INSTRUCTOR'S SOLUTIONS MANUAL

PROBABILITY AND STATISTICAL INFERENCE TENTH EDITION

Robert V. Hogg

Elliot A. Tanis

Dale L. Zimmerman

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2020, 2015, 2010 Pearson Education, Inc. Publishing as Pearson, 330 Hudson Street, NY NY 10013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-518948-1 ISBN-10: 0-13-518948-9

Contents

Pı	efac	e	v					
1	Pro 1.1	Properties of Probability	1					
	1.2	Methods of Enumeration	$\overline{2}$					
	1.3	Conditional Probability	3					
	1.4	Independent Events	4					
	1.5	Bayes' Theorem	5					
2	Disc	Discrete Distributions						
	2.1	Random Variables of the Discrete Type	7					
	2.2	Mathematical Expectation	9					
	2.3	Special Mathematical Expectations	11					
	2.4		14					
	2.5	V1 0	16					
	2.6		17					
	2.7	The Poisson Distribution	18					
3	Continuous Distributions 19							
	3.1	71	19					
	3.2	The Exponential, Gamma, and Chi-Square Distributions	26					
	3.3		28					
	3.4	Additional Models	30					
4	Biva	Bivariate Distributions 33						
	4.1	Bivariate Distributions of the Discrete Type	33					
	4.2	The Correlation Coefficient	34					
	4.3	Conditional Distributions	36					
	4.4	V I	37					
	4.5	The Bivariate Normal Distribution	41					
5	Distributions of Functions of Random Variables 4							
	5.1		45					
	5.2	Transformations of Two Random Variables	47					
	5.3		52					
	5.4	O I	53					
	5.5		55					
	5.6		58					
	5.7	TT .	59					
	5.8	v i v	61					
	5.9	Limiting Moment-Generating Functions	62					

iv

6	Poi	nt Estimation	63							
	6.1	Descriptive Statistics	63							
	6.2	Exploratory Data Analysis	65							
	6.3	Order Statistics	70							
	6.4	Maximum Likelihood Estimation	73							
	6.5	A Simple Regression Problem	76							
	6.6	Asymptotic Distributions of Maximum								
		Likelihood Estimators	81							
	6.7	Sufficient Statistics	81							
	6.8	Bayesian Estimation	84							
7	Inte	Interval Estimation 87								
	7.1	Confidence Intervals for Means	87							
	7.2	Confidence Intervals for the Difference of Two Means	88							
	7.3	Confidence Intervals For Proportions	90							
	7.4	Sample Size	91							
	7.5	Distribution-Free Confidence Intervals for Percentiles	92							
	7.6	More Regression	93							
	7.7	Resampling Methods	99							
8	Tests of Statistical Hypotheses 107									
	8.1	Tests About One Mean	107							
	8.2	Tests of the Equality of Two Means	109							
	8.3	Tests for Variances	111							
	8.4	Tests about Proportions	113							
	8.5	Some Distribution-Free Tests	114							
	8.6	Power of a Statistical Test	118							
	8.7	Best Critical Regions	121							
	8.8	Likelihood Ratio Tests	124							
9	More Tests									
	9.1	Chi-Square Goodness-of-Fit Tests	127							
	9.2	Contingency Tables								
	9.3	One-Factor Analysis of Variance								
	9.4	Two-Way Analysis of Variance								
	9.5	General Factorial and 2^k Factorial Designs								
	9.6	Tests Concerning Regression and Correlation								
	9.7	Statistical Quality Control								

Preface

Preface

This solutions manual provides answers for the even-numbered exercises in *Probability and Statistical Inference*, tenth edition, by Robert V. Hogg, Elliot A. Tanis, and Dale L. Zimmerman. Complete solutions are given for most of these exercises. You, the instructor, may decide how many of these solutions and answers you want to make available to your students. Note that the answers for the odd-numbered exercises are given in the textbook. Our hope is that this solutions manual will be helpful to each of you in your teaching.

All of the figures in this manual were generated using *Maple*, a computer algebra system. Most of the figures were generated and many of the solutions, especially those involving data, were solved using procedures that were written by Zaven Karian from Denison University. We thank him for providing these. These procedures are available free of charge for your use. They are available for down load at http://www.math.hope.edu/tanis/. Short descriptions of these procedures are provided on the "Maple Card." Complete descriptions of these procedures are given in *Probability and Statistics: Explorations with MAPLE*, second edition, 1999, written by Zaven Karian and Elliot Tanis, published by Prentice Hall (ISBN 0-13-021536-8). You can download a slightly revised edition of this manual at http://www.math.hope.edu/tanis/MapleManual.pdf.

We also want to acknowledge the many suggestions/corrections that were made by our accuracy checker, Kyle Siegrist.

