direction of the wind and the

effective speed would be v, ,,=v,—v, . The distance traveled is
d=v,,t,=(v,—v,)i,. The two expressions can be rewritten as
d d
v.+v,=— and v, -y, =—
tl tZ

Lo

Adding the two equations and dividing by two, we obtain v, =£[i+ij Thus,
method 1 gives the car’s speed v, a in windless situation.

(b) If method 2 is used, the result would be

Y= d o 2d 2d _vf—vi._v 1- ﬁz
()2 t+t, d d v ‘ v. )|

The fractional difference is

, 2
Ye ZVe =[ﬁj = (0.0240)% =5.76x10™*
,

c
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11. In 150 s, the pickup vehicle moves a distance of 150.0 x 15.00 = 2250 m. The
total distance covered by the scooter is
1500 m + 2250 m =3750 m.

The speed at which the scooterist should chase the pickup vehicle is

Vo = 350 _ 25.00 m/s.
0
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12. (a)  Let the fast and the slow cars be separated by a distance 4 at ¢ = 0. If during
the time interval 7=L/v, =(12.0 m)/(5.0 m/s)=2.40sin which the slow car has

moved a distance of L =12.0 m, the fast car moves a distance of v¢t=d + L to join
the line of slow cars, then the shock wave would remain stationary. The condition
implies a separation of

d=vt—L=(25m/s)(2.45)-12.0 m=48.0 m.

(b) Let the initial separationat =0 be 4 =96.0 m. At a later time ¢, the slow and
the fast cars have traveled x=v ¢ and the fast car joins the line by moving a

distance 4+ x. From

x d+x
t=—= ]
v, v
we get
x=—Y g S00Ms 960 my=240m,

y—v, 250m/s—500mis

which in turn gives ¢=(24.0 m)/(5.00 m/s) =4.80s. Since the rear of the
slow-car pack has moved a distance of

Ax=x-L=240m-12.0 m =12.0 mdownstream,

the speed of the rear of the slow-car pack, or equivalently, the speed of the shock
wave, is
Ax 120m

Vihook = — = =2.50 m/s.
t 4.80s

(c) Since x> L, the direction of the shock wave is downstream.
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13. (a) Denoting the travel time and distance from San Antonio to Houston as 7 and D,
respectively, the average speed is

_ D _ (55 km/h)(772) + (90 kmVh)(T/2) _ o\

Savgl - T T

which should be rounded to 73 km/h.
(b) Using the fact that time = distance/speed while the speed is constant, we find

D D
anZ:?:—D/Z N DI2 =68.3 km/h
55km/h " 90 km/h

N

which should be rounded to 68 km/h.

(c) The total distance traveled (2D) must not be confused with the net displacement
(zero). We obtain for the two-way trip

5 = 2D ———70 km/h.

avg D N
72.5 km/h * 68.3 km/h

(d) Since the net displacement vanishes, the average velocity for the trip in its
entirety is zero.

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the
distance D (the intent is not to make the student go to an atlas to look it up); the
student can just as easily arbitrarily set 7" instead of D, as will be clear in the following
discussion. We briefly describe the graph (with kilometers-per-hour understood for
the slopes): two contiguous line segments, the first having a slope of 55 and
connecting the origin to (s, x1) = (7/2, 557/2) and the second having a slope of 90 and
connecting (#1, x1) to (7 D) where D = (55 + 90)7/2. The average velocity, from the
graphical point of view, is the slope of a line drawn from the origin to (7 D). The
graph (not drawn to scale) is depicted below:

kb o 90 km/h
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14. Using the general property -<exp(bx) = bexp(bx), we write

_dx_(dQ9nY (de™
= ( 5 ] e’ + (191) ( I ] )

If a concern develops about the appearance of an argument of the exponential (-7)
apparently having units, then an explicit factor of 1/7 where T = 1 second can be
inserted and carried through the computation (which does not change our answer).
The result of this differentiation is

v=16(1-t)e’

with # and v in Sl units (s and m/s, respectively). We see that this function is zero
when r = 1 s. Now that we know when it stops, we find out where it stops by
plugging our result z = 1 into the given function x = 16¢¢ " with x in meters. Therefore,
we find x =5.9 m.
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15. We have x=18¢+5.0¢.

(a) Instantaneous velocity is calculated as
. A dx d 2
v=lim =— == = = (18t +5.0¢%)
M—0 At dt  dt

That is,
v=18+10.0¢ (¢D)]

At ¢ = 2.0 s, the instantaneous velocity is
v=18+(10x2.0) =18+ 20 =38 m/s.

(b) Let x; be the distance of the particle at 7 = 2.0 s, which is calculated as
x, =18(2.0) +5.0(2.0)> = 36 + 20 = 56 m.

Let x; be the distance of the particle at # = 3.0 s, which is calculated as
x, =18(3.0) +5.0(3.0)> =54 + 45=99 m.

Therefore, the average velocity of the particle between t = 2 sand t = 3 s is
calculated as

Vavg :EZ (rp =) = 99-56 :4—3:43 m/s.

At (t,-t) 3.0-20 1.0
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16. We use the functional notation x(¢), v(z), and a(z) in this solution, where the latter
two quantities are obtained by differentiation:

w(t) = dJ;gf\J =—12¢ and a(t)=

av(r)
dt

=-12

with S1 units understood.
(@) From v(7) = 0 we find it is (momentarily) at rest at 7 = 0.
(b) We obtain x(0) = 4.0 m.

(c) and (d) Requiring x(¢) = 0 in the expression x(¢) = 4.0 - 6.0/ leads to 7 = +0.82 s
for the times when the particle can be found passing through the origin.

(e) We show both the asked-for graph (on the left) as well as the “shifted” graph that
is relevant to part (f). In both cases, the time axis is given by -3 < ¢ < 3 (SI units
understood).

X X

i’ 1

1 S ——

-100 -100]

(f) We arrived at the graph on the right (shown above) by adding 207 to the x(¢)
expression.

(9) Examining where the slopes of the graphs become zero, it is clear that the shift
causes the v = 0 point to correspond to a larger value of x (the top of the second
curve shown in part (e) is higher than that of the first).
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17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and
work with distances in centimeters and times in seconds.

(a) We plug into the given equation for x for # = 2.00 s and ¢ = 3.00 s and obtain x; =
21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time
interval 2.00 <¢<3.00sis

_ Ax 5025cm-2175cm

Vg =— =
YAt 300s —2.00s

which yields vayg = 28.5 cm/s.

(b) The instantaneous velocity is v =<4 =45, which, at time # = 2.00 s, yields v =
(4.5)(2.00)* = 18.0 cm/s.

(c) At 1= 3.00 s, the instantaneous velocity is v = (4.5)(3.00)% = 40.5 cm/s.
(d) At £ =250 s, the instantaneous velocity is v = (4.5)(2.50)% = 28.1 cm/s.

