
Complete Solutions Manual 
to Accompany 

 
Probability and Statistics 

for Engineering and the Sciences 
 

NINTH EDITION 
 

Jay Devore 
California Polytechnic State University, 

San Luis Obispo, CA 

 

 

 

 

 

 

 

 

Prepared by 
 

Matthew A. Carlton 
California Polytechnic State University, San Luis Obispo, CA 

 
 
 

 
Australia • Brazil • Mexico • Singapore • United Kingdom • United States 

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.
 

https://selldocx.com/products
/solution-manual-probability-and-statistics-for-engineering-and-the-sciences-9e-devore

https://selldocx.com/products/solution-manual-probability-and-statistics-for-engineering-and-the-sciences-9e-devore


 
 

 Printed in the United States of America 
 1 2 3 4 5 6 7 17 16 15 14 13 

 

 
 

 
© 2016 Cengage Learning 
 
ALL RIGHTS RESERVED. No part of this work covered by the 
copyright herein may be reproduced, transmitted, stored, or 
used in any form or by any means graphic, electronic, or 
mechanical, including but not limited to photocopying, 
recording, scanning, digitizing, taping, Web distribution, 
information networks, or information storage and retrieval 
systems, except as permitted under Section 107 or 108 of the 
1976 United States Copyright Act, without the prior written 
permission of the publisher except as may be permitted by the 
license terms below. 
 

 
 

For product information and technology assistance, contact us at 
Cengage Learning Customer & Sales Support,  

1-800-354-9706. 
 

For permission to use material from this text or product, submit 
all requests online at www.cengage.com/permissions 

Further permissions questions can be emailed to 
permissionrequest@cengage.com. 

 

 

ISBN-13: 978-1-305-26061-0 
ISBN-10: 1-305-26061-9 
 
Cengage Learning 
20 Channel Center Street 
Fourth Floor 
Boston, MA 02210 
USA 
 
Cengage Learning is a leading provider of customized 
learning solutions with office locations around the globe, 
including Singapore, the United Kingdom, Australia, 
Mexico, Brazil, and Japan. Locate your local office at: 
www.cengage.com/global. 
 
Cengage Learning products are represented in 
Canada by Nelson Education, Ltd. 
 
To learn more about Cengage Learning Solutions, 
visit www.cengage.com. 
 
Purchase any of our products at your local college 
store or at our preferred online store 
www.cengagebrain.com. 

 
 

 
NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, 

OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN. 
 

 
READ IMPORTANT LICENSE INFORMATION 

 
Dear Professor or Other Supplement Recipient: 
 
Cengage Learning has provided you with this product (the 
“Supplement”) for your review and, to the extent that you adopt 
the associated textbook for use in connection with your course 
(the “Course”), you and your students who purchase the textbook 
may use the Supplement as described below. Cengage Learning 
has established these use limitations in response to concerns 
raised by authors, professors, and other users regarding the 
pedagogical problems stemming from unlimited distribution of 
Supplements. 
 
Cengage Learning hereby grants you a nontransferable license to 
use the Supplement in connection with the Course, subject to the 
following conditions. The Supplement is for your personal, 
noncommercial use only and may not be reproduced, posted 
electronically or distributed, except that portions of the 
Supplement may be provided to your students IN PRINT FORM 
ONLY in connection with your instruction of the Course, so long 
as such students are advised that they  

may not copy or distribute any portion of the Supplement to any 
third party. You may not sell, license, auction, or otherwise 
redistribute the Supplement in any form. We ask that you take 
reasonable steps to protect the Supplement from unauthorized 
use, reproduction, or distribution. Your use of the Supplement 
indicates your acceptance of the conditions set forth in this 
Agreement. If you do not accept these conditions, you must return 
the Supplement unused within 30 days of receipt. 
 
All rights (including without limitation, copyrights, patents, and 
trade secrets) in the Supplement are and will remain the sole and 
exclusive property of Cengage Learning and/or its licensors. The 
Supplement is furnished by Cengage Learning on an “as is” basis 
without any warranties, express or implied. This Agreement will be 
governed by and construed pursuant to the laws of the State of 
New York, without regard to such State’s conflict of law rules. 
 
Thank you for your assistance in helping to safeguard the integrity of 
the content contained in this Supplement. We trust you find the 
Supplement a useful teaching tool. 