If you find an error or wish to make a suggestion, please send them to dale-zimmerman@uiowa.edu. These ${\bf errata}$ will be posted on http://homepage.divms.uiowa.edu/ \sim dzimmer/.

E.A.T. D.L.Z.

Chapter 1

Probability

1.1 Properties of Probability

1.1-2 Sketch a figure and fill in the probabilities of each of the disjoint sets.

Let $A = \{\text{insure more than one car}\}, P(A) = 0.85.$

Let $B = \{\text{insure a sports car}\}, P(B) = 0.23.$

Let $C = \{\text{insure exactly one car}\}, P(C) = 0.15.$

It is also given that $P(A \cap B) = 0.17$. Since $A \cap C = \phi$, $P(A \cap C) = 0$. It follows that $P(A \cap B \cap C') = 0.17$. Thus $P(A' \cap B \cap C') = 0.06$ and $P(B' \cap C) = 0.09$.

- 1.1-4 (a) $S = \{ \text{HHHH}, \text{ HHHT}, \text{ HHTH}, \text{ HTHH}, \text{ THHH}, \text{ HHTT}, \text{ HTTH}, \text{ TTTH}, \text{ TTTT} \};$
 - (b) (i) 5/16, (ii) 0, (iii) 11/16, (iv) 4/16, (v) 4/16, (vi) 9/16, (vii) 4/16.
- **1.1-6** (a) $P(A \cup B) = 0.5 + 0.6 0.4 = 0.7$;

(b)
$$A = (A \cap B') \cup (A \cap B)$$

 $P(A) = P(A \cap B') + P(A \cap B)$
 $0.5 = P(A \cap B') + 0.4$
 $P(A \cap B') = 0.1;$

(c)
$$P(A' \cup B') = P[(A \cap B)'] = 1 - P(A \cap B) = 1 - 0.4 = 0.6.$$

1.1-8 Let $A = \{\text{lab work done}\}, B = \{\text{referral to a specialist}\}, P(A) = 0.41, P(B) = 0.53, <math>P([A \cup B]') = 0.21.$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.79 = 0.41 + 0.53 - P(A \cap B)$$

$$P(A \cap B) = 0.41 + 0.53 - 0.79 = 0.15.$$

1.1-10
$$A \cup B \cup C = A \cup (B \cup C)$$

 $P(A \cup B \cup C) = P(A) + P(B \cup C) - P[A \cap (B \cup C)]$
 $= P(A) + P(B) + P(C) - P(B \cap C) - P[(A \cap B) \cup (A \cap C)]$
 $= P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) - P(A \cap C)$
 $+ P(A \cap B \cap C).$

1.1-12 (a) 1/3; (b) 2/3; (c) 0; (d) 1/2.

1.1-14
$$P(A) = \frac{2[r - r(\sqrt{3}/2)]}{2r} = 1 - \frac{\sqrt{3}}{2}.$$

1.1-16 Note that the respective probabilities are p_0 , $p_1 = p_0/4$, $p_2 = p_0/4^2$, ...

$$\sum_{k=0}^{\infty} \frac{p_0}{4^k} = 1$$

$$\frac{p_0}{1 - 1/4} = 1$$

$$p_0 = \frac{3}{4}$$

$$1 - p_0 - p_1 = 1 - \frac{15}{16} = \frac{1}{16}.$$

1.2 Methods of Enumeration

1.2-2 (a)
$$(4)(5)(2) = 40$$
; (b) $(2)(2)(2) = 8$.

1.2-4 (a)
$$4\binom{6}{3} = 80;$$

(b)
$$4(2^6) = 256;$$

(c)
$$\frac{(4-1+3)!}{(4-1)!3!} = 20.$$

1.2-6 $S = \{$ DDD, DDFD, DFDD, FDDD, DDFFD, DFDFD, FDDFD, DFFDD, FDFDD, FFDDD, FFDDD, FFDF, FDFF, DFFF, DFFF, DFFF, DFFF, DFFF, DFFF, DFFF, DFFF, So there are 20 possibilities. Note that the winning player (2 choices) must win the last set and two of the previous sets, so the number of outcomes is

$$2\left[\binom{2}{2} + \binom{3}{2} + \binom{4}{2}\right] = 20.$$

1.2-8 $3 \cdot 3 \cdot 2^{12} = 36,864$.