(e) Let 7, stand for the moment when the particle is midway between x, and x; (that is,
when the particle is at x,, = (x2 + x3)/2 = 36 cm). Therefore,

x, =975 + 15t = t =2596
in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)% = 30.3 cm/s.
(f) The answer to part (a) is given by the slope of the straight line between ¢ = 2 and ¢
= 3 in this x-vs-¢ plot. The answers to parts (b), (c), (d), and (e) correspond to the

slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate
points.

x (cm)
60

40 (a)

201
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18. (a) Taking derivatives of x(r) = 127 — 2/ we obtain the velocity and the
acceleration functions:
W) =24t-67 and  a()=24-12¢

with length in meters and time in seconds. Plugging in the value = 3.5 s yields
x(3.5)=61m.

(b) Similarly, plugging in the value 7 = 3.5 s yields v(3.5) = 11 m/s.
(c) For =35, a(3.5) =18 m/s.

(d) At the maximum x, we must have v = 0; eliminating the ¢ = 0 root, the velocity
equation reveals ¢ = 24/6 = 4 s for the time of maximum x. Plugging ¢ = 4 into
the equation for x leads to x = 64 m for the largest x value reached by the particle.

(e) From (d), we see that the x reaches its maximum att =4.0 s.

(f) A maximum v requires a = 0, which occurs when ¢ = 24/12 = 2.0 s. This, inserted
into the velocity equation, gives vmax = 24 m/s.

(9) From (f), we see that the maximum of v occurs at 1 = 24/12 = 2.0 s.

(h) In part (e), the particle was (momentarily) motionless at # = 4 s. The acceleration at
that time is readily found to be 24 — 12(4) = —24 m/s%.

(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at # =0
and ¢ = 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part
(@). Thus,

54-0
vg= —— =18 m/s.
T 300
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19. THINK In this one-dimensional kinematics problem, we’re given the speed of a
particle at two instants and asked to calculate its average acceleration.

EXPRESS We represent the initial direction of motion as the +x direction. The
average acceleration over a time interval ¢ <t <¢,is given by Eq. 2-7:

o —Av_v(L)-v)
At t,—t,

ANALYZE Let v; = +18 m/s at ¢, =0and v> = -30 m/s at > = 2.4 s. Using Eq. 2-7
we find

() —v(t)  (-=30mfs) — (+1m/s)
oLt 2.45-0 -

—20 m/s?.

avg

LEARN The average acceleration has magnitude 20 m/s? and is in the opposite
direction to the particle’s initial velocity. This makes sense because the velocity of the
particle is decreasing over the time interval. With ¢ =0, the velocity of the particle

as a function of time can be written as

v=v,+at = (18 m/s)— (20 m/s®)z.
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20. The position of a particle is x = 257 — 6¢°.
(a) The particle’s velocity is
v=§f=(25—1&2ynm.
dt
If v=0m/s, we have

1812 = 25,

Therefore,

tzzéztzi S Jg—+412s
18

32

That is, the particle’s velocity is zero when ¢=+1.2s.

(b) The instantaneous acceleration of the particle is
dv  d? 2
a=—=—(x)=(0-36¢)m/s".
dt  dr? ()= )
That is,
a=0m/s> or —36:=0=7=0s.

Therefore, at # = 0 s, the acceleration of the particle is zero.
(c) Itis obvious that a(z) = — 36t is negative for ¢ > 0.
(d) The acceleration a(f) = — 36t is positive for ¢ < 0.
(e) The graphs are shown in Figs. (a), (b) and (c) as follows (SI units are understood):

— 26+

2201 -50:
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21. The initial velocity of the car is

130x5.00 650
m

vo =130 km/h = /s = m/s =36.1m/s.
18.0 18.0

The displacement of the car is
x=x0=210 m-0.00 m =210 m.

(a) Using one of the equations of motion,

v2 :vg +2a(x —x,) ,

we get the acceleration, «, as

2 2
_ V=W

a=—>
2(x —xp)

Substituting the values in this equation, we get the uniform retardation, that is,
uniform deceleration of the car as follows:

2 2 2 2
T S TCE T
2(x - xg) 2(210) 420

Thus, the magnitude is 3.10 m/s%.

(b) Using one of the equations of motion, v =v, + at, we calculate the time taken
by the car to stop as follows:
v—v, 0-36.1

a -3.

t= =11.64s5~11.6s.
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22. In this solution, we make use of the notation x(z) for the value of x at a particular z.
The notations v(¢) and a(r) have similar meanings.

(a) Since the unit of ¢/ is that of length, the unit of ¢ must be that of length/time?, or
m/s? in the SI system.

(b) Since b7 has a unit of length, » must have a unit of length/time®, or m/s,
(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is

zero. Since the velocity is given by v = dx/dt = 2¢t — 3b#%, v = 0 occurs for = 0 and
for

_g;zmowfti
3 320mis°) T

Fort=0,x=x=0and fort=1.3 5, x =2.3 m> xq. Since we seek the maximum, we
reject the first root (# = 0) and accept the second (¢ = 1s).

(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and
goes back to

x(4 s) = (4.0 m/s*)(4.0 5)* — (2.0 m/s*)(4.05)* = —64 m .
The total path length it travels is 1.3 m + 1.3 m + 64 m = 67 m.
(e) Its displacement is Ax = x; — x1, where x; = 0 and x, = —-64 m. Thus, Ax=-64 m.
The velocity is given by v = 2¢t — 3b¢* = (8.0 m/s?)¢ — (6.0 m/s®)/.

(f) Plugging in ¢ = 1 s, we obtain
v (1.0)=2.0 m/s

(9) Similarly, v (2.0) =-8.0 m/s

(h) v (3.0) =-30 m/s

(i) v (4.0) = -64 m/s

The acceleration is given by a = dvidt = 2¢ — 6b = 8.0 m/s* - (12.0 m/s°)z.

(J) Plugginginz=1s, we obtain
a (1.0) = -4.0 m/s?

(K) a (2.0) = -16 m
() a (3.0)=-28m

(m)a (4.0)=-40m
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23. It is given that v, = 0. Let the constant acceleration be a. Distance covered

during the fifth second is the distance moved between 7 = 4.00 s and = 5.00 s. The
velocity of the object at # = 4.00 s is used as the initial velocity for its further motion
at 4.00 sis

v, =vy +at =v, =(4.00)a.
Therefore, the distance covered between t=4.00 sand £ =5.00 s is
(x—=X) 45 =Vt +%at2 =(4.00)a +%a =(4.50)a.

Given that # = 1.00 s between ¢ = 4.00 s and ¢ = 5.00 s. The distance covered up to
5.00sis

(r-%,)s =v0t+%at2 =0+B (@) (5.00)2} =%a(25.0) —(125)a.

