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Preface

This solutions manual provides answers for the even-numbered exercises in Probability and Statistical
Inference, 8th edition, by Robert V. Hogg and Elliot A. Tanis. Complete solutions are given for most
of these exercises. You, the instructor, may decide how many of these answers you want to make
available to your students. Note that the answers for the odd-numbered exercises are given in the
textbook.

All of the figures in this manual were generated using Maple, a computer algebra system. Most
of the figures were generated and many of the solutions, especially those involving data, were solved
using procedures that were written by Zaven Karian from Denison University. We thank him for
providing these. These procedures are available free of charge for your use. They are available on
the CD-ROM in the textbook. Short descriptions of these procedures are provided in the “Maple
Card” that is on the CD-ROM. Complete descriptions of these procedures are given in Probability
and Statistics: Explorations with MAPLE, second edition, 1999, written by Zaven Karian and Elliot
Tanis, published by Prentice Hall (ISBN 0-13-021536-8).

REMARK Note that Probability and Statistics: FExplorations with MAPLE, second edition, written
by Zaven Karian and Elliot Tanis, is available for download from Pearson Education’s online catalog.
It has been slightly revised and now contains references to several of the exercises in the 8th edition
of Probability and Statistical Inference. ¢

Our hope is that this solutions manual will be helpful to each of you in your teaching. If you find
an error or wish to make a suggestion, send these to Elliot Tanis at tanis@hope.edu and he will post
corrections on his web page, http://www.math.hope.edu/tanis/.

R.V.H.
E.A.T.
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Chapter 1

Probability

1.1 Basic Concepts

1.1-2 (a) S = {bbb, gbb, bgh, bbg, bgg, gbg, ggb, ggg};
(b) S = {female, male};
(c) S = {000,001,002,003,...,999}.

1.1-4 (a) Clutchsizee 4 5 6 7 8 9 10 11 12 13
Frequency: 3 5 7 27 26 37 8 2 0 1

(b)

(c) 9.

h(x)
0.301

0.251
0.201
0.15+

0.101

-l

2 4 6 8 10 12 14

Figure 1.1-4: Clutch sizes for the common gallinule

14
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2 Section 1.2 Properties of Probability

1.1-6 (a) No.Boxes: 4 5 6 7 8 9 10 11 12 13 14 15 16 19 24
Frequency: 10 19 13 8 13 7 9 5 2 4 4 2 2 1 1

(b) h(x)
0.204
0.184
0.164
0.14-
0.12+
0.10+ —
0.08+ —
0.06+
0.04 -
0.02

------------------------ X

2 4 6 8 10 12 14 16 18 20 22 24

Figure 1.1-6: Number of boxes of cereal

L1-8 () (1) = 16, 2) = 15, J3) = 15./(8) = 1o

1.1-10 This is an experiment.

1.1-12 (a) 50/204 = 0.245; 93/329 = 0.283;
(b) 124/355 = 0.349; 21/58 = 0.362;
(c) 174/559 = 0.311; 114/387 = 0.295;

(d) Although James’ batting average is higher that Hrbek’s on both grass and artificial
turf, Hrbek’s is higher over all. Note the different numbers of at bats on grass and
artificial turf and how this affects the batting averages.

1.2 Properties of Probability

1.2-2 Sketch a figure and fill in the probabilities of each of the disjoint sets.

Let A = {insure more than one car}, P(A) = 0.85.

Let B = {insure a sports car}, P(B) = 0.23.

Let C' = {insure exactly one car}, P(C) = 0.15.

It is also given that P(AN B) = 0.17. Since P(ANC) = 0, it follows that

P(ANBNC") =0.17. Thus P(A’N BN C") = 0.06 and P(A’ N B’ N C) = 0.09.
1.2-4 (a) S = {HHHH, HHHT, HHTH, HTHH, THHH, HATT, HTTH, TTHH,

HTHT, THTH, THHT, HTTT, THTT, TTHT, TTTH, TTTT};

(b) (i) 5/16, (ii) 0, (iii) 11/16, (iv) 4/16, (v) 4/16, (vi) 9/16, (vii) 4/16.
1.2-6 (a) 1/6;

(b) P(B)=1—-P(B')=1—-P(A) =5/6;

(c) P(AUB)=P(S) =1.



Section 1.3 Methods of Enumeration

1.2-8 (a) P(AUB)=0.4+0.5—0.3 = 0.6;

(b) A = (AnB)U(ANB)
P(A) = PANB)+PANB)
0.4 = P(ANnB)+0.3
P(AnB) = 0.1;

(c) P(AUB)=P[(ANB)Y]=1-P(ANB)=1-03=0.7.
1.2-10 Let A ={lab work done}, B ={referral to a specialist},
P(A) = 0.41, P(B) = 0.53, P(JAU B]) = 0.21.