1.2-10
$$\binom{n-1}{r} + \binom{n-1}{r-1} = \frac{(n-1)!}{r!(n-1-r)!} + \frac{(n-1)!}{(r-1)!(n-r)!}$$

$$= \frac{(n-r)(n-1)! + r(n-1)!}{r!(n-r)!} = \frac{n!}{r!(n-r)!} = \binom{n}{r}.$$

1.2-12
$$0 = (1-1)^n = \sum_{r=0}^n \binom{n}{r} (-1)^r (1)^{n-r} = \sum_{r=0}^n (-1)^r \binom{n}{r}.$$

$$2^{n} = (1+1)^{n} = \sum_{r=0}^{n} \binom{n}{r} (1)^{r} (1)^{n-r} = \sum_{r=0}^{n} \binom{n}{r}.$$

1.2-14
$$\binom{5-1+29}{29} = \frac{33!}{29!4!} = 40,920.$$

1.2-16 (a)
$$\frac{\binom{19}{3}\binom{52-19}{6}}{\binom{52}{9}} = \frac{102,486}{351,325} = 0.2917;$$

(b)
$$\frac{\binom{19}{3}\binom{10}{2}\binom{7}{1}\binom{3}{0}\binom{5}{1}\binom{2}{0}\binom{6}{2}}{\binom{52}{9}} = \frac{7,695}{1,236,664} = 0.00622.$$

1.2-18 (a)
$$P(A) = \sum_{n=1}^{5} (1/2)^n = 1 - (1/2)^5;$$

(b)
$$P(B) = \sum_{n=1}^{10} (1/2)^n = 1 - (1/2)^{10};$$

(c)
$$P(A \cup B) = P(B) = 1 - (1/2)^{10}$$
;

(d)
$$P(A \cap B) = P(A) = 1 - (1/2)^5$$
;

(e)
$$P(C) = P(B) - P(A) = (1/2)^5 - (1/2)^{10}$$
;

(f)
$$P(B') = 1 - P(B) = (1/2)^{10}$$
.

1.3 Conditional Probability

- 1.3-2 (a) $\frac{1041}{1456}$;
 - **(b)** $\frac{392}{633}$;
 - (c) $\frac{649}{823}$.
 - (d) The proportion of women who favor a gun law is greater than the proportion of men who favor a gun law.
- **1.3-4** (a) $P(HH) = \frac{13}{52} \cdot \frac{12}{51} = \frac{1}{17}$;
 - **(b)** $P(HC) = \frac{13}{52} \cdot \frac{13}{51} = \frac{13}{204};$
 - (c) P(Non-Ace Heart, Ace) + P(Ace of Hearts, Non-Heart Ace)

$$=\frac{12}{52} \cdot \frac{4}{51} + \frac{1}{52} \cdot \frac{3}{51} = \frac{51}{52 \cdot 51} = \frac{1}{52}.$$

1.3-6 Let $H = \{ \text{died from heart disease} \}$; $P = \{ \text{at least one parent had heart disease} \}$.

$$P(H \mid P') = \frac{N(H \cap P')}{N(P')} = \frac{110}{648}.$$

1.3-8 (a) $\frac{3}{20} \cdot \frac{2}{19} \cdot \frac{1}{18} = \frac{1}{1140}$;

(b)
$$\frac{\binom{3}{2}\binom{17}{1}}{\binom{20}{3}} \cdot \frac{1}{17} = \frac{1}{380};$$

(c)
$$\sum_{k=1}^{9} \frac{\binom{3}{2} \binom{17}{2k-2}}{\binom{20}{2k}} \cdot \frac{1}{20-2k} = \frac{35}{76} = 0.4605;$$

(d) Draw second. The probability of winning is 1 - 0.4605 = 0.5395.

1.3-10 (a)
$$P(A) = \frac{52}{52} \cdot \frac{51}{52} \cdot \frac{50}{52} \cdot \frac{49}{52} \cdot \frac{48}{52} \cdot \frac{47}{52} = \frac{8,808,975}{11,881,376} = 0.74141;$$
 (b) $P(A') = 1 - P(A) = 0.25859.$

1.3-12 (a) It doesn't matter because
$$P(B_1) = \frac{1}{18}, \ P(B_5) = \frac{1}{18}, \ P(B_{18}) = \frac{1}{18};$$
 (b) $P(B) = \frac{2}{18} = \frac{1}{9}$ on each draw.

1.3-14 (a)
$$5 \cdot 4 \cdot 3 = 60$$
;

(b)
$$5 \cdot 5 \cdot 5 = 125$$
.

1.3-16
$$\frac{3}{5} \cdot \frac{5}{8} + \frac{2}{5} \cdot \frac{4}{8} = \frac{23}{40}$$

1.4 Independent Events

1.4-2 (a)
$$P(A \cap B) = P(A)P(B) = (0.3)(0.6) = 0.18;$$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= 0.3 + 0.6 - 0.18$ $= 0.72;$

(b)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{0.6} = 0.$$

1.4-4 Proof of **(b)**:
$$P(A' \cap B) = P(B)P(A'|B)$$

= $P(B)[1 - P(A|B)]$
= $P(B)[1 - P(A)]$
= $P(B)P(A')$.