Given that # = 5.00 s, the required ratio is
(x—xy)s5 (4.50)a

= =0.36.
(x—x,)s (12.5)a
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24. In this problem we are given the initial and final speeds, and the displacement, and
are asked to find the acceleration. We use the constant-acceleration equation given in
Eq. 2-16, 2 =18 + 2a(x — x).

(a) Given that v,=0, v=1.6m/s, and Ax=5.0um, the acceleration of the spores
during the launch is
Vi—vg (L.6mls)

= - =256x10° m/s* =2.6x10"g
2x 2(5.0x10° m)

a

(b) During the speed-reduction stage, the acceleration is

2 .2 _ 2
g% _0-(b "_ZS) =-1.28x10° m/s* = -1.3x10%g
2x  2(1.0x107° m)

The negative sign means that the spores are decelerating.
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25. From the equation of motion
Vv=v, t+at,

we get
2.8=v,+2.5a
Using another equation of motion, v? —vZ = 2a(x - x,), We get
(2.8) =2 =2a(8.0-2.0) = (28+v,)(28-v,)=12a

Dividing Eq. (2) by Eq. (1) gives
(2.8+v))(28-vy) 12a
(2.8-vp) 2.5a

which leads to

1)

(2)

Substituting the value of vy in Eq. (1), we get the acceleration during the given time

interval as follows:
28=vy+2.5a

=28-2=25a
_ 08 _8x10

a=—2= =0.32m/s?.
25 10x25
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26. The constant-acceleration condition permits the use of Table 2-1.
(a) Settingv=0and xo=0in v* =V} +2a(x—x,) , we find

2 612
x:—lv—‘):—lwzo&Mm.
2a 2 -1.25x10

Since the muon is slowing, the initial velocity and the acceleration must have
opposite signs.

(b) Below are the time plots of the position x and velocity v of the muon from the
moment it enters the field to the time it stops. The computation in part (a) made no
reference to ¢, so that other equations from Table 2-1 (such as v=v, + at and

x = vt + +at?) are used in making these plots.

X (cm) V (Mm/s)
10 8.0+
7.5 6.0
5.0 4.0
2.504 2.0
0 T T T —f(ms) 0 T T T — [ (ns)
10 20 30 40 10 20 30 40
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27. We have v, =0; (x—x,) =2.0cm; = (5.0x10")s. Substituting these values in the
equation of motion

1
(x—xp) =v0t+Eat2,

2000 04| L s a(5.00x10%)
100 2.00

The magnitude of the given acceleration is obtained as follows:

. (Lej mis? = (ﬂxlo“jm/sz — (L6x10%) m/s?.
100 % 25.0 10~ 25.0

we get




o1

28. We take +x in the direction of motion, so vo = +27.2 m/s and a = - 4.92 m/s?. We
also take xp = 0.

(a) The time to come to a halt is found using Eq. 2-11:
27.2m/s
=553s

O=v+tat=>t=—-——=
4.92 m/s

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eqg.
2-16 (since it does not depend on our answer to part (a)).

2
(27.2 m/s) 50

O=v§+2ax:x=——2—
2(—4.92 m/s%)

(c) Using these results, we plot vy¢+<at® (the x graph, shown next, on the left) and
vo + at (the v graph, on the right) over 0 <z <5 s, with Sl units understood.

X Vv
60
20-
401 ]

207]
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29. We assume the periods of acceleration (duration #) and deceleration (duration #,)
are periods of constant a so that Table 2-1 can be used. Taking the direction of motion
to be +x then ay = +1.22 m/s® and a; = -1.22 m/s%. We use Sl units so the velocity at ¢
=t isv=305/60 = 5.08 m/s.

(a) We denote Ax as the distance moved during 71, and use Eq. 2-16:

2
Vi=vi+2aAx = MzM:lO.SQ m ~10.6 m.
2(1.22 m/s%)
(b) Using Eqg. 2-11, we have
- v—v, _ 508 m/S2 _ 417,
a  1.22m/s

The deceleration time #, turns out to be the same so that #; + 7, = 8.33 s. The distances
traveled during # and ¢, are the same so that they total to 2(10.59 m) = 21.18 m. This
implies that for a distance of 190 m — 21.18 m = 168.82 m, the elevator is traveling at
constant velocity. This time of constant velocity motion is

16882 m

;,=—————=3321s.
508 m/s

Therefore, the total time is 8.33 s+ 33.21 s~ 41.5s.
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30. We choose the positive direction to be that of the initial velocity of the car
(implying that a < 0 since it is slowing down). We assume the acceleration is constant
and use Table 2-1.

(a) Substituting vo = 146 km/h = 40.6 m/s, v = 90 km/h = 25 m/s, and a = -5.2 m/s?
into v = vg + at, we obtain

. 25m/s —40.6 m/s

3.0s
—5.2 m/s?

(b) We take the car to be at x = 0 when the brakes  x (em)
are applied (at time z = 0). Thus, the coordinate

of the car as a function of time is given by 807
60

1 2\ ,.2

o x=(30.6m/s): +=(-5.2m/s*)t
2 40—

in Sl units. This function is plotted from ¢ =0 to 20+
t = 2.5 s on the graph to the right. We have not

shown the v-vs-z graph here; it is a descending 0’57 5 5y 25
straight line from vo to v. t(s)
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31. We have the initial velocity of the rocket, vo = 0; acceleration of the rocket, a =
10.0 m/s?. Referring to the following figure, which depicts the situation, the velocity
at Ais calculated as follows: From the equation of motion,

v =12 +2a(x—x,),

we get

Vv =g = 2a(x - xp)

=12 —0? =2(10.0m/s? x500m)
— % =10,000 = v =100 m/s.

After the engine of the rocket cuts off, the rocket rises against gravity with initial
velocity of 100 m/s. Therefore,
u? 100100

hlz_

= =510.2 m.
2¢  2x9.8

Therefore, the maximum altitude the rocket reaches is

H =h+h =500m+510.2m =1010.2m =1.01 km.
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32. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7).

!
['1020 km/ h} M
Av 3600s/h

a=—= =2024 m/s® .
At 14 s

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s’
as follows:

[202.4 m/s?

a=|———

9.8 m/s? Jg =2
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33. The position of the stone is given by
y =60 m— (20 m/s)¢ —%(9.8 m/s®)¢?

