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CHAPTER 1

1.2.1 (i) The outcomes may be represented as (H,z),z =1,...,6 and (T, x,y),
z,y = 1,...,6. One has to decide whether outcomes such as (7,1,3) and
(T,3,1) should be regarded as different. If outcomes (T, z,y) and (T,x,y) are
considered the same, the total number of points in S will be 6421 = 27. Other-
wise, the number of points in .S will be 6 4+ 36 = 42. With the second choice, all
points with 3 coordinates are equally likely. However, with the first choice, the
point such as (T,1,3) will be twice as likely as (7,,1,1). (ii) TT, HTT, THT,
THHT, HTHT, HHTT, HHHH, THHH, HTHH, HHTH, HHHT.

1.2.2 (i) Assuming that the four persons are ordered (e.g., alphabetically), we
can just write four floor numbers at which the corresponding persons leave the
elevator. For instance, 3423 means that Alice and Diana leave at third floor, Bob
at fourth and Carl at second floor (another notation may be C|AD|B, ABD||C
for 2242 etc.) (ii) 2222 2233 2244 2322 2333 2344 2422 2433 2444 3222 3233 3244
3322 3333 3344 3422 3433 3444 4222 4233 4244 4322 4333 4344 4422 4433 4444.
(iii) The nine outcomes are : 2233, 2333, 2433, 3233, 3333, 3433, 4233, 4333,
4433, or AB|CD||, A|BCD||, A|CD|B, B|ACD||,||ABCD||, ||ACD|B, B|CD|A,
|[|[BCD|A,||CD|AB.

1.2.3 The event in question occurs when chip “3” is drawn, one of the other
chips has number less than 3, and the other has number greater than 3: 134,
234, 135, 235.

1.2.4 The event in question consists of infinitely many outcomes. One may sim-
plify the description considering sums rather than individual results. The event
“win with a point of 5” consists of outcomes of the form 55, 505, 5005, 50005, . . .
where each o represents a result of the toss of pair of dice which is neither 5 nor
7, so that each o may be 2, 3, 4, 6, 8,9, 10, 11, or 12.

1.2.5 (i) An outcome is specified by two numbers: the number x of balls in the
first urn, and y, the number of balls in the second urn. Then 6 — x — y is the
number of balls in the third urn. The idea is to propose some systematic way of
listing pairs (z,y). For instance, start with largest possible z, and then largest
possible y, etc. Thus we have configurations (the third digit gives the number
of balls in the third urn): 600, 510, 501, 420, 411, 402, 330, 321, 312, 303, 240,
231, 222, 213, 204, 150, 141, 132, 123, 114, 105, 060, 051, 042, 033, 024, 015,
006. (ii) If the urns are indistinguishable, then the number of allocations is the
same as the number of ways 6 can be expressed as a sum of three nonnegative
integers: 600, 510, 420, 411, 330, 321, 222. (iii) Now the problem can be re-
duced to solving twice the problem (i) - separately for 2 white and 4 red balls.
For 2 white balls we have 6 allocations: 200, 110, 101, 020, 011, 002. For 4 red
balls we have 15 allocations: 400, 310, 301, 220, 211, 202, 130, 121, 112, 103,
141, 031, 022, 013, 004. Each allocation of 2 white and 4 red balls is obtained
as a combination of two allocations, such as 110 (white) and 040 (red). Since



any two can be combined, we obtain altogether 6 x 15 = 90 allocations.

1.2.6 Let z and y denote the times of arrival of John and Mary. Count-
ing the time in minutes, starting from 5 p.m., the sample space is the square
0<2<60,0<y<60. (1)0<z<y<60. (1) 0 <z <y < min(60,z + 20)
and 0 < y <z < min(60,y +5). (iii) 0 <y <2 <60 or z+20 <y < 60.
(iv) y+5 < & < 60. (v) Not precise enough to express as a set. (vi)
y+5 <z <y+15 (vii)) 0 <z < 15,y = 15. (viii) Not precise enough
to express as a set. Events in (i)-(iv) and (vi)-(vii) can be expressed graphically
as subsets of a sample space (the square 0 < x < 60,0 < y < 60).