Proof of (c):
$$P(A' \cap B') = P[(A \cup B)']$$

 $= 1 - P(A \cup B)$
 $= 1 - P(A) - P(B) + P(A \cap B)$
 $= 1 - P(A) - P(B) + P(A)P(B)$
 $= [1 - P(A)][1 - P(B)]$
 $= P(A')P(B')$.

1.4-6
$$P[A \cap (B \cap C)] = P[A \cap B \cap C]$$

 $= P(A)P(B)P(C)$
 $= P(A)P(B \cap C).$
 $P[A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)]$
 $= P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$
 $= P(A)P(B) + P(A)P(C) - P(A)P(B)P(C)$
 $= P(A)[P(B) + P(C) - P(B \cap C)]$
 $= P(A)P(B \cup C).$

$$P[A' \cap (B \cap C')] = P(A' \cap C' \cap B)$$

$$= P(B)[P(A' \cap C') \mid B]$$

$$= P(B)[1 - P(A \cup C \mid B)]$$

$$= P(B)[1 - P(A \cup C)]$$

$$= P(B)P[(A \cup C')']$$

$$= P(B)P(A' \cap C')$$

$$= P(B)P(A')P(C')$$

$$= P(A')P(B)P(C')$$

$$= P(A')P(B \cap C').$$

$$\begin{array}{lll} P[A'\cap B'\cap C'] & = & P[(A\cup B\cup C)'] \\ & = & 1-P(A\cup B\cup C) \\ & = & 1-P(A)-P(B)-P(C)+P(A)P(B)+P(A)P(C)+ \\ & & P(B)P(C)-PA)P(B)P(C) \\ & = & [1-P(A)][1-P(B)][1-P(C)] \\ & = & P(A')P(B')P(C'). \end{array}$$

1.4-8
$$\frac{1}{6} \cdot \frac{2}{6} \cdot \frac{3}{6} + \frac{1}{6} \cdot \frac{4}{6} \cdot \frac{3}{6} + \frac{5}{6} \cdot \frac{2}{6} \cdot \frac{3}{6} = \frac{2}{9}$$
.

1.4-10 (a)
$$\frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$$
;

(b)
$$\frac{1}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{2}{4} = \frac{9}{16};$$

(c)
$$\frac{2}{4} \cdot \frac{1}{4} + \frac{2}{4} \cdot \frac{4}{4} = \frac{10}{16}$$
.

1.4-12 (a)
$$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2$$
;

(b)
$$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2;$$

(c)
$$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2$$
;

(d)
$$\frac{5!}{3! \, 2!} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2$$
.

1.4-14 (a)
$$1 - (0.4)^3 = 1 - 0.064 = 0.936$$
;

(b)
$$1 - (0.4)^8 = 1 - 0.00065536 = 0.99934464.$$

1.4-16 (a)
$$\sum_{k=0}^{\infty} \frac{1}{5} \left(\frac{4}{5}\right)^{2k} = \frac{5}{9};$$

(b)
$$\frac{1}{5} + \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{1}{3} + \frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{1} = \frac{3}{5}.$$

1.4-18 (a) 7; (b)
$$(1/2)^7$$
; (c) 63; (d) No! $(1/2)^{63} = 1/9,223,372,036,854,775,808$.

1.4-20 No. The equations that must hold are

$$(1-p_1)(1-p_2) = p_1(1-p_2) + p_2(1-p_1) = p_1p_2.$$

There are no real solutions.

1.5 Bayes' Theorem

1.5-2 (a)
$$P(G) = P(A \cap G) + P(B \cap G)$$

= $P(A)P(G|A) + P(B)P(G|B)$
= $(0.40)(0.85) + (0.60)(0.75) = 0.79;$

(b)
$$P(A \mid G) = \frac{P(A \cap G)}{P(G)}$$

= $\frac{(0.40)(0.85)}{0.79} = 0.43.$

1.5-4 Let event B denote an accident and let A_1 be the event that age of the driver is 16–25. Then

$$P(A_1 \mid B) = \frac{(0.1)(0.05)}{(0.1)(0.05) + (0.55)(0.02) + (0.20)(0.03) + (0.15)(0.04)}$$
$$= \frac{50}{50 + 110 + 60 + 60} = \frac{50}{280} = 0.179.$$

1.5-6 Let B be the event that the policyholder dies. Let A_1, A_2, A_3 be the events that the deceased is standard, preferred and ultra-preferred, respectively. Then

$$P(A_1 | B) = \frac{(0.60)(0.01)}{(0.60)(0.01) + (0.30)(0.008) + (0.10)(0.007)}$$

$$= \frac{60}{60 + 24 + 7} = \frac{60}{91} = 0.659;$$

$$P(A_2 | B) = \frac{24}{91} = 0.264;$$

$$P(A_3 | B) = \frac{7}{91} = 0.077.$$

1.5-8 Let A be the event that the tablet is under warranty.