CONTENTS 
 

 
Chapter 1 Overview and Descriptive Statistics 1 

Chapter 2 Probability 48 

Chapter 3 Discrete Random Variables and Probability 
Distributions 

90 

Chapter 4 Continuous Random Variables and Probability 
Distributions 

126 

Chapter 5 Joint Probability Distributions and Random Samples 177 

Chapter 6 Point Estimation 206 

Chapter 7 Statistical Intervals Based on a Single Sample 217 

Chapter 8 Tests of Hypotheses Based on a Single Sample 234 

Chapter 9 Inferences Based on Two Samples 255 

Chapter 10 The Analysis of Variance 285 

Chapter 11 Multifactor Analysis of Variance 299 

Chapter 12 Simple Linear Regression and Correlation 330 

Chapter 13 Nonlinear and Multiple Regression 368 

Chapter 14 Goodness-of-Fit Tests and Categorical Data Analysis 406 

Chapter 15 Distribution-Free Procedures 424 

Chapter 16 Quality Control Methods 434 
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CHAPTER 1 
 

Section 1.1 
 
1.  

a. Los Angeles Times, Oberlin Tribune, Gainesville Sun, Washington Post 
 
b. Duke Energy, Clorox, Seagate, Neiman Marcus 

 
c. Vince Correa, Catherine Miller, Michael Cutler, Ken Lee 

 
d. 2.97, 3.56, 2.20, 2.97 

 
 
2.  

a. 29.1 yd, 28.3 yd, 24.7 yd, 31.0 yd 
 

b. 432 pp, 196 pp, 184 pp, 321 pp 
 

c. 2.1, 4.0, 3.2, 6.3 
 

d. 0.07 g, 1.58 g, 7.1 g, 27.2 g 
 
 
3.  

a. How likely is it that more than half of the sampled computers will need or have needed 
warranty service? What is the expected number among the 100 that need warranty 
service? How likely is it that the number needing warranty service will exceed the 
expected number by more than 10? 

 
b. Suppose that 15 of the 100 sampled needed warranty service. How confident can we be 

that the proportion of all such computers needing warranty service is between .08 and 
.22? Does the sample provide compelling evidence for concluding that more than 10% of 
all such computers need warranty service? 
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4.  
a. Concrete populations: all living U.S. Citizens, all mutual funds marketed in the U.S., all 

books published in 1980  
Hypothetical populations:  all grade point averages for University of California 
undergraduates during the next academic year, page lengths for all books published 
during the next calendar year, batting averages for all major league players during the 
next baseball season 
 

b. (Concrete) Probability: In a sample of 5 mutual funds, what is the chance that all 5 have 
rates of return which exceeded 10% last year? 
Statistics: If previous year rates-of-return for 5 mutual funds were 9.6, 14.5, 8.3, 9.9 and 
10.2, can we conclude that the average rate for all funds was below 10%? 
(Hypothetical) Probability: In a sample of 10 books to be published next year, how likely 
is it that the average number of pages for the 10 is between 200 and 250? 
Statistics: If the sample average number of pages for 10 books is 227, can we be highly 
confident that the average for all books is between 200 and 245? 

 
 

5.  
a. No. All students taking a large statistics course who participate in an SI program of this 

sort. 
 
b. The advantage to randomly allocating students to the two groups is that the two groups 

should then be fairly comparable before the study.  If the two groups perform differently 
in the class, we might attribute this to the treatments (SI and control). If it were left to 
students to choose, stronger or more dedicated students might gravitate toward SI, 
confounding the results. 

 
c. If all students were put in the treatment group, there would be no firm basis for assessing 

the effectiveness of SI (nothing to which the SI scores could reasonably be compared). 
 
 
6. One could take a simple random sample of students from all students in the California State 

University system and ask each student in the sample to report the distance form their 
hometown to campus.  Alternatively, the sample could be generated by taking a stratified 
random sample by taking a simple random sample from each of the 23 campuses and again 
asking each student in the sample to report the distance from their hometown to campus.  
Certain problems might arise with self reporting of distances, such as recording error or poor 
recall.  This study is enumerative because there exists a finite, identifiable population of 
objects from which to sample. 

 
 
7. One could generate a simple random sample of all single-family homes in the city, or a 

stratified random sample by taking a simple random sample from each of the 10 district 
neighborhoods.  From each of the selected homes, values of all desired variables would be 
determined.  This would be an enumerative study because there exists a finite, identifiable 
population of objects from which to sample. 
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8.  
a. Number observations equal 2 x 2 x 2 = 8 
 
b. This could be called an analytic study because the data would be collected on an existing 

process. There is no sampling frame. 
  