1.2.7 (i) THT. (ii) Events that specify the outcome of a particular toss cannot
be expressed as subsets of Sl, since outcomes in S~ do not convey information
about the results of specific tosses. Such events are As, A4, and Ag. We have
Ay = {3}, 43 = {0,1}, 45 = S'. (iii) HHH, TTT, HTT, THH. (iv) Bs, Bs.
B; = {(1,1),(0,0)}, Bs = {(1,1)}, and By = B§ = {(1,1)}* are subsets of S" .

1.2.8 (i) Az, Az, A4, As. To show that these events are not subsets of S, it suf-
fices to show for each event A; above, two outcomes which have the same sums,
one of them being in A;, and the other not. Such outcomes are (2,2) and (3,1)
for Ag; (3,5) and (4, 4) for As; (1,2) and (2,1) for Ag; (3,4) and (1, 6) for As. For
the remaining sets, A; = {3,5,7,9,11}, Ag = {12}. (ii) Bj is not a subset of S”
since (1,2) and (2,4) do not have the same absolute difference. The others are:
By = {li—jl = 0}, By = {[i = j| = 5}, Ba = {|i = j| is odd }, Bs = {|i —j| > 1}.

1.2.9 Yes. The difference is that if the answer is “yes” and the interviewer
manages to learn somehow that the respondent was not born in April, he knows
that the respondent answered “yes” to the ()—question. Thus, in some cases
confidentiality can be violated.

1.3.1 (i) False. Indeed, if A and B¢ are disjoint, then A C B. Since A # B,
there is a point, say x, which is in B but not in A. Then x belongs to both B
and A°, which means that A and B are not disjoint (a Venn diagram will help
here). (ii) False. The asserted property holds only when AU B = S, in which
case A° = B and B® = A. (iii) False. Take A, B disjoint and C = A. (iv) True,
make a Venn diagram. Formally A C C implies C¢ C A°. Similarly, C¢ C B¢, so
that C¢ C A°NB°. (v) True, subsets of disjoint sets must be disjoint. (vi) True.

1.3.2 (i), (v), (vi), (viii), (x) are true.
1.3.3 (i) X = A. (ii) X = 0. (iii) X = A°. (iv) X = B+ A.
1.3.4 The number of students who take all three classes is x = 2.

1.3.5 Dy = E,Dy = Ey,D¢ = E3,Dg = Eg,D; = Ey1,D9 = E9,D; =
E¢,D5 = E5s = By, D19 = E7, D3 = Eg.



1.3.6 (i) L. (ii) 3. (iii) 0. (iv) 0. (v) 4. (vi) 2.

1.3.7 (i) z = 0,y = 4. (ii) Either x = 0 or y > 3. (iii) « = 0, no infer-
ence about y possible. (iv) z <4,y > 1.

1.3.8 A" = A if nis even and A" = A€ if n is odd. Consequently, A"*NA™ =
A if m,n are both even, A™¢N A" = A°if m,n are both odd and A™*N A" = ()
if m is odd and n is even or vice versa. For the union, A" U A™¢ equals A, A€
or S in the three cases above.

1.4.11lim A,, = (. Indeed, sequence A,, is monotone decreasing, so that lim 4,, =
Mo, Ap. The fact that By’s form a partition implies (), A, = 0.

1.4.2 (i) (b) is the only true statement. (ii) C; = D7;Cy = Dy;C3 = Dg =
D1o; Cy = D2;C5 = D5; Cg = Ds; C7 = D3; Cg = D11;C9 = Dy = De;

1.4.3 (i) There are maximally 2" sets formed as intersections of all A;’s or
their complements, i.e., sets such as Ay N A5 N A5N...N A, (called atoms).
Each set in the field containing Ay, ..., A, is a union of some atoms, so that the
total possible number of sets in the field is 22". (ii) If A,,_; C A,,, then the sets
A,—1 and A, or their complements, have only three (and not four) nonempty
intersections, namely A,_; = A,_1 NA,,AS_ N A, and AS = AS_, N AS.
Then the maximal possible number of intersections of atoms is 2772 x 3, and
the number of sets in the field is 23%2" . (iii) Now there are n + 1 possible
atoms, namely Aq, Ay N Af, A3 N AS, ..., A, NAS_; and A%. The number of
sets in the field equals therefore 2" 1. (iv) If A; = --- = A,, = () then the field
consists of two sets, ) and S. (v) Answers are the same: a field generated by
finitely many sets is also a o-field.