P(AUuB) = P(A)+P(B)—P(ANDB)
0.79 = 041+0.53— P(ANB)
P(ANB) = 0.41+0.53-0.79 = 0.15.
1.2-12 AUBUC = U(BUC)

P(AuBUC) = (A)+P(BUC) P[AN(BUCQO)]
= P(A)+P(B)+P(C)—P(BNC)—-P[(ANB)U(ANC)]
= P(A)+ ( )+ P(C)—P(BNC)—P(ANB)—-P(ANC)

+ P(ANnBNCQO).

1.2-14 (a) 1/3; (b) 2/3; (c) 0; (d) 1/2.

1.2-16 (a) S ={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5), (4,5) };
(b) (i) 1/10; (ii) 5/10.

2[r — 2
1218 p(A) = 2r—rOVAL V3
2r 2
1.2-20 Note that the respective probabilities are pg, p1 = po/4, p2 = po/4%,.. ..

Po
" 1
k=0
Do
=1
1—-1/4
3
Po = Z
15 1
l—po—pi=1-—=—.
po—p1 16 16

1.3 Methods of Enumeration
1.3-2 (4)(3)(2) = 24.
1.3-4 (a) (4)(5)(2) = 40; (b) (2)(2)(2) =8.
1.3-6 (a) 4(2) = 80;
(b) 4(26) = 256;

(4—1+3)
(©) W—QO.

9!
1.3-8 9Py = B 3024.



4 Section 1.4 Conditional Probability

1.3-10 S ={ HHH, HHCH, HCHH, CHHH, HHCCH, HCHCH, CHHCH, HCCHH,
CHCHH, CCHHH, CCC, CCHC, CHCC, HCCC, CCHHC, CHCHC,
HCCHC, CHHCC, HCHCC, HHCCC } so there are 20 possibilities.

1.3-12 3-3-2'2 = 36,864.

1.3-14 (n . 1) + (Z: i) = ,«!(in_]lzlr)! e —(T)?(;)i r)!

(n—r)n—1)+rn-1) (n>

rl(n —r)! ~orl(n—7)!

1.3-16 0 = (1-1)"= :O (:L) (=)= io (—1)T(:)
m = (14+1)" = :0 (Z) (1) (1) = ,Z:J (:)
o (") = (00T ()
n! (n—mn)!

nil(n—n1)! nal(n —ny — ny)!

(n—mny —na)! (n—mp—mg—-+—ng_q)!
ns!(n —ny —ng — ng)! ns!0!
n!
T onglng! .ol
(19) (52 — 19)
3 6 102, 486
.3- = = 0.2917;
1.3-20 (a) 52 351,325 21T
9
()06
3 2 J\1/\0/\1/\0/\2 7,695
= ; = 0.00622.
(b) <52> 1,236, 664
9

4
1.3-22 (32) = 886,163,135.

1.4 Conditional Probability
1041
1456’
(b) %;

649
©) 33

1.4-2 (a)

(d) The proportion of women who favor a gun law is greater than the proportion of men
who favor a gun law.



Section 1.4 Conditional Probability

13 12 1
1.4-4 PHH)= —. == —:
(a) P(HH) 52 51 17’
13 13 13
(b) P(HC) 52 51 204’

(c¢) P(Non-Ace Heart, Ace) + P(Ace of Hearts, Non-Heart Ace)
_1204 0103 511
© 52 51 52 51 52-51 52

1.4-6 Let A = {3 or 4 kings}, B = {2, 3, or 4 kings}.

P(ANB) N(A)
PABY = “pm) = N

(5)o) + G)(5)
_ 3/\10 4)\ 9 _
a 4\ (48 + 4\ /48 n 4\ 48\ 0.170.
2/\11 3/\10 4/\ 9
1.4-8 Let H ={died from heart disease}; P ={at least one parent had heart disease}.

N(HNP') 110
N(P) 648’

P(H|P') =

3 2 1 1

20 19 18 1140

(lo>(32>(117>~1 :

1.4-10 (a)

20 17~ 760°
3

(3)(a)

9

2 )\ 2k — 2 1 35

(c) ]; 50 o0 = 76 = 0.4605.
2%

(d) Draw second. The probability of winning in 1 — 0.4605 = 0.5395.

i 06) 2 G0 4 o
(5)

5 (1o> 55
)
1.4-14 (a) P(A)

[\V]

_ 52 51 50 49 48 47 _ 8,808,975
T 52 52 52 52 52 52 11,881,376
(b) P(A") =1— P(A) = 0.25859.

= 0.74141;

1 1 1
1.4-16 (a) It doesn’t matter because P(B;) = 5 P(Bs) = 5 P(Big) = T

2 1
(b) P(B) = ‘=9 each draw.