$$P(B_1 | A) = \frac{(0.40)(0.10)}{(0.40)(0.10) + (0.30)(0.05) + (0.20)(0.03) + (0.10)(0.02)}$$

$$= \frac{40}{40 + 15 + 6 + 2} = \frac{40}{63} = 0.635;$$

$$P(B_2 | A) = \frac{15}{63} = 0.238;$$

$$P(B_3 | A) = \frac{6}{63} = 0.095;$$

$$P(B_4 | A) = \frac{2}{63} = 0.032.$$

1.5-10 (a) $P(D^+) = (0.02)(0.92) + (0.98)(0.05) = 0.0184 + 0.0490 = 0.0674;$

(b)
$$P(A^- \mid D^+) = \frac{0.0490}{0.0674} = 0.727; \ P(A^+ \mid D^+) = \frac{0.0184}{0.0674} = 0.273;$$

(c) $P(A^- \mid D^-) = \frac{(0.98)(0.95)}{(0.02)(0.08) + (0.98)(0.95)} = \frac{9310}{16 + 9310} = 0.998;$

 $P(A^+ \mid D^-) = 0.002;$ (d) Yes, particularly those in part (b).

1.5-12 Let $D = \{\text{defective roll}\}$. Then

$$\begin{split} P(I \,|\, D) &=& \frac{P(I \cap D)}{P(D)} \\ &=& \frac{P(I) \cdot P(D \,|\, I)}{P(I) \cdot P(D \,|\, I) + P(II) \cdot P(D \,|\, II)} \\ &=& \frac{(0.60)(0.03)}{(0.60)(0.03) + (0.40)(0.01)} \\ &=& \frac{0.018}{0.018 + 0.004} = \frac{0.018}{0.022} = 0.818. \end{split}$$

Chapter 2

Discrete Distributions

2.1 Random Variables of the Discrete Type

2.1-2 (a)
$$f(x) = \left\{ \begin{array}{ll} 0.6, & x=1,\\ 0.3, & x=5,\\ 0.1, & x=10; \end{array} \right.$$

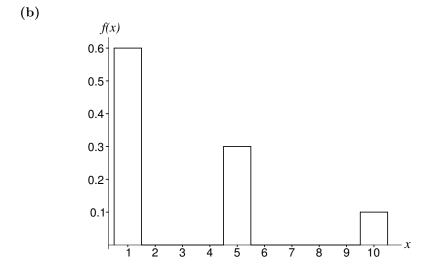


Figure 2.1–2: A probability histogram

2.1-4 (a)
$$\sum_{x=1}^{9} \log_{10} \left(\frac{x+1}{x} \right) = \sum_{x=1}^{9} [\log_{10}(x+1) - \log_{10}x]$$

$$= \log_{10} 2 - \log_{10} 1 + \log_{10} 3 - \log_{10} 2 + \dots + \log_{10} 10 - \log_{10} 9$$

$$= \log_{10} 10 = 1;$$
(b)
$$F(x) = \begin{cases} 0, & x < 1, \\ \log_{10} n, & n - 1 \le x < n, \\ 1, & 9 \le x. \end{cases}$$

$$n = 2, 3, \dots, 9,$$

2.1-6 (a)
$$f(x) = \frac{1}{10}$$
, $x = 0, 1, 2, \dots, 9$;

(b)
$$\mathcal{N}(\{0\})/150 = 11/150 = 0.073;$$
 $\mathcal{N}(\{5\})/150 = 13/150 = 0.087;$ $\mathcal{N}(\{1\})/150 = 14/150 = 0.093;$ $\mathcal{N}(\{6\})/150 = 22/150 = 0.147;$ $\mathcal{N}(\{2\})/150 = 13/150 = 0.087;$ $\mathcal{N}(\{7\})/150 = 16/150 = 0.107;$ $\mathcal{N}(\{3\})/150 = 12/150 = 0.080;$ $\mathcal{N}(\{8\})/150 = 18/150 = 0.120;$ $\mathcal{N}(\{4\})/150 = 16/150 = 0.107;$ $\mathcal{N}(\{9\})/150 = 15/150 = 0.100.$

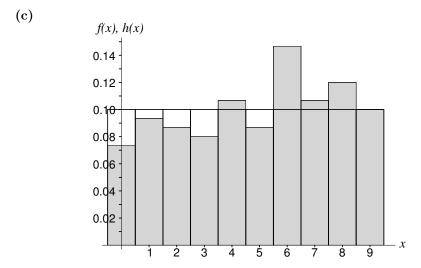


Figure 2.1-6: Michigan daily lottery digits

2.1-8 (a)
$$f(x) = \frac{6 - |7 - x|}{36}$$
, $x = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; (b)$