Solving the quadratic equation with y = 0, we obtain ¢=+2.01sor —6.09s. Since a
negative value implies that the stone reaches the ground before it is released, we
consider the positive value, that is, +2.0 s.
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34. Let d be the 220 m distance between the cars at ¢ = 0, and v, be the 20 km/h = 50/9
m/s speed (corresponding to a passing point of x; = 44.5 m) and v, be the 40 km/h
=100/9 m/s speed (corresponding to a passing point of x, = 77.9 m) of the red car.
We have two equations (based on Eq. 2-17):

1
d-x1=vety +5at’ where #, = x1/v,

1
d—x=Vvotr +§at22 Wheret2:x2 /Vy

We simultaneously solve these equations and obtain the following results:

(a) The initial velocity of the green car is v, = -8.7 m/s. The negative indicates that
the green car initially moves toward the green car.

(b) The corresponding acceleration of the car is a = -3.3 m/s’.
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35. Usingv? =v¢ + 2a(x — x,) , we find the acceleration of the particle to be

e v~ (6.00x10" m/s)? — (4.00 x10°m/s)?

- - =6.00x10° m/s2.
2(x - xp) 2(0.0300 m)

The time interval at which the electron accelerates is obtained as follows: From the
equation of motion, v = vo + at, we have the required time interval as

v—v, _6.00x10" m/s—4.00x10° m/s

=9.93x107%s =0.993 ns.
a 6.00 x10'® m/s?

=




36. (a) Equation 2-15 is used for part 1 of the trip:
— 1 2
Axi=vati+ 5 ait

900

where vo1 = 0, a1 = 2.75 m/s? and Ax; = - m= 225 m. Solving for #, we obtain

= [280) _ 2(225M) 4 g9
a, 2.75mls

The speed attained during part 1 of the trip is

vy, = at, = [2a,(Ax) = [2(2.75 m/s?)(225 m) =35.2 m/s,

59

With v,, =v, ., the time it takes for the car to come to rest with a constant acceleration

of ap=—0.917 m/s?is given by v,, = v, +a,t, =0, or

_ vzf_vgo _ 0-35.2m/s

> =38.36s
a, —0.917 m/s

2

The total travel timeist=# + £ =12.79s+ 38.36 s=51.2s.

(b) The maximum speed is attained at the end of the first part of the trip:

v, =35.2m/s.
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37. (a) From the figure, we see that xo = —2.0 m. From Table 2-1, we can apply
x—xo=vot+ Laf

with # = 1.0 s, and then again with # = 2.0 s. This yields two equations for the two
unknowns, vo and a:

0.0—(~2.0 m)=y, (1.03)+%a(1.03)2
6.0m—(-2.0 m)=v, (2.0 S)+%a(2.0 s)’.

Solving these simultaneous equations yields the results vo = 0 and a = 4.0 m/s%.

(b) The fact that the answer is positive tells us that the acceleration vector points in
the +x direction.
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38. We assume the train accelerates from rest (v,=0 and x,=0) at
a, =+134 m/s® until the midway point and then decelerates at a, =134 m/s’

until it comes to a stop (v; =0) at the next station. The velocity at the midpoint is vy,
which occurs at x; = 806/2 = 403m.

(a) Equation 2-16 leads to

VE=vE42ax, = v =\/2(1.34 m/s® )(440 m) =34.3 m/s.
(b) The time #, for the accelerating stage is (using Eq. 2-15)

) 2(440 m)

1
xlzvotl +§alt1 = t1= m=2563

Since the time interval for the decelerating stage turns out to be the same, we double
this result and obtain ¢ = 51.2 s for the travel time between stations.

(c) With a “dead time” of 20 s, we have 7'=¢ + 20 = 71.2 s for the total time between
start-ups. Thus, Eq. 2-2 gives

= 880 m =124 m/s.

\%
Mo 7125

(d) The graphs for x, v and a as a function of ¢z are shown below. The third graph, a(?),
consists of three horizontal “steps” — one at 1.34 m/s®> during 0 < ¢ < 24.53 s, and
the next at —1.34 m/s during 24.53 s < 7 < 49.1 s and the last at zero during the “dead
time” 49.1 s<¢<69.153).

v(m/s)
x (m)
800 30
600 20

10

1020 30 40 50 60 70 -8 10 20 30 40 50 60 70
-10
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|
30 40 50 60 70 °(®
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39. Let ¢ be the time taken by the traffic cop to overtake the speeding car. The total
time (reaction plus chase) in which the car moves is (¢ + 1.0) s. Using the equation of
motion

1
(x—xp) = v0t+5at2,

we get

46(t+1)=0(t)+(%><4><t2J

— 46t + 46 = 212
= 2 — 461 — 46 =0,

which is simplified further to get the time that it takes to the cop to overtake the
speeding car as follows:

,_46+\/2116+368 _ 462484 _46+49.84 _ 95.84
4

4 4 4

=23.96 = 24s.
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40. We take the direction of motion as +x, so @ = —5.18 m/s?, and we use SI units, so
vo = 55(1000/3600) = 15.28 m/s.

(a) The velocity is constant during the reaction time 7, so the distance traveled during
it is
d, =vwT—(15.28 m/s) (0.75s) = 11.46 m.

We use Eq. 2-16 (with v = 0) to find the distance dj traveled during braking:

2
v =V +2ad, = d,=- _(1528mis)” m/s)2
2(-5.18 m/s?)
which vyields d, = 22.53 m. Thus, the total distance is d, + d, = 34.0 m, which
means that the driver is able to stop in time. And if the driver were to continue at
vo, the car would enter the intersection in ¢ = (40 m)/(15.28 m/s) = 2.6 s, which is

(barely) enough time to enter the intersection before the light turns, which many
people would consider an acceptable situation.

(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than
the distance to the intersection, so the driver cannot stop without the front end of
the car being a couple of meters into the intersection. And the time to reach it at
constant speed is 32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The
driver is caught between a rock and a hard place.
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41. (a) Using the equation of motion v =v, +at, we get the acceleration of the jet
when it stops in 3.0 s as follows:

0=64m/s+a(3.0s) = a=(—6—34j /s?.

The magnitude of the acceleration is about 21 m/s’.

(b) Using the equation of motion
(x—xp) = vt +%at2,

we get final position of the jet when it touches the position at x; = 0 as follows:

x = vyt +%at‘2 = (64 m/s)(3.0s) +%(—21.33 m/s?)(3.05)2 =192 m —96 m =96 m.
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42. (a) Note that 120 km/h is equivalent to 33.3 m/s. During a two-second interval,
you travel 66.67 m. The decelerating police car travels (using Eq. 2-15)

Ax, = (33.3m/s)(2.05) —%(5.0 m/s2)(2.05)? =56.67 m

which is 10.0 m less than that by your car. The initial distance between cars was 25 m,
this means the gap between cars is now 15.0 m.

(b) First, we add 0.4 s to the considerations of part (a). During the 2.4 s interval, you
travel 80.0 m, while the decelerating police car travels
Ax, = (33.3mis)(2.45) —%(5.0 m/s?)(2.45)° = 65.6 m

which is 14.4 m less than that by your car.