1.4-20 (a) P

1) = 30/100;

Section 1.5 Independent Events

(b) P(As ﬂBg) = 9/100

(d)‘P<A1LBg)—-11/41

(A
(
(c) P(AyU Bs) = 41/100 4 28/100 — 9/100 = 60,/100;
(
(

1.5 Independent Events

1.5-2 (a) P(ANDB)
P(AUB)

P

(b) P(A[B) =

1.5-4 Proof of (b):

Proof of (c):

1.5-6 P[AN(BNO)

P[AN(BUO)]

PIA'N(BNC)]

PIA' N B NC|

=

)

P(A'NB)

P(A)P(B) =
P(A) + P(B) —
0.3+ 0.6 —0.18
0.72.
nB) _
(B)

P(A' N B)

(0.3)(0.6) = 0.18;
P(AN B)

1— P(A)— P(B)+ P(AN B)
1— P(A) — P(B) + P(A)P(B)
(1= P(A)][1 - P(B)]
P(A")P(B).

[ANnBNC]
(A)P(B)P(C)
(A)P(BNC)

(ANB)U(ANCO)]

ﬂB%hﬂAﬂ C)—PANBNC(C)
P(A)P(C) — P(A)P(B)P(C)

P(C) P(BN Q)]

)P (B uQ).

¢’ N B)
(A'NC")| B
— P(AUC|B)]

VT vvvvTY Wwwvvv "v

Pl(AUBUCY]

— P(AUBUC)

1 — P(A) — P(B) — P(C) + P(A)P(B) + P(A)P(C)+
P(B)P(C) — PA)P(B)P(C)

[1— P(A)][1 - P(B)|[L - P(C)]

P(AP(B)P(C").



Section 1.6 Bayes’s Theorem

123 143 523 2
1.5-8 —.2.2,4,-.2. 2,2 2.2 .
667666 666 9
33 9
1.5-1 2.2
5-10 (2) 77 = 15
13 32 9
) 7 1+t1 17 1%
(¢ 2.1,24_10
4 4 4 4 16
3 2
1\ /1
1.5- ) ().
e o ()
3 2
1\ /1
b _ _ .
® (3) (3):
1\ /1\?
© (3) (3)

@ 5 (3) (3)

1.5-14 (a) 1—(0.4)> =1 —0.064 = 0.936;
(b) 1—(0.4)8 =1 —0.00065536 = 0.99934464.

[e%e) 1/4 2k 5
1.5-16 (a) » 5(5> =3

1.5-18 (a) 7; (b) (1/2)7; (c) 63; (d) No! (1/2)%3 = 1/9,223,372,036,854,775,808.

1.5-20 n | 3 6 9 12 15
(a) | 0.7037 0.6651 0.6536 0.6480 0.6447

(b) 0.6667 0.6319 0.6321 0.6321 0.6321

(c) Very little when n > 15, sampling with replacement
Very little when n > 10, sampling without replacement.

(d) Convergence is faster when sampling with replacement.

1.6 Bayes’s Theorem
1.6-2 (a) P(G) P(ANG)+P(BNG)

= P(A)P(G|A)+ P(B)P(G|B)

= (0.40)(0.85) + (0.60)(0.75) = 0.

P(ANG)
P(G)

(0.40)(0.85)
= % 043
0.79

79;

(b) P(A|G) =



Section 1.6 Bayes’s Theorem

1.6-4 Let event B denote an accident and let A; be the event that age of the driver is 16-25.

Then
(0.1)(0.05)
PALIB) = §1)(0.05) + (0.55)(0.02) + (0.20)(0.0) + (0.15)(0.04)
_ o0 20 g9

50 + 110 + 60 + 60 280

1.6-6 Let B be the event that the policyholder dies. Let A, As, A3 be the events that the
deceased is standard, preferred and ultra-preferred, respectively. Then

(0.60)(0.01)

P(4,|B) =
(A:]B) (0.60)(0.01) + (0.30)(0.008) + (0.10)(0.007)
60 60
= = 20659
60+24+7 91 ’
24
P(4:|B) = o5 =0.264
7
P(A3|B) = 55 =00TT.

1.6-8 Let A be the event that the DVD player is under warranty.
(0.40)(0.10)

P(B,|A) =
(Bi]4) (0.40(0.10) + (0.30)(0.05) + (0.20)(0.03) + (0.10)(0.02)
40 40
- 0635
40+15+6+2 63 '
15
P(By|A) = =2 —0.238:
(Bal4) = 2 =028
P(Bs|A) = O —0.095;
3 T 63
P(Bi|A) = = —0.032
4 - 63 == U. .
1.6-10 (a) P(AD) = (0.02)(0.92) + (0.98)(0.05) = 0.0184 + 0.0490 = 0.0674;
0.0490 0.0184
(b) P(N|AD) = S = 0.72T; P(A| AD) = So = 0.273;
98)(0. 1
(c) P(N|ND) = (0.98)(0.95) = B0 998 P(A| ND) = 0.002.