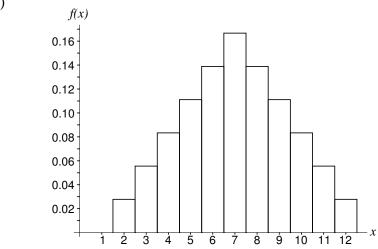


Figure 2.1–8: Probability histogram for the sum of a pair of dice

2.1-10 (a) The space of W is $S = \{0, 1, 2, 3, 4, 5, 6, 7\}.$

$$P(W=0) = P(X=0, Y=0) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}, \text{ assuming independence.}$$

$$P(W=1) = P(X=0, Y=1) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},$$

$$P(W=2) = P(X=2, Y=0) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},$$

$$P(W=3) = P(X=2, Y=1) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},$$

$$P(W=4) = P(X=0, Y=4) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},$$

$$P(W=5) = P(X=0, Y=5) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},$$

$$P(W=6) = P(X=2, Y=4) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8},$$

$$P(W=7) = P(X=2, Y=5) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}.$$
That is, $f(w) = P(W=w) = \frac{1}{8}, w \in S.$

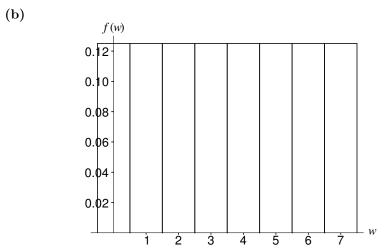


Figure 2.1–10: Probability histogram of sum of two special dice

2.1-12 Let x equal the number of orange balls and 144 - x the number of blue balls. Then

$$\begin{array}{rcl} \frac{x}{144} \cdot \frac{x-1}{143} + \frac{144-x}{144} \cdot \frac{143-x}{143} & = & \frac{x}{144} \cdot \frac{144-x}{143} + \frac{144-x}{144} \cdot \frac{x}{143} \\ x^2 - x + 144 \cdot 143 - 144x - 143x + x^2 & = & 2 \cdot 144x - 2 \cdot x^2 \\ x^2 - 144x + 5,148 & = & 0 \\ (x - 78)(x - 66) & = & 0 \end{array}$$

Thus there are 78 orange balls and 66 blue balls.

2.2 Mathematical Expectation

2.2-2
$$E(X) = (-1)\left(\frac{4}{9}\right) + (0)\left(\frac{1}{9}\right) + (1)\left(\frac{4}{9}\right) = 0;$$

$$E(X^2) = (-1)^2\left(\frac{4}{9}\right) + (0)^2\left(\frac{1}{9}\right) + (1)^2\left(\frac{4}{9}\right) = \frac{8}{9};$$

$$E(3X^2 - 2X + 4) = 3\left(\frac{8}{9}\right) - 2(0) + 4 = \frac{20}{3}.$$

$$2.2-4 1 = \sum_{x=0}^{6} f(x) = \frac{9}{10} + c\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}\right)$$

$$c = \frac{2}{49};$$

$$E(\text{Payment}) = \frac{2}{49}\left(1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{4} + 4 \cdot \frac{1}{5} + 5 \cdot \frac{1}{6}\right) = \frac{71}{490} \text{ units.}$$

2.2-6 Note that
$$\sum_{x=1}^{\infty} \frac{6}{\pi^2 x^2} = \frac{6}{\pi^2} \sum_{x=1}^{\infty} \frac{1}{x^2} = \frac{6}{\pi^2} \frac{\pi^2}{6} = 1$$
, so this is a pdf.
$$E(X) = \sum_{x=1}^{\infty} x \frac{6}{\pi^2 x^2} = \frac{6}{\pi^2} \sum_{x=1}^{\infty} \frac{1}{x} = +\infty$$

and it is well known that the sum of this harmonic series is not finite.

2.2-8
$$E(|X-c|) = \frac{1}{7} \sum_{x \in S} |x-c|$$
, where $S = \{1, 2, 3, 5, 15, 25, 50\}$. When $c = 5$,

$$E(|X-5|) = \frac{1}{7} [(5-1) + (5-2) + (5-3) + (5-5) + (15-5) + (25-5) + (50-5)].$$

If c is either increased or decreased by 1, this expectation is increased by 1/7. Thus c = 5, the median, minimizes this expectation while b = E(X) = 101/7 minimizes $E[(X - b)^2]$.