1.4.4 (i) Let 8, = infy>, ag. Then 5, T f = liminfo,,. If B, < B for ev-
ery n, then liminf A, = I(f) = {z : 1 -8 <z < 1+ p}. If B, = B starting
from some n, then liminf A, = I(8) ={z : 1 -8 <z < 1+ f}. As re-
gards limsup A4,,, the situation is slightly different. Let 7, = supjs,, ok, so

that v, | v = limsupa,. If v, > v for every n, then limsup 4,, = I(y) =
{r:1—v<ax< 144} Ifq, =~ starting from some n, two cases are pos-
sible: 1. There exists a subsequence {ay,} such that a,, = v,k = 1,2,....
In this case, limsup A4, = I(7) = {z : 1 —v < & < 1++4}. 2. Other-
wise (i.e., when the sequence «,, satisfies the condition «,, < « for all n suffi-
ciently large, and only contains a subsequence {a,, } convergent monotonically
to ), then limsup A, = I(y) = {z : 1 —v < z < 1+ ~v}. (ii) The limit
lim A,, exists under the following conditions: 1. The sequence {«,} becomes
ultimately monotone decreasing, i.e., ay > anyq1 > --- for some N. Then
a = limay, exists, and limA,, = I(a) = {z : 1 —a <2 < 1+ a}. 2.The
sequence {a,,} becomes ultimately monotone increasing, i.e., ay < ant1 < ...




for some N. Then a = lima, exists. If a, < « for all n > N, then
limA, = I(a) ={r:1-a <2z <1+a} Ifa, =a starting with some
N, then I(a) = {z : 1 —a <2 <1+ a}. (iii) The answers are the same as
for (i) and (ii): the limits of sequences for sets B, do not depend on closure

properties of I(a,) and J(ay,), and only on behavior of the sequence {a, }.

1.4.5 For A; we have lim f,,(A;)/n = 1/2. Similarly, lim f,(A43)/n = 1/2,
so that A; € A and A € A. Now, A; N Ay consists of all odd integers be-
tween 22" and 22"*! for n = 1,2,... that is of groups 5, 7; 17, 19, 21, 23, 25,
27, 29; 65, 67, ..., 127;.... Consequently, forx—1(A; N Ag) = for (A1 N Ag) =
2423 4. 422073 = (2/3)(22(+=1) — 1), and

forr—1 (A1 N A) 2 22k=1) 1 2/1 1 1
92k—1 = 3% 9wt T3lgTommr) 73
forr (A N A) 2 26D -1 2/1 1 L1
22k 3 22k 3\4 22 6

Consequently, lim f,,(A; N A3)/n does not exist, hence A1 N Ay & A.

1.4.6 The union and intersection of overlapping intervals of the form (a, b), [a, ),
(a,b] or [a,b] is again an interval of one of the four forms. If we allow infinite
intervals, then a complement of an interval of the above form is again such an
interval, or the union of two such intervals. It follows that class of finite unions
of such intervals is closed under complementation, union and intersection, i.e.,
it is a field.

CHAPTER 2
2.3.1 True: (i), (ii), (v).

2.3.2 (i) The center of the coin must be farther from the borderline between
tiles than b/2, so the probability of such event is (b — a)?/a®. (ii) The center
of the coin must be closer to one of the corners than b/2; so the probability of
such event is m(b/2)%/a>.

2.3.3 (i) The equation has two distinct roots if b2 — 4a > 0, hence a < b*/4.
Consequently, the probability is [2 + fil b%/(4db)]/4 = 13/24. (ii) There are
ten possible locations of the rectangle A; < a < Ay, By < b < By with respect
to the parabola a = b%/4. In each case, the probability of two roots is the ratio
of the area of the rectangle below the parabola to the area (As — A1)(Ba — By)
of the whole rectangle.

2.3.4 To compare the first and the third device, observe that y is also the
distance from the center of the circle to the center of the chord. Thus the for-
mula y = cosa provides an explanation of lack of equivalence of devices that
choose angle a and distance y to the center. To compare the second and the



third mechanism of choosing a “random chord” note that the choice of the cen-
ter of the chord on a particular diameter (scheme 2), and choice of the center
as a point in the interior of the circle are not equivalent. To see that, notice
that the probability of the distance from the center lying between y and y + dy
is 6y for scheme 2, and (7 (y + 0y)? — my?) /7 ~ 2ydy for the scheme 3. Again,
scheme 3 will tend to produce larger values of y, hence shorter chords.