9.  

a. There could be several explanations for the variability of the measurements.  Among 
them could be measurement error (due to mechanical or technical changes across 
measurements), recording error, differences in weather conditions at time of 
measurements, etc. 

 
b. No, because there is no sampling frame. 

 
 

Section 1.2 
 
10.  

a.  
     

5 9  
6 33588  
7 00234677889 
8 127  
9 077 stem: ones 

10 7 leaf: tenths 
11 368  

 
A representative strength for these beams is around 7.8 MPa, but there is a reasonably 
large amount of variation around that representative value.  
 
(What constitutes large or small variation usually depends on context, but variation is 
usually considered large when the range of the data – the difference between the largest 
and smallest value – is comparable to a representative value. Here, the range is 11.8 – 5.9 
= 5.9 MPa, which is similar in size to the representative value of 7.8 MPa. So, most 
researchers would call this a large amount of variation.) 

 
b. The data display is not perfectly symmetric around some middle/representative value.  

There is some positive skewness in this data. 
 
c. Outliers are data points that appear to be very different from the pack.  Looking at the 

stem-and-leaf display in part (a), there appear to be no outliers in this data.  (A later 
section gives a more precise definition of what constitutes an outlier.) 

 
d. From the stem-and-leaf display in part (a), there are 4 values greater than 10.  Therefore, 

the proportion of data values that exceed 10 is 4/27 = .148, or, about 15%. 
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11.  
3L 1  
3H 56678  
4L 000112222234  
4H 5667888 stem: tenths 
5L 144 leaf : hundredths 
5H 58  
6L 2  
6H 6678  
7L   
7H 5  

 
The stem-and-leaf display shows that .45 is a good representative value for the data.  In 
addition, the display is not symmetric and appears to be positively skewed.  The range of the 
data is .75 – .31 = .44, which is comparable to the typical value of .45. This constitutes a 
reasonably large amount of variation in the data.  The data value .75 is a possible outlier.  

 
 
12. The sample size for this data set is n = 5 + 15 + 27 + 34 + 22 + 14 + 7 + 2 + 4 + 1 = 131. 
 

a. The first four intervals correspond to observations less than 5, so the proportion of values 
less than 5 is (5 + 15 + 27 + 34)/131 = 81/131 = .618. 
 

b. The last four intervals correspond to observations at least 6, so the proportion of values at 
least 6 is (7 + 2 + 4 + 1)/131 = 14/131 = .107. 
 

c. & d. The relative (percent) frequency and density histograms appear below. The 
distribution of CeO2 sizes is not symmetric, but rather positively skewed. Notice that the 
relative frequency and density histograms are essentially identical, other than the vertical 
axis labeling, because the bin widths are all the same. 
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13.  
a.  
    

12 2 stem: tens 
12 445 leaf: ones  
12 6667777   
12 889999   
13 00011111111   
13 2222222222333333333333333   
13 44444444444444444455555555555555555555 
13 6666666666667777777777   
13 888888888888999999   
14 0000001111   
14 2333333   
14 444   
14 77   

 
The observations are highly concentrated at around 134 or 135, where the display 
suggests the typical value falls. 

 
b.  
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The histogram of ultimate strengths is symmetric and unimodal, with the point of 
symmetry at approximately 135 ksi. There is a moderate amount of variation, and there 
are no gaps or outliers in the distribution. 

 



Chapter 1:  Overview and Descriptive Statistics 

 6 

14.  
a.  

2 23  stem: 1.0 
3 2344567789  leaf: .10 
4 01356889   
5 00001114455666789  
6 0000122223344456667789999 
7 00012233455555668  
8 02233448   
9 012233335666788  

10 2344455688   
11 2335999   
12 37   
13 8   
14 36   
15 0035   
16    
17    
18 9   

 
   

b. A representative is around 7.0. 
 
c. The data exhibit a moderate amount of variation (this is subjective). 

 
d. No, the data is skewed to the right, or positively skewed. 
 
e. The value 18.9 appears to be an outlier, being more than two stem units from the previous 

value. 
 

 
15.  

American  French 
 8 1 

755543211000 9 00234566 
9432 10 2356 
6630 11 1369 

850 12 223558 
8 13 7 

 14  
 15 8 

2 16  
 
American movie times are unimodal strongly positively skewed, while French movie times 
appear to be bimodal. A typical American movie runs about 95 minutes, while French movies 
are typically either around 95 minutes or around 125 minutes. American movies are generally 
shorter than French movies and are less variable in length. Finally, both American and French 
movies occasionally run very long (outliers at 162 minutes and 158 minutes, respectively, in 
the samples). 
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16.  
a.  