The initial distance between cars of 25 m has now become 25 m — 14.4 m = 10.6 m.
The speed of the police car at the instant you begin to brake is 33.3 m/s — (5.00
m/s?)(2.4 s) = 21.33 m/s. Collision occurs at time 7 when xyou = Xpolice (We choose

coordinates such that your position is x = 0 and the police car’s position is x = 10.6 m
atr=0). Eqg.2-15becomes, for each car:

Xpotice = 10.6 M + (21.3 m/s)t - 3 (5.00 m/s?)?
Xyou= (333 M/2)r - 3 (5.00 m/s))7 .

Subtracting equations, we find
106 m=(333m/s-21.3m/s)t = ¢=0.883s

At that time your speed is (33.3 m/s) — (5.00 m/s®)(0.883 s) ~ 28.9 m/s, or 104 km/h.
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43. In this solution we elect to wait until the last step to convert to SI units. Constant
acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and
denote the train’s initial velocity as v, and the locomotive’s velocity as v, (which is
also the final velocity of the train, if the rear-end collision is barely avoided). We note
that the distance Ax consists of the original gap between them, D, as well as the
forward distance traveled during this time by the locomotive v,z . Therefore,

v,+v, Ax D+vit D

= v,.
2 t t t

We now use Eq. 2-11 to eliminate time from the equation. Thus,
V,+V, D .
2 (v,—v,)/a

which leads to

Hence,

T 2(0676 km) |

1 [ km km
h

2
29——161T] =—12888 km/h?

which we convert as follows:

] =—0994m/s

a ={—12333kmfh3](mmm]( 1h

1km 3500 s

so that its magnitude is |a| = 0.994 m/s®. A graph is
shown here for the case where a collision is just X
avoided (x along the vertical axis is in meters and ¢ ]
along the horizontal axis is in seconds). The top soo ]
(straight) line shows the motion of the locomotive ]
and the bottom curve shows the motion of the ]
passenger train. 400

600

The other case (where the collision is not quite ** 7

avoided) would be similar except that the slopeof v,
the bottom curve would be greater than that of the 10 20 30
top line at the point where they meet.
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44. \We neglect air resistance, which justifies setting a = —g = -9.8 m/s? (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1

(with Ay replacing Ax) because this is constant acceleration motion. The ground level
is taken to correspond to the origin of the y axis.

() Using y =v,t —4 gt?, with y = 0.558 m and 7 = 0.200 s, we find
_y+ gt"/2 _0558m + (9.8m/s*)(0.2005)* /2
t 0.200s

=377 mls.

0

(b) The velocity at y = 0.558 m is
v =v,—gt =3.77 m/s—(9.8 m/s*) (0.200s) = 1.81 m/s .

(b) Using v =vZ —2gy (with different values for y and v than before), we solve for
the value of y corresponding to maximum height (where v = 0).
2 2
_ Y _BTTMS) 6 95 m,
2g  2(9.8m/s%)

Thus, the armadillo goes 0.725 — 0.558 = 0.167 m higher.
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45. Let the journey last for ¢ seconds from the top of the tower. The height of the

tower is given by

1
H=>=g".
58
The distance covered during the rth second is

1, 1 ) 1
Ay=—gt* ——gt-D°=g|t——
=28 2g( ) g( 2)

Since Ay =9H /25, we have

1y 9. 9(1 ,) 9
PN L PR e
g[ 2) 25 25(2gj 50°

which can be simplified to give
9% 507 + 25 = (91 —5)(r—5) =0

2

Thus, we find ¢ = 5.0 s. Note that the other solutions=(5/9)sis not possible since

t>0.5. We conclude that

H= % o’ = %(9.8 m/s2)(5.05)2 =122.5m.
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46. Neglect of air resistance justifies setting « = —g = —9.8 m/s? (where down is our —y
direction) for the duration of the fall. This is constant acceleration motion, and we
may use Table 2-1 (with Ay replacing Ax).

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward),
we have

v=—\V2 —2gAy = —J0—2(9.8 m/s?)(~1800 m) = ~188 m/s.

Its magnitude is therefore 188 m/s.

(b) No, but it is hard to make a convincing case without more analysis. We estimate
the mass of a raindrop to be about a gram or less, so that its mass and speed (from
part (a)) would be less than that of a typical bullet, which is good news. But the
fact that one is dealing with many raindrops leads us to suspect that this scenario
poses an unhealthy situation. If we factor in air resistance, the final speed is
smaller, of course, and we return to the relatively healthy situation with which we
are familiar.
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47. As the balloon is ascending at a velocity of 14 m/s, the initial velocity of the
packet is vo = 14 m/s. The net displacement traveled by the packet is given by S = —98
m. As the packet reaches the ground, let v be the velocity of the packet. Here, a =—g =
—9.8 m/s.

(a) As the packet reaches the ground, the velocity of the packet is calculated as
follows: From the equation of motion

v =15 +2a(x - xp),

we have
v2 = (14)? +[2x —9.8x 98]

(b) That is, v=-46.008 m/s~—46 m/s. We choose the negative root because the
velocity is downward.

The time taken by the packet to reach the ground is obtained as follows:
v=y, t+at
—46.008 =14 -9.8¢

:>t=%=6.1 m/s.
9.8
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48. We neglect air resistance, which justifies setting a = —g = —9.8 m/s? (taking down
as the —y direction) for the duration of the fall. This is constant acceleration motion,
which justifies the use of Table 2-1 (with Ay replacing Ax).

(a) Noting that Ay = y — yo = =30 m, we apply Eq. 2-15 and the quadratic formula

(Appendix E) to compute 7
Vv E4/Ve —2gAy
g

1
Ayzvot—Egt2 = t=

which (with vy = =15 m/s since it is downward) leads, upon choosing the positive root
(so that 7 > 0), to the result:

,_15mist J(=15 m/s)? —2(9.8 m/s?)(~30 m)

5 =1.38s.
9.8 m/s

(b) Enough information is now known that any of the equations in Table 2-1 can be
used to obtain v; however, the one equation that does not use our result from part (a)

is Eq. 2-16:
v=\V —2gAy =28.5mls

where the positive root has been chosen in order to give speed (which is the
magnitude of the velocity vector).
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49. THINK In this problem a package is dropped from a hot-air balloon which is
ascending vertically upward. We analyze the motion of the package under the
influence of gravity.

EXPRESS We neglect air resistance, which justifies setting « = —g = -9.8 m/s’
(taking down as the —y direction) for the duration of the motion. This allows us to use
Table 2-1 (with Ay replacing Ax):

v=v,—gt (2-11)

1
Y=Yy = vot—Egtz (2-15)
v =v—2g(y-,) (2-16)

We place the coordinate origin on the ground and note that the initial velocity of the
package is the same as the velocity of the balloon, vo = +12 m/s and that its initial
coordinate is yo = +80 m. The time it takes for the package to hit the ground can be
found by solving Eq. 2-15 with y = 0.