2.2-10 (1)
$$\cdot \frac{15}{36} + (-1) \cdot \frac{21}{36} = \frac{-6}{36} = \frac{-1}{6}$$
;

$$(1) \cdot \frac{15}{36} + (-1) \cdot \frac{21}{36} = \frac{-6}{36} = \frac{-1}{6};$$

$$(4) \cdot \frac{6}{36} + (-1) \cdot \frac{30}{36} = \frac{-6}{36} = \frac{-1}{6}.$$

2.2-12 (a) The average class size is
$$\frac{(16)(25) + (3)(100) + (1)(300)}{20} = 50;$$

(b)
$$f(x) = \begin{cases} 0.4, & x = 25, \\ 0.3, & x = 100, \\ 0.3, & x = 300; \end{cases}$$

(c)
$$E(X) = 25(0.4) + 100(0.3) + 300(0.3) = 130.$$

2.3 Special Mathematical Expectations

$$\mu = 1 \cdot \frac{3}{8} + 2 \cdot \frac{2}{8} + 3 \cdot \frac{3}{8} = 2,$$

$$\sigma^2 = 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{2}{8} + 3^2 \cdot \frac{3}{8} - 2^2 = \frac{3}{4}.$$

$$2.3-8 \qquad E(X) \qquad = \qquad \sum_{x=1}^4 x \cdot \frac{2x-1}{16}$$

$$= \qquad \frac{50}{16} = 3.125;$$

$$E(X^2) \qquad = \qquad \sum_{x=1}^4 x^2 \cdot \frac{2x-1}{16}$$

$$= \qquad \frac{85}{8};$$

$$Var(X) \qquad = \qquad \frac{85}{8} - \left(\frac{25}{8}\right)^2 = \frac{55}{64} = 0.8594;$$

$$\sigma \qquad = \qquad \frac{\sqrt{55}}{8} = 0.9270.$$

2.3-10
$$\mu = E(X) = (-5)(1/16) + (-1)(5/8) + (3)(5/16) = 0$$
 so
$$E[(X-\mu)^3] = E(X^3) = (-5)^3(1/16) + (-1)^3(5/8) + (3^3)(5/16) = (-125-10+135)/16 = 0.$$
 Thus the index of skewness likewise equals 0. The distribution is not symmetric, however.

2.3-12 (a)
$$f(x) = \left(\frac{364}{365}\right)^{x-1} \left(\frac{1}{365}\right), \qquad x = 1, 2, 3, \dots;$$

(b) $\mu = \frac{1}{\frac{1}{365}} = 365,$
 $\sigma^2 = \frac{\frac{364}{365}}{\left(\frac{1}{365}\right)^2} = 132,860,$
 $\sigma = 364.500;$

(c)
$$P(X > 400) = \left(\frac{364}{365}\right)^{400} = 0.3337,$$

 $P(X < 300) = 1 - \left(\frac{364}{365}\right)^{299} = 0.5597.$

2.3-14
$$P(X \ge 100) = P(X > 99) = (0.99)^{99} = 0.3697.$$

2.3-16 (a)
$$f(x) = (1/2)^{x-1}$$
, $x = 2, 3, 4, \dots$;

(b)
$$M(t) = E[e^{tx}] = \sum_{x=2}^{\infty} e^{tx} (1/2)^{x-1}$$

 $= 2\sum_{x=2}^{\infty} (e^t/2)^x$
 $= \frac{2(e^t/2)^2}{1 - e^t/2} = \frac{e^{2t}}{2 - e^t}, \quad t < \ln 2;$

(c)
$$M'(t) = \frac{4e^{2t} - e^{3t}}{(2 - e^t)^2}$$

 $\mu = M'(0) = 3;$
 $M''(t) = \frac{(2 - e^t)^2 (8e^{2t} - 3e^{3t}) - (4e^{2t} - e^{3t})2 * (2 - e^t)(-e^t)}{(2 - e^t)^4}$
 $\sigma^2 = M''(0) - \mu^2 = 11 - 9 = 2;$
(d) (i) $P(X < 3) = 3/4$; (ii) $P(X > 5) = 1/8$; (iii) $P(X = 3) = 1/4$.

2.3-18
$$P(X > k + j | X > k) = \frac{P(X > k + j)}{P(X > k)}$$

= $\frac{q^{k+j}}{q^k} = q^j = P(X > j).$

2.3-20 (a) Construct a square in the first quadrant with lengths of sides equal to one. Within this square construct squares with one vertex at the origin and side lengths equal to $1-1/2^x$;

(b)
$$f(x) = \left(1 - \frac{1}{2^x}\right)^2 - \left(1 - \frac{1}{2^{x-1}}\right)^2 = \frac{(2^x - 1)^2}{2^{2x}} - \frac{(2^{x-1} - 1)^2}{2^{2x-2}}$$

 $= \frac{(2^x - 1)^2}{2^{2x}} - \frac{2^2(2^{x-1} - 1)^2}{2^{2x}} = \frac{(2^x - 1)^2}{2^{2x}} - \frac{(2^x - 2)^2}{2^{2x}}$
 $= \frac{2^{2x} - 2 \cdot 2^x + 1 - 2^{2x} + 2^2 \cdot 2^x - 4}{2^{2x}} = \frac{2^{x+1} - 3}{2^{2x}}, \quad x = 1, 2, 3, \dots;$