Beams  Cylinders  
9 5 8  

88533 6 16  
98877643200 7 012488  

721 8 13359 stem: ones 
770 9 278 leaf: tenths 

7 10   
863 11 2  

 12 6  
 13   
 14 1  

 
The data appears to be slightly skewed to the right, or positively skewed.  The value of 
14.1 MPa appears to be an outlier.  Three out of the twenty, or 15%, of the observations 
exceed 10 MPa. 
 

b. The majority of observations are between 5 and 9 MPa for both beams and cylinders, 
with the modal class being 7.0-7.9 MPa.  The observations for cylinders are more 
variable, or spread out, and the maximum value of the cylinder observations is higher. 

 
c.  

 
    . .  .  :..  : .: . . .   :         .        .         . 

          -+---------+---------+---------+---------+---------+----- 
          6.0       7.5       9.0      10.5      12.0      13.5 

Cylinder strength (MPa) 
 
17. The sample size for this data set is n = 7 + 20 + 26 + … + 3 + 2 = 108.  

a. “At most five bidders” means 2, 3, 4, or 5 bidders. The proportion of contracts that 
involved at most 5 bidders is (7 + 20 + 26 + 16)/108 = 69/108 = .639.  
Similarly, the proportion of contracts that involved at least 5 bidders (5 through 11) is 
equal to (16 + 11 + 9 + 6 + 8 + 3 + 2)/108 = 55/108 = .509. 

 
b. The number of contracts with between 5 and 10 bidders, inclusive, is 16 + 11 + 9 + 6 + 8 

+ 3 = 53, so the proportion is 53/108 = .491. “Strictly” between 5 and 10 means 6, 7, 8, or 
9 bidders, for a proportion equal to (11 + 9 + 6 + 8)/108 = 34/108 = .315.  

 
c. The distribution of number of bidders is positively skewed, ranging from 2 to 11 bidders, 

with a typical value of around 4-5 bidders.  
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18.  

a. The most interesting feature of the histogram is the heavy presence of three very large 
outliers (21, 24, and 32 directors). Absent these three corporations, the distribution of 
number of directors would be roughly symmetric with a typical value of around 9. 
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Note: One way to have Minitab automatically construct a histogram from grouped data 
such as this is to use Minitab’s ability to enter multiple copies of the same number by 
typing, for example, 42(9) to enter 42 copies of the number 9.  The frequency data in this 
exercise was entered using the following Minitab commands: 
MTB > set c1 
DATA> 3(4) 12(5) 13(6) 25(7) 24(8) 42(9) 23(10) 19(11) 16(12) 
11(13) 5(14) 4(15) 1(16) 3(17) 1(21) 1(24) 1(32) 
DATA> end  

 
b. The accompanying frequency distribution is nearly identical to the one in the textbook, 

except that the three largest values are compacted into the “≥ 18” category. If this were 
the originally-presented information, we could not create a histogram, because we would 
not know the upper boundary for the rectangle corresponding to the “≥ 18” category. 
 
No. dir. 4 5 6 7 8 9 10 11 
Freq. 3 12 13 25 24 42 23 19 
         
No dir. 12 13 14 15 16 17 ≥ 18  
Freq. 16 11 5 4 1 3 3  
 

 
c. The sample size is 3 + 12 + … + 3 + 1 + 1 + 1 = 204. So, the proportion of these 

corporations that have at most 10 directors is (3 + 12 + 13 + 25 + 24 + 42 + 23)/204 = 
142/204 = .696. 

 
d. Similarly, the proportion of these corporations with more than 15 directors is (1 + 3 + 1 + 

1 + 1)/204 = 7/204 = .034.  
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19.  
a. From this frequency distribution, the proportion of wafers that contained at least one 

particle is (100-1)/100 = .99, or 99%.  Note that it is much easier to subtract 1 (which is 
the number of wafers that contain 0 particles) from 100 than it would be to add all the 
frequencies for 1, 2, 3,… particles.  In a similar fashion, the proportion containing at least 
5 particles is (100 - 1-2-3-12-11)/100 = 71/100 = .71, or, 71%. 

 
b. The proportion containing between 5 and 10 particles is (15+18+10+12+4+5)/100 = 

64/100 = .64, or 64%.  The proportion that contain strictly between 5 and 10 (meaning 
strictly more than 5 and strictly less than 10) is (18+10+12+4)/100 = 44/100 = .44, or 
44%. 