ANALYZE (3) We solve O=y=y,+vt—+gt’ for time using the quadratic
formula (choosing the positive root to yield a positive value for ):

e L +2gy, 12mis+ J@2mis)? +2(9.8 mis*)(80 m)

g 9.8 m/s®

=54s.

(b) The speed of the package when it hits the ground can be calculated using Eq. 2-11.
The result is

v=v,—gt =12 m/s— (9.8 m/s*)(5.447 s) =-41.38 m/s.
Its final speed is about 41 m/s.

LEARN Our answers can be readily verified by using Eq. 2-16 which was not used in
either (a) or (b). The equation leads to

v=—\v2=2g(y—y,) =12 m/s)* —2(9.8 m/s?)(0—80 m) =—41.38 m/s

which agrees with that calculated in (b).
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50. (a) The horizontal component of the velocity of the skier remains unchanged,
that is,

Ve =9 =29.4 m/s.
(b) The vertical component of the velocity of the skier changes with time. Using the
equation of motion
v = + at,
we get

v, =0+gt=0+(-9.8x3)=-29.4m/s.

Hence, we conclude that the magnitude of both horizontal and vertical components

of the skier’s velocity are same.



51. For the displacement during the acceleration, we have
(x—x,) = —%x39.2 =-19.6m.

From the equation of motion

v =8 +2a(x - xp),

we have

V2 =0+ (2x(-9.8) x (~19.6))
v =—19.6ms,

where v is the velocity of the melon, which makes the melon to hit the ground. We

take the negative root because the melon is moving downward.

75
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52. The full extent of the bolt’s fall is given by
1
y-y=-5gr
where y — yo =—100 m (if upward is chosen as the positive y direction). Thus the time
for the full fall is found to be # = 4.52 s. The first 80% of its free-fall distance is given
by —80 = —g t°/2, which requires time © = 4.04 s.
(@) Thus, the final 20% of its fall takes 7 — 1 = 0.48 s.

(b) We can find that speed using v = —gt.  Therefore, |v| = 40 m/s, approximately.

(c) Similarly, viya=—gt = |Vinal = 44 m/s.
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53. THINK This problem involves two objects: a key dropped from a bridge, and a
boat moving at a constant speed. We look for conditions such that the key will fall
into the boat.

EXPRESS The speed of the boat is constant, given by v, = d/t, where d is the distance
of the boat from the bridge when the key is dropped (12 m) and ¢ is the time the key
takes in falling.

To calculate 7, we take the time to be zero at the instant the key is dropped, we
compute the time ¢ when y = 0 using y = y, + vt — 2 gt°, with y, =45 m. Once ¢ is
known, the speed of the boat can be readily calculated.

ANALYZE Since the initial velocity of the key is zero, the coordinate of the key is

given by y, =1 gr’. Thus, the time it takes for the key to drop into the boat is

t:\/zyo :\/2(45 M _303s.
g

9.8 m/s®

Therefore, the speed of the boat is v, = 12m
3.03s

=4.0 m/s.

LEARN From the general expression

d d_dg

vb = —=

t \/zyo/g_ 2y,

we see that v, ~1/,/y, . This agrees with our intuition that the lower the height from

which the key is dropped, the greater the speed of the boat in order to catch it.
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54. (a) We neglect air resistance, which justifies setting a = —g = -9.8 m/s? (taking
down as the —y direction) for the duration of the motion. We are allowed to use Eq.
2-15 (with Ay replacing Ax) because this is constant acceleration motion. We use
primed variables (except ) with the first stone, which has zero initial velocity, and
unprimed variables with the second stone (with initial downward velocity —v,, so that
vo IS being used for the initial speed). SI units are used throughout.

Ay =O(t)—%gt2

&y =(-w) (1= 1)~ g (1)

Since the problem indicates Ay’ = Ay = -53.6 m, we solve the first equation for z:

_ [2CA) _ [2586 M) 4400
g 9.8 m/s’

Using this result to solve the second equation for the initial speed of the second stone:

~53.6 m =(-v,)(2.307s) —%(9.8 m/s?)(2.307 s)’

we obtain vo = 11.9 m/s.

(b) The velocity of the stones are given by
yody) , 2d@y)

¥ dt J y dt v, —g(t-1)

The plot is shown below:

v(m/s)

-10¢
—155
720;
—255
730;

-35t
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55. THINK The free-falling moist-clay ball strikes the ground with a non-zero speed,
and it undergoes deceleration before coming to rest.

EXPRESS During contact with the ground its average acceleration is given by

Av

a,, =—, Where Av is the change in its velocity during contact with the ground and
At

At=20.0x10"° sis the duration of contact. Thus, we must first find the velocity of the
ball just before it hits the ground (y = 0).

ANALYZE
(a) Now, to find the velocity just before contact, we take ¢ = O to be when it is dropped.

Using Eq. 2-16 with y, =15.0 m, we obtain

v=—\"2=2g(y—y,) =—/0—2(9.8 m/s?)(0—15 m) =~17.15 m/s

where the negative sign is chosen since the ball is traveling downward at the moment
of contact. Consequently, the average acceleration during contact with the ground
is

Av_0- (-17.1mf/s)

Aoy = ——~ =857 m/s’.
At 20.0x10"s

(b) The fact that the result is positive indicates that this acceleration vector points
upward.

LEARN Since Ar is very small, it is not surprising to have a very large acceleration
to stop the motion of the ball. In later chapters, we shall see that the acceleration is
directly related to the magnitude and direction of the force exerted by the ground on
the ball during the course of collision.
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56. Weuse Eqg. 2-16,

V32 = VA2 + 261()18 —yA),
with a =-9.8 m/s?, yg — ya = 0.40 m, and vg = % va. It is then straightforward to solve:
va = 3.0 m/s, approximately.
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57. The average acceleration during contact with the floor is aag = (v2 — 1) / At
where vy is its velocity just before striking the floor, v; is its velocity just as it leaves
the floor, and A¢ is the duration of contact with the floor (12 x 107 s).

(a) Taking the y axis to be positively upward and placing the origin at the point where
the ball is dropped, we first find the velocity just before striking the floor, using
vZ =vZ —2gy. With vo = 0 and y = — 4.00 m, the result is

v, = —J-2gy = —/-2(9.8 m/s) (~4.00 m) =—8.85 m/s

where the negative root is chosen because the ball is traveling downward. To find the
velocity just after hitting the floor (as it ascends without air friction to a height of 2.00

m), we use v’ =v>—2g(y—y,) with v =0, y = -2.00 m (it ends up two meters
below its initial drop height), and y, = —4.00 m. Therefore,

v, =[28(y — ¥5) = 4/2(9.8 M/s?) (—2.00 m+ 4.00 m) = 6.26 m/s .