(c)
$$\sum_{x=1}^{\infty} \left[\frac{2^{x+1}}{2^{2x}} - \frac{3}{2^{2x}} \right] = \sum_{x=1}^{\infty} \left[\frac{2 \cdot 2^x}{2^{2x}} - \frac{3}{4^x} \right] = \frac{4/4}{1 - 1/2} - \frac{3/4}{1 - 1/4} = 2 - 1 = 1;$$

$$(\mathbf{d}) \quad M(t) = E(e^{tX}) = \sum_{x=1}^{\infty} e^{tx} \cdot \frac{2^{x+1}-3}{2^{2x}} = \sum_{x=1}^{\infty} \left[\frac{2(2e^t)^x}{4^x} - \frac{3(e^{tx})}{4^x} \right] = \frac{2e^t}{2-e^t} - \frac{3e^t}{4-e^t};$$

(e)
$$M'(t) = \frac{4e^t - 2e^{2t} + 2e^{2t}}{(2 - e^t)^2} - \frac{12e^t - 3e^{2t} + 3e^{2t}}{(4 - e^t)^2}$$

$$= \frac{4e^t}{(2 - e^t)^2} - \frac{12e^t}{(4 - e^t)^2}$$

$$\mu = M'(0) = 4 - \frac{12}{9} = \frac{8}{2};$$

(f)
$$M''(t) = \frac{(2-e^t)^2 \cdot 4e^t - 4e^t \cdot 2(2-e^t)(-e^t)}{(2-e^t)^4} - \frac{(4-e^t)^2 \cdot 12e^t - 12e^t - 12e^t \cdot 2(4-e^t)(-e^t)}{(4-e^t)^4}$$

$$\sigma^2 = M''(0) - \mu^2 = \frac{4+8}{1} - \frac{108+72}{81} - \left(\frac{8}{3}\right)^2 = \frac{8}{3}.$$

2.4 The Binomial Distribution

2.4-2
$$f(-1) = \frac{11}{18}$$
, $f(1) = \frac{7}{18}$; $\mu = (-1)\frac{11}{18} + (1)\frac{7}{18} = -\frac{4}{18}$; $\sigma^2 = \left(-1 + \frac{4}{18}\right)^2 \left(\frac{11}{18}\right) + \left(1 + \frac{4}{18}\right)^2 \left(\frac{7}{18}\right) = \frac{77}{81}$.

The variance can also be computed by noting that $X^2 = 1$ so

$$\sigma^2 = 1 - \mu^2 = 1 - \left(-\frac{4}{18}\right)^2 = \frac{77}{81}.$$

- **2.4-4** (a) X is b(7, 0.15);
 - (b) (i) $P(X \ge 2) = 1 P(X \le 1) = 1 0.7166 = 0.2834;$
 - (ii) $P(X=1) = P(X \le 1) P(X \le 0) = 0.7166 0.3206 = 0.3960;$
 - (iii) $P(X \le 3) = 0.9879.$
- **2.4-6** (a) X is b(15, 0.75); 15 X is b(15, 0.25);
 - **(b)** $P(X \ge 10) = P(15 X \le 5) = 0.8516$;
 - (c) $P(X \le 10) = P(15 X \ge 5) = 1 P(15 X \le 4) = 1 0.6865 = 0.3135$;
 - (d) $P(X = 10) = P(X \ge 10) P(X \ge 11)$ = $P(15 - X \le 5) - P(15 - X \le 4) = 0.8516 - 0.6865 = 0.1651;$ (e) $\mu = (15)(0.75) = 11.25, \quad \sigma^2 = (15)(0.75)(0.25) = 2.8125; \quad \sigma = \sqrt{2.8125} = 1.67705.$
- **2.4-8** (a) $1 0.01^4 = 0.999999999$; (b) $0.99^4 = 0.960596$.
- **2.4-10** (a) X is b(8, 0.90);
 - **(b) (i)** P(X = 8) = P(8 X = 0) = 0.4305;

(ii)
$$P(X \le 6) = P(8 - X \ge 2)$$

= $1 - P(8 - X \le 1) = 1 - 0.8131 = 0.1869;$

(iii)
$$P(X \ge 6) = P(8 - X \le 2) = 0.9619.$$

2.4-12 (a)

$$f(x) = \begin{cases} 125/216, & x = -1, \\ 75/216, & x = 1, \\ 15/216, & x = 2, \\ 1/216, & x = 3; \end{cases}$$

(b)
$$\mu = (-1) \cdot \frac{125}{216} + (1) \cdot \frac{75}{216} + (2) \cdot \frac{15}{216} + (3) \cdot \frac{1}{216} = -\frac{17}{216};$$

$$\sigma^2 = E(X^2) - \mu^2 = \frac{269}{216} - \left(-\frac{17}{216}\right)^2 = 1.2392;$$

$$\sigma = 1.11;$$