2.4.1 We have P(A) =2P(B) =3P(C) =0.5(1 — P(A)). Tt gives P(A) = 1/3,
hence P(B) = 1/6 and P(C) = 1/9. Since B C A and AN C = (), we obtain
BNC =0, sothat P(BNC) = 0. Consequently, P(BUC) = P(B) + P(C) =
1/6 +1/9 = 5/18.

2.4.2 PLAUBUC)=P(A)+ P(B)+ P(C)— P(ANB)—P(ANC)— P(BN
C)+P(ANnBNC) = P(A)+P(B)+P(C)-—P(BNC)=z+x+z—x/3 = 8x/3.

2.4.3 P(AU B®) = P(A) + P(B) — P(ANB®) = 1/2+1/2 — P(AN B°) =
1—[P(B°) — P(A°NB)] =1-[1/2—1/3] = 1/6.

2.4.4 By the De Morgan’s Law, P[(A°N B°)¢]| = P(AUB) = P(A) + P(B) —
P(ANB)=1-P(A°)+1— P(B°) — P(AN B) so that x = P(AN B).

2.4.5 In this and similar problems, it is perhaps best to use Venn diagrams, and
fill the probabilities starting from the intersection of highest multiplicity. (i)
P(B) =0.3+0.240.1 = 0.6. (ii) P(ANBNC)+P(ANB°NC)+P(A°NBNC) =
0.3+0+0.1 =0.4. (iii) P(ANB*NC°)+ P(A°NBNC°)+P(A°NB°NC) =
0.34+0.2+0=0.5.

2.4.6 PAUBUCUDUE)=P(A)+P(B)+ P(C)+ P(D)+ P(E)—P(AN
B)-P(ANC)—---—P(DNE) =5k — 10p since all triple and higher order
intersections are empty. (i) 1 =5k — 10p = 5 x 0.3 — 10p, which gives p = 0.05.
(ii) 1 > 5k — 10p = 5k — 0.1, which gives k < 0.22. 5k — 10p > 0 therefore
k> 0.02.

2.4.7 (i) 0.1, (ii) 0.3, (iii) 1, (iv) 0.6.

2.4.8 With the obvious notation M, J, there are four possibilities: M NJ, M°N
J, MJ°, MNJ¢. We have P(MNJ) = 0.32, P(J) = P(MNJ)+P(M°NJ) =
0.4, which gives P(M°NJ) = 0.08. Finally, P(M°) = 1-P(M) = 1-[P(MNJ)+
P(MnNJ¢)] = 0.2 which implies 1-0.32—P(MNJ¢) = 0.2, or P(MNJ¢) = 0.48.
The answers are : (i) P(M N J°% 4+ P(M°nNJ) = 0.48 + 0.08 = 0.56; (ii)
P(M¢NJ¢)=1—P(MNJ)—P(M¢NJ)—P(MnNJ°) = 0.12.

2.4.9 Let R and C denote the events “the phone returns the coin” and “the
phone connects you with the number you dial”. P(R¢N C¢) = 0.3, and con-
sequently (using the fact that P(R°) = 1 — P(R) = 0.4) we obtain P(R®) =
P(R°NC)+P(R°NC*°) = 0.4, so that P(R°NC) = 0.4—0.3 = 0.1, P(C) = P(RN



C)+ P(R°NC)=0.2, and P(RNC) = P(you talk for free) = 0.2 — 0.1 =0.1.

2.4.10 Using notation of the solution to Problem 2.4.9, P(R N C) = ¢, so
that P(R) = a = P(RNC) + P(RN C°¢), which gives P(RN C¢) = a — ¢
Similarly, P(C) = b= P(RNC)+ P(R°NC), which gives P(R°NC) =b—c.
Consequently, P(R°NC°) =1—-c—(b—c)—(a—c) = 1+c—a—>b.(i) The phone
is individually honest if P(R°NC*¢) = P(RNC) = 0 which gives ¢ = 0,a+b = 1.
(ii) The phone is socially honest if P(R®) = P(C'), which means a +b = 1.

2.4.11 With the obvious notation, P(A° N B¢) = 0.12, hence P(A N B°) =
P(B¢)—P(A°NB°) =0.3—0.12 = 0.18. Similarly, P(A°NB) = P(A®)—P(A°N
B¢) =0.5—0.12 = 0.38. This gives P(ANB) =1—(0.12+0.18 +0.38) = 0.32.
The answers are: (i) P(AN B°) + P(A°N B) = 0.18 4 0.38 = 0.56. (ii)
1 — P(A°N B°) = 0.88. (iii) P(AN B) = 0.32.