Consequently, the average acceleration is

o, =N 6.26 m/s — (- 63;85 M) _ 1 26 10° /s,
At 12.0x107 s

(b) The positive nature of the result indicates that the acceleration vector points
upward. In a later chapter, this will be directly related to the magnitude and direction
of the force exerted by the ground on the ball during the collision.
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58. We choose down as the +y direction and set the coordinate origin at the point
where it was dropped (which is when we start the clock). We denote the 1.00 s
duration mentioned in the problem as ¢ — ¢ where ¢ is the value of time when it lands
and ¢’ is one second prior to that. The corresponding distance is y — y’ = 0.604, where y
denotes the location of the ground. In these terms, y is the same as /4, so we have 4 —y’
=0.60/ 0r 0.40h = y".

(a) We find ¢"and ¢ from Eq. 2-15 (with vo = 0):

yrzlgt/Z — trz 2_y
2 \ g
1 2

y=—gt2 = t= _y.
2 \ ¢

Plugging iny = h and y' = 0.404, and dividing these two equations, we obtain

¢ [2(0.40n)/ g
—= |———=4/040.
t 2hl g

Letting ¢/ = #— 1.00 (SI units understood) and cross-multiplying, we find

1.00

t-1.00=/040 = t=—"F+
1-+0.40

which yields r=2.72 s.
(b) Plugging this result into y =21 gr* we find 2 =36 m.

(c) In our approach, we did not use the quadratic formula, but we did “choose a root”
when we assumed (in the last calculation in part (a)) that J0.40 = +0.632
instead of —0.707. If we had instead let \/0.40 = —0.632 then our answer for ¢
would have been roughly 0.6 s, which would imply that ' = z — 1 would equal a

negative number (indicating a time before it was dropped), which certainly does
not fit with the physical situation described in the problem.
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59. We neglect air resistance, which justifies setting a = —g = —9.8 m/s* (taking down
as the —y direction) for the duration of the motion. We are allowed to use Table 2-1
(with Ay replacing Ax) because this is constant acceleration motion. The ground level
is taken to correspond to the origin of the y-axis.

(a) The time drop 1 leaves the nozzle is taken as # = 0 and its time of landing on the
floor ¢, can be computed from Eq. 2-15, with vo =0 and y; =-2.00 m.

1, 2, [2(200m)
=—Zot = = = =0.639s.
yl 2g1 1 \/ g \/ 98 m/SZ

At that moment, the fourth drop begins to fall, and from the regularity of the
dripping we conclude that drop 2 leaves the nozzle at r = 0.639/3 = 0.213 s and
drop 3 leaves the nozzle at r = 2(0.213 s) = 0.426 s. Therefore, the time in free
fall (up to the moment drop 1 lands) for drop 2 is &, = #1 — 0.213 s = 0.426 s. Its
position at the moment drop 1 strikes the floor is

v, = —% gt? = —%(9.8 m/s)(0.4265)° = —0.889 m,

or about 89 cm below the nozzle.

(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is t3 = 11 -0.426 s
= 0.213 s. Its position at the moment drop 1 strikes the floor is

Vs = —%gte? = —%(9.8 m/s*)(0.213s)* =—-0.222 m,

or about 22 cm below the nozzle.
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60. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum
height (where the speed is momentarily zero)

v=y,—gt = 0=y, —(9.8 m/sz)(2.53)

so that vo = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the
tower (taking yo = 0 at the ground level)

V= Yo =Wl + %at2 = y-0=(245m/s)(1.5s) - %(9.8 m/sz)(1.5 s)’.

Thus, we obtain y = 26 m.
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61. We choose down as the +y direction and place the coordinate origin at the top of
the building (which has height /). During its fall, the ball passes (with velocity v;) the
top of the window (which is at y1) at time #, and passes the bottom (which is at y-) at
time #,. We are told y, —y; = 1.20 m and #, — #, = 0.125 s. Using Eq. 2-15 we have

1
Yo =1 = Vl(tz - tl) + Eg(tz - tl)z
which yields
1.20 m - 3(9.8m/s”)(0.1255)’

v, = =8.99 m/s.
0.125s

From this, Eq. 2-16 (with vy = 0) reveals the value of y;:

2
_ (8.99 m/s) a1

Vi =2gy, yl—m— :

It reaches the ground (ys = H) at 73. Because of the symmetry expressed in the
problem (“upward flight is a reverse of the fall’) we know that #; — #, = 2.00/2 = 1.00
s. And this means t3— 1 = 1.00 s + 0.125 s = 1.125 s. Now Eq. 2-15 produces

1
Ys=n =wlts - t1)+zg(t3 - tl)z

¥,— 4.12 m=(8.99 m/s) (1.125 s)+%(9.8 m/s?) (1.1255s)?

which yields y; = H=20.4 m.
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62. The height reached by the player is y = 0.78 m (where we have taken the origin of
the y axis at the floor and +y to be upward).

(a) The initial velocity v, of the player is

vo =+/2gy =1/2(9.8 M/s?)(0.78 m) = 3.91m/s .

This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y1
=0.78 m-0.15 m = 0.63 m, his speed v; satisfies v —v? = 2gy, , which yields

v = ng —-2gy, = \/(3.91 m/s)? — 2(9.80 m/s*)(0.63 m) =1.71 m/s .

The time #; that the player spends ascending in the top Ay; = 0.15 m of the jump can
now be found from Eq. 2-17:

2(0.15m)

=—— 2 =0.175s
1.71m/s + 0

1
Ay, = 5 (n+v)y, = ¢

which means that the total time spent in that top 15 cm (both ascending and
descending) is 2(0.175 s) = 0.35 s = 350 ms.