(0.02)(0.08) + (0.98)(0.95) 16 + 9310
(d) Yes, particularly those in part (b).

1.6-12 Let D = {has the disease}, DP ={detects presence of disease}. Then
P(D N DP)
P(D|DP) = —————=
(D| DP) T

P(D)- P(DP|D)
P(D)- P(DP|D) + P(D')- P(DP| D)

(0.005)(0.90)

(0.005)(0.90) + (0.995)(0.02)

0.0045 ~0.0045
0.0045 +0.199 ~ 0.0244

= 0.1844.




Section 1.6 Bayes’s Theorem

1.6-14 Let D = {defective roll} Then
P(IND)
P(I|D) = ———

P(I)- P(D]|I)

P(I)- P(D|I)+ P(II)- P(D|II)
(0.60)(0.03)
(0.60)(0.03) + (0.40)(0.01)

0.018 ~0.018
0.018 +0.004 ~ 0.022

= 0.818.
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Chapter 2

Discrete Distributions

2.1 Random Variables of the Discrete Type
2.1-2 (a)
0.6, z=1,
fl@)y=4 0.3, x =05,
0.1, z =10,

(b)
fix)
0.6

0.57

0.4+

0.31

0.21

0.1+

1 2 3 4 5 6 7 8 9 10

Figure 2.1-2: A probability histogram

1
2.1-4 (a) f(z)= 10 z=0,1,2,---,10;

(b)  N({0})/150 = 11/150 = 0.073; N({5})/150 = 13/150 = 0.087;
N({1})/150 = 14/150 = 0.093; N ({6})/150 = 22/150 = 0.147;
N({2})/150 = 13/150 = 0.087; N({7})/150 = 16/150 = 0.107;
N({3})/150 = 12/150 = 0.080; N({8})/150 = 18/150 = 0.120;
N({4})/150 = 16/150 = 0.107;  N({9})/150 = 15/150 = 0.100.

11
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(c)

Section 2.1 Random Variables of the Discrete Type

f(x), h(x)

0.14 -

0.1

2.

0.

0.0

Fa¥
U

8.

0.0

0.4

0.G

2.1-6 (a) f(z) =
(b)

6—|7—x]
36

1 2 3 4 5 6 7 8 9

Figure 2.1-4: Michigan daily lottery digits

, 1=2,3,4,56,7,8,9,10,11, 12.

J(x)

0.16:
0.14:
0.12:
0.10:
0.08:
0.06:
0.04:
0.02:

12 3 4 5 6 7 8 9 10 11 12

Figure 2.1-6: Probability histogram for the sum of a pair of dice



Section 2.1 Random Variables of the Discrete Type

2.1-8 (a) The space of W is S ={0,1,2,3,4,5,6,7}.

P(WzO)zP(X:O,Y:O):%~i:%,assuming independence.
P(Wzl)zP(XzO,Yzl):%%:%,
P(W:2):P(X:2,Y:0):%&:%,
POV =3)=P(X=2Y =1)= - =,
P(W:4):P(X:O,Y:4):%é:é,
POV =5)=P(X =0Y =5)= 5 =,
P N B
P(W:7):P(X:2,Y:5):%&:é
That is, f( ):P(W:w):é, weS.
®) ()

0.127

0.10-

0.08+

0.061

0.04 -

0.021

1 2 38 4 5 6 7
Figure 2.1-8: Probability histogram of sum of two special dice

2.1-10 (a) Q%;) = %;
10
3 47
Y @Egg) ) 21
1

0
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2.1-12  0C(0.04) = <(1))<254>+G)

0C(0.08)

0C(0.12)

a0

W)
0/\ 5 91 137
1- >1)=1— ) =1 /N 9 6.
2.1-14 P(X>1)=1-P(X=0)=1 20 598 = 298 0.60
5
2.1-16 (a) Let Y equal the number of H chips that are selected. Then
=Y —(10-Y)| =|2Y — 10| and the p.m.f. of YV is

10\/ 10
g(y)<y><(2100)y), y=0,1,...
10

,10.

The p.m.f. of X is as follows:

2025 22,050 22,050 2025 1
184,756 92,378 46,189 46,189 92,378 92,378

f(0)=g(5) | f(2) =29(6) | f(4) =29(7) | f(6) =29(8) | f(8) =29(9) | f(10) = 29(10)

(b) The mode is equal to 2.

2.1-18 (a) P(2,1,6,10) means that 2 is in position 1 so 1 cannot be selected. Thus

P(2,1,6,10) = <(1))(<50)><§> _ % _ 1%;
6
()06
(b) P(i,rk,n) = 1 i ,
(&)