2.4.12 16/36=4/9. The outcomes whose sum is at least 10 are (ordinary die
listed as first coordinate): (1, 9), (2, 8), (2, 9), (3, 8), (3, 9), (4, 6), (4, 8), (4,
9)7 (57 5)7 (5’ 6)7 (5’ 8)7 (57 9)7 (6’ 5)’ (67 6)7 (67 8)’ (67 9)

2.4.13 Let the probability of j dots be jC,j =1,...,6. Then C4+2C+---+6C =
1 which gives C'=1/21. The answer is 1/21 + 3/21 +5/21 = 3/7.

2.5.1 We have, in binary expansion, 1,000,000 = 25 = 64 and 1,011,111 =
26 424 4+ 23 4+ 22 4 21 4+ 20 — 95. Consequently, to have 64 < X < 95 the
first two tosses must give HT, and the results of the subsequent five tosses
may be arbitrary. This gives 2° = 32 sequences with 4 < X < 95, hence
P64 <X <95)=132/128 =1/4.

2.5.2 (i) There are five choices with X; = 6, four choices with X; = 5 etc.,
so that P{X; > Xo = X3} = (5+4+3+2+ 1)/216 = 15/216. (ii) The
number of sequences X7 < X2 < X3 may be obtained as follows. If X; =1
and X5 = 2, then X3 may be chosen in 4 ways. If X; = 1, Xy = 3, then X3
may be chosen in 3 ways, etc. This gives 4 +3 + 2+ 1 = 10 ways for choice
of Xo < X5 if X7 = 1. If X7 = 2, similar argument gives 3+ 2+ 1 = 6
choices for X5 < X3, and so on. This gives the total number of choices for
X1 < Xo< Xzgas (4+3+2+1)+B+24+1)+(2+1)+1 = 20, hence
P{X; < X2 < X3) = 20/216. (iii) The direct enumeration of choices with
max (X1, X2, X3) = 3 is cumbersome. The following tricks are useful here:
P{max(X1, X2, X3) < k} = k3/216, since max(X1, Xo, X3) < kif X < k, X5 <
k, X3 < k, which gives k® choices. We have now P{max(Xi, X, X3) = 3} =
P{max(X1, X2, X3) < 3} — P{max (X1, X, X3) < 2} = (33-23)/216 = 19/216.
(iv) As in (iii), we have P{min(X;, Xa, X3) > k} = (7 — k)3/216, so that
P{min(Xl,XQ,Xg) = 2} = P{miH(Xl,XQ,Xg) Z 2} — P{min(Xl,Xg,Xg) Z
3} = (5% — 4%)/216 = 61/216.

2.5.3 P(Ay U A3 U A5 UAr) = P(Ag) + P(A3) + P(As) + P(A7) — P(Ay N As) —



P(AsNAz)—P(AaNA7)—P(AsNAs)—P(AsNA7)—P(AsNA7)+P(AaNAsNAs)+
P(A2 ﬂAgﬂAﬂ—l—P(AQ ﬂA5ﬂA7) +P(A30A5 ﬂA7) —P(A20A30A5 ﬂA7). The
consecutive terms are obtained from counting the numbers of n with 1 < n < 100
which are divisible by the corresponding combination of primes 2, 3, 5 and 7.
Thus gives p = P(A2UA3UA5UA7) = (50+33+20+14)/100— (16 +10+7+6+
4+42)/100+ (34+2+140)/100—0/100 = 0.78 Thus, there are 100 x (1 —p) = 22
numbers which are not divisible by 2, 3, 5, or 7. One of these numbers is 1,
which is not considered a prime. The remaining 100(1 —p)—1 = 21 numbers are
all primes, since for any composite number n between 2 and 100 the smallest
prime factor must be 2, 3, 5 or 7 (any composite number whose smallest prime
factor is 11 or more must be at least 112 = 121). We have to include four primes
2, 3, 5 and 7, which gives 100(1 — p) — 1 + 4 = 25 primes not exceeding 100.
Direct check gives: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, and 97.