(b) The time #, when the player reaches a height of 0.15 m is found from Eq. 2-15:
0.15 m= Ll 1 )
. =V,t, > gt, =(3.91m/s)t, > (9.8 mis%)t, ,

which yields (using the quadratic formula, taking the smaller of the two positive roots)
t, = 0.0404 s = 40.4 ms, which implies that the total time spent in that bottom 15 cm
(both ascending and descending) is 2(40.4 ms) = 80.8 ms, or about 81 ms.
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63. The time ¢ the pot spends passing in front of the window of length L = 2.0 m is
0.25 s each way. We use v for its velocity as it passes the top of the window (going
up). Then, with @ = —g = -9.8 m/s? (taking down to be the —y direction), Eq. 2-18
yields

1, L 1
L=vt——gt" = v=———gl.
28 ;2%

The distance H the pot goes above the top of the window is therefore (using Eq. 2-16
with the final velocity being zero to indicate the highest point)

2
2 (Llt—ot/2) (2.00m/0.25s—(9.80 m/s?)(0.25s)/2
H:—V :( g ) z( ( 2 )( ) ) 2234m
2g 2g 2(9.80 m/s?)
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64. Using the equation of motion

(x—xp) = v0t+%at2,
we get the rock’s displacement during the fall as follows:
h=(x—x0)=v0t+%at2

= —10(3)+E (—9.8)(3)2} (acceleration here is the acceleration due to gravity,—9.8m/s®)
=-74m.
Thus the initial height is 74 m.
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65. The key idea here is that the speed of the head (and the torso as well) at any given
time can be calculated by finding the area on the graph of the head’s acceleration
versus time, as shown in Eq. 2-26:

area between the acceleration curve
V. = . .
v and the time axis, from ¢, 70 ¢,

(a) From Fig. 2.15a, we see that the head begins to accelerate from rest (vo=0) at % =
110 ms and reaches a maximum value of 90 m/s? at # = 160 ms. The area of this
region is

area = %(160—110)><10‘3s~(90 m/s® ) = 2.25 m/s

which is equal to vy, the speed at 7.
(b) To compute the speed of the torso at #1=160 ms, we divide the area into 4 regions:

From 0 to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the
shape of a triangle with area

area, = %(0.0600 $)(50.0 m/s®) =1.50 m/s.
From 100 to 120 ms, region C has the shape of a rectangle with area

area. = (0.0200 s) (50.0 m/s*) = 1.00 m/s.
From 110 to 160 ms, region D has the shape of a trapezoid with area

area, = %(0.0400 $) (50.0 + 20.0) m/s? = 1.40 m/s,

Substituting these values into Eq. 2-26, with v, = 0 then gives

v, —0=0+1.50 m/s + 1.00 m/s + 1.40 m/s = 3.90 m/s,
or v, =3.90 m/s.
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66. The key idea here is that the position of an object at any given time can be

calculated by finding the area on the graph of the object’s velocity versus time, as
shown in Eq. 2-30:

area between the velocity curve
X, — = . . .
v and the time axis, from ¢, 10 ¢,

(a) To compute the position of the fist at # = 50 ms, we divide the area in Fig. 2-37
into two regions. From 0 to 10 ms, region A has the shape of a triangle with area

area, = %(0.010 S) (2 m/s) =0.01 m.

From 10 to 50 ms, region B has the shape of a trapezoid with area
area, = %(0.040 S)(2+4)m/s=0.12m.

Substituting these values into Eq. 2-30 with xo = 0 then gives
x-0=0+0.01m+0.12m=0.13m,

or x,=0.13m.

(b) The speed of the fist reaches a maximum at #; = 120 ms. From 50 to 90 ms, region
C has the shape of a trapezoid with area

area,. = E 0.040s) (4 +5) m/s=0.18 m.
©c 2

From 90 to 120 ms, region D has the shape of a trapezoid with area

1 0.0305) (5+7.5) mis=0.19m.

area, = =
2

Substituting these values into Eq. 2-30, with xo = 0 then gives
x-0=0+001m+0.12m+ 0.18 m+ 0.19 m=0.50 m,

or x,=0.50 m.
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67. The problem is solved using Eq. 2-31:

area between the acceleration curve
v, — = . .
L and the time axis, from ¢, 70 ¢,

To compute the speed of the unhelmeted, bare head at #,= 7.0 ms, we divide the area
under the a vs. ¢ graph into 4 regions: From 0 to 2 ms, region A has the shape of a
triangle with area

area, = %(0.0020 s) (120 m/s*) = 0.12 m/s.

From 2 ms to 4 ms, region B has the shape of a trapezoid with area

area, = %(0.0020 s) (120 + 140) m/s* = 0.26 m/s.

From 4 to 6 ms, region C has the shape of a trapezoid with area

area. = %(0.0020 s) (140 + 200) m/s® = 0.34 m/s.
From 6 to 7 ms, region D has the shape of a triangle with area

area, = %(0.0010 s) (200 m/s*) =0.10 m/s.

Substituting these values into Eq. 2-31, with v,=0 then gives

% =0.12 m/s+0.26 m/s+0.34 m/s+0.10 m/s =0.82 m/s.

unhelmeted

Carrying out similar calculations for the helmeted head, we have the following
results: From 0 to 3 ms, region A has the shape of a triangle with area

area, = %(0.0030 s) (40 m/s*) = 0.060 m/s.

From 3 ms to 4 ms, region B has the shape of a rectangle with area

area, = (0.0010 s) (40 m/s®) = 0.040 m/s.

From 4 to 6 ms, region C has the shape of a trapezoid with area

area, = %(o.oozo 5) (40 + 80) m/s® = 0.12 mys.

From 6 to 7 ms, region D has the shape of a triangle with area

area, = %(0.0010 s) (80 m/s?) = 0.040 m/s.
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Substituting these values into Eq. 2-31, with vy = 0 then gives

Vioreg = 0.060 M/s +0.040 m/s +0.12 m/s +0.040 m/s = 0.26 mys.

Thus, the difference in the speed is

AV=V, s — Vg = 0.82 M/s—0.26 m/s = 0.56 m/s.
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68. This problem can be solved by noting that velocity can be determined by the
graphical integration of acceleration versus time. The speed of the tongue of the
salamander is simply equal to the area under the acceleration curve:

v =area = %(10‘2 s)(100 m/s?) +%(10_2 s)(100 m/s” +400 m/s?) +%(10_2 s)(400 m/s?)
=5.0 m/s.
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69. Since v=dx/dt (Eq. 2-4), then Ax=[vdr, which corresponds to the area
under the v vs ¢ graph. Dividing the total area 4 into rectangular (base x height) and
triangular (4 base x height) areas, we have

A =4 + A

= P0<«<2

-0 + ©® + ((2)(4) . %(2)(4)) + (4)(4)

+ A4 + A4

2<t<10 10<¢<12 12<¢<16

with S1 units understood. In this way, we obtain Ax =100 m.
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70. To solve this problem, we note that velocity is equal to the time derivative of a
position function, as well as the time integral of an acceleration function, with the
integration constant being the initial velocity. Thus, the velocity of particle 1 can be
written as

_dy _d

" dt(G.OOtz+3.00t+2.00)=12.0t+3.00.

<1

Similarly, the velocity of particle 2 is
v, = vy + [ a,dt =15.0+ [ (~8.00)dt = 20.0—4.00¢".
The condition that v, =v, implies
12.0¢+3.00=15.0-4.00/* = 4.00¢*+12.0t-12.0=0

which can be solved with the quadratic equation to give ¢=0.790s. Thus, the
velocity at this time is v, =v, =12.0(0.790) +3.00 =12.5 m/s.