2.5.4 The series from which X is selected is of the form 4 + 5k, k = 0,...,99,
so that the last term is 4 + 5 x 99 = 499. The series from which Y is se-
lected is of the form 1+ 4m,m = 0,1,...,99, so that the last term is 397. We
need to find the number of terms common to both sequences. We must have
4+ 5k < 397, which means that k& < 78.6. If 4+ 5k = 1 +4m then 4m = 5k + 3,
so that 5k 4+ 3 must be divisible by 4. Using the fact that 5 = 4 + 1, we may
write 4m = (44 1)k + 3 = 4k + k + 3, so that k + 3 must be divisible by 4.
This implies k = 4r + 1,r = 0,1,.... The largest value of r is obtained from
k = 4r +1 < 78, which gives r < 19.25, so that we have only 20 pairs with
X =Y, obtained for r = 0,1,...,19. There are 100 x 100 = 10* pairs (X,Y),
each with the same probability, so P(X =Y) = 20/10* = 0.002.

2.7.1 Peter participates in the following lottery: with probability 1/8 he re-
ceives ticket T and pays $25. With probability (7/8) x (1/4) he receives T and
loses $25 + $50 = $75. With probability (7/8) x (1/4) x (1/2) he receives T and
loses $175. Finally, with probability (7/8) x (1/4) x (1/2) he loses $175. Since
utility in money is assumed linear, we may put u($z) = x. Now, Tom agrees
to the rules of the game, hence he must consider its expected utility (SEU)
positive. Thus (1/8)(u(T) — 25) + (7/32)(w(T) — 75) + (7/64)(—175) > 0. This
gives u(T) > 200. The ticket is worth more than $200 to Peter.

2.7.2 Yes, Tom’s utility of ticket satisfies 0.5(50 — u(7T)) + 0.5 x 50 > 0, which
gives u(T) < 100. Thus, $150 is above the value of the ticket for Tom, and
below the value for Peter.

2.7.3 Suppose that utilities (for Tom) of $5,000,000, $1,000,000 and $0 are
A > B > C. Without loss of generality, we may assume B = 1,C = 0 (so that
A expresses utility of $5,000,000 on a scale which has zero at $0, and unit equal
utility of $1,000,000. Since O1 is better than O2, we must have 1 > 0.1A+0.89,
hence A < 0.11/0.1 = 1.1. On the other hand, since O3 is better than 04, we
must have 0.14 > 0.11 which means that A > 1.1. Thus, the assumption that



Tom has utilities of the three outcomes compatible with his performances, leads
to a contradiction.

CHAPTER 3

3.2.1 (i) Since z(x — 1) = 90, z; = 10 or z3 = —9. Ouly z; is the solu-
tion of the problem. (ii) Here z(z — 1)(x — 2) = 10z(x — 1). Since z > 3, we
obtain x —2 =10, or x = 12.

3.2.2 The exact value (see Birthday Problem) is p = P3,/39% = 0.76577. Simi-
larly p = (38/39) x (37/39) x (36/39) x (35/39) = (1 —1/39) x - - x (1—4/39) ~
1—(142+344)/39) = 1—(10/39) = 0.74359. Using the formula log(1—z) ~ —x
(x small) we obtain an analogy to (3.7), p ~ e~(19/39) = 0.77382.

3.2.3 (i) P2 =5x4=20. (ii) P +1=4x3+1= 13 (P? pairs can be formed
out of four letters A, L, O, H, and one pair is AA). (iii) P? +2=4x3+2 = 14,
two additional pairs being EE and TT.

3.2.4 In the product 1 X 2 X - -+ x n. = n! the number of 0’s at the end equals the
number of factors 10 = 2-5. Since the number of factors 2 exceeds the number of
factors 5, the number of 0’s is simply the same as the total number of factors 5
in n!. For 16! the number of factors 5 is 3, for 27! it is 6 (remember that 25 = 52).

3.2.5 In all cases the total number of possible allocations of seats to n persons is
n!. The process of determining the allocations of seats can be regarded as the re-
sult of three consecutive operations: 1. Selection of a pair of seats; 2. Allocating
one of the selected seats to John and another to Mary; 3. Seating the remaining
n— 2 persons in the remaining seats. (i) There are n— 1 ways of choosing a pair
of neighboring seats, 2 ways of seating Mary and John on them, and (n — 2)!
ways of seating the remaining persons, so that p = (n — 1)2(n — 2)!/n! = 2/n.
(ii) As above, except the number of choices in (b) is 1, so p = 1/n. (iii) The
number of choices in (a) is now n(n —1)/2, while the number of choices in (b) is
1. Thus, p = [n(n —1)/2](n — 2)!/n! = 1/2. A simpler argument is that to each
permutation of n persons (with John and Mary among them) one can assign
another permutation by switching the places of John and Mary. This establishes
a one—to— one mapping of the set of all permutations, and shows that in exactly
half of them John sits to the right of Mary. (iv) Now the number of choices in (a)
is n—3, so that (similarly asin (i)): p = (n—3)2(n—2)!/n! = 2(n—3)/[n(n—1)].

3.2.6 Use the same three steps 1-3 as in Problem 3.2.5. (i) There are n pairs
of neighboring seats in choice 1., so the answer to (i) isp=n-2-(n—2)!/nl =
2/(n—1). (i) p=nx1x(n—2)/n=1/(n—1). (iii) Answer requires spec-
ifying what does it mean “to sit on the right of someone” at a round table.
(iv) There are n choices in step 1., hence p =n x 2 x (n — 2)!/n! =2/(n —1).
(ii) We have n /2 choices for step 1., so that p = (n/2) x [2(n—2)!/n!] = 1/n—1).
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3.2.7 (i) 2 x (5!)2 = 28,800 (5 men can be permuted in 5! ways, and the
same holds for women; men can seat on seats 1,3,5,7,9 or 2,4,6,8,10). (ii)
6 x (5!)2 = 86,400 (see solution to part (i); men can seat on chairs 1,3,5,7,9;
1,3,5,7,10; 1,3,5,8,10; ...: 2,4,6,8, 10).

3.2.8 (i) 12 x 17 =204. (ii) 3 h 46 min (18 periods of 12 minutes + 1 period
of 10 minutes). (iii) 3 h 22 min. (16 periods of 12 minutes + 1 period of 10
minutes).

3.2.9 (i) There are 3(2+1) possibilities for feet and head. They can be combined
with 5+3 x4 possibilities for the body. Altogether there are 3(2+1)(5+3x4) =
153 combinations. (ii) If she buys a dress, the number of combinations increases
to 3(2+1)(6 + 3 x 4) = 162. If she buys a hat, the number of combinations
increases to 3(3+1)(5+ 3 x 4) = 204, so she should rather buy a hat. (iii) The
number of non-matching combinations is: 1 X (24+1) x 2+ 3 x 1 x 1 x 3 =15,
so that the number of matching combinations is 153 — 15 = 138.

3.2.10 (i) 5x3x 15x3 = 675. (ii) 6752 = 455,625. (iii) 52 x32x 15X 14x3x2 =
283, 500.

2"(1x2x---xn) =2"nl. Now 1 Xx3x---x(2n+1) =

3.2.112x4x---%x(2n) =
x (2n)] = (2n+ 1)1/ (2"nY).

Cn+DI/[2x4x---

3.2.12 (i) Choose one person, say A, to have a multiple birthday; this can
be done in r ways. Then allocate birthdays of the remaining r — 1 persons.
The probability of no repeated birthdays among them is p,_;. Then allocate
the birthday of A, joining him with one of the » — 1, say with B. This can
be done in » — 1 ways, and leads to a configuration with exactly one pair
of birthdays repeating. Each configuration is counted twice, since B could
be chosen first and coupled with A. This gives e, = rp,_1[(r — 1)/2], as as-
serted. (ii) The total number of ways of allocating birthdays to r people
is 365". To count the number of allocations with exactly one pair with a
common birthday, note that: the pair with common birthday can be cho-
sen in r(r — 1)/2 ways; the birthday of the chosen pair can be selected in
365 ways; the birthdays of the remaining r — 2 people can be selected in
Pé"6_42 = 364(364—1)x---x(364—(r—2)+1) = (365—1)(365—2) X - - X (365—r+2)
ways. The formula expressing e, through p,. can be now obtained by simple al-
gebra.

3.2.13 The first digit can be chosen in 9 ways; second also in 9 ways, third
in 8 ways; 9 x 9 x 8 = 648. To count the odd integers, observe that the last
digit can be chosen in 5 ways. If the middle digit is 0, the first can be chosen
in 8 ways, otherwise in 7 ways. Answer: 5 x 8 x 7+ 5 x 1 x 8 = 320.

3.2.14 If n = 2m then the majority is at least m + 1 votes, and A is a pivot
if it is on (m — 1)st or mth place in the permutation. If n = 2m + 1, then the