 
c. The following histogram was constructed using Minitab.  The histogram is almost 

symmetric and unimodal; however, the distribution has a few smaller modes and has a 
very slight positive skew.  
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20.  

a. The following stem-and-leaf display was constructed: 
 

0 123334555599   
1 00122234688 stem: thousands 
2 1112344477 leaf: hundreds  
3 0113338   
4 37   
5 23778   

 
A typical data value is somewhere in the low 2000’s.  The display is bimodal (the stem at 
5 would be considered a mode, the stem at 0 another) and has a positive skew. 
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b. A histogram of this data, using classes boundaries of 0, 1000, 2000, …, 6000 is shown 
below.  The proportion of subdivisions with total length less than 2000 is (12+11)/47 = 
.489, or 48.9%.  Between 2000 and 4000, the proportion is (10+7)/47 = .362, or 36.2%.   
The histogram shows the same general shape as depicted by the stem-and-leaf in part (a). 
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21.  

a. A histogram of the y data appears below.  From this histogram, the number of 
subdivisions having no cul-de-sacs (i.e., y = 0) is 17/47 = .362, or 36.2%.  The proportion 
having at least one cul-de-sac (y ≥ 1) is (47 – 17)/47 = 30/47 = .638, or 63.8%.  Note that 
subtracting the number of cul-de-sacs with y = 0 from the total, 47, is an easy way to find 
the number of subdivisions with y ≥ 1. 
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b. A histogram of the z data appears below.  From this histogram, the number of 
subdivisions with at most 5 intersections (i.e., z ≤ 5) is 42/47 = .894, or 89.4%.  The 
proportion having fewer than 5 intersections (i.e., z < 5) is 39/47 = .830, or 83.0%. 
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22. A very large percentage of the data values are greater than 0, which indicates that most, but 

not all, runners do slow down at the end of the race.   The histogram is also positively skewed, 
which means that some runners slow down a lot compared to the others.  A typical value for 
this data would be in the neighborhood of 200 seconds.  The proportion of the runners who 
ran the last 5 km faster than they did the first 5 km is very small, about 1% or so. 
 

23. Note: since the class intervals have unequal length, we must use a density scale. 
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The distribution of tantrum durations is unimodal and heavily positively skewed. Most 
tantrums last between 0 and 11 minutes, but a few last more than half an hour! With such 
heavy skewness, it’s difficult to give a representative value. 
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24. The distribution of shear strengths is roughly symmetric and bell-shaped, centered at about 

5000 lbs and ranging from about 4000 to 6000 lbs. 
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25. The transformation creates a much more symmetric, mound-shaped histogram. 

 
Histogram of original data: 
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Histogram of transformed data: 
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26.  

a. Yes: the proportion of sampled angles smaller than 15° is .177 + .166 + .175 = .518. 
 

b. The proportion of sampled angles at least 30° is .078 + .044 + .030 = .152. 
 
c. The proportion of angles between 10° and 25° is roughly .175 + .136 + (.194)/2 = .408. 

 
d. The distribution of misorientation angles is heavily positively skewed. Though angles can 

range from 0° to 90°, nearly 85% of all angles are less than 30°. Without more precise 
information, we cannot tell if the data contain outliers. 
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27.  

a. The endpoints of the class intervals overlap.  For example, the value 50 falls in both of 
the intervals 0–50 and 50–100. 
 

b. The lifetime distribution is positively skewed. A representative value is around 100. 
There is a great deal of variability in lifetimes and several possible candidates for 
outliers. 

 
 

Class Interval Frequency Relative Frequency 
0–< 50 9 0.18 

50–<100 19 0.38 
100–<150 11 0.22 
150–<200 4 0.08 
200–<250 2 0.04 
250–<300 2 0.04 
300–<350 1 0.02 
350–<400 1 0.02 
400–<450 0 0.00 
450–<500 0 0.00 
500–<550 1 0.02 

 50 1.00 
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c. There is much more symmetry in the distribution of the transformed values than in the 

values themselves, and less variability. There are no longer gaps or obvious outliers. 
 

Class Interval Frequency Relative Frequency 
2.25–<2.75 2 0.04 
2.75–<3.25 2 0.04 
3.25–<3.75 3 0.06 
3.75–<4.25 8 0.16 
4.25–<4.75 18 0.36 
4.75–<5.25 10 0.20 
5.25–<5.75 4 0.08 
5.75–<6.25 3 0.06 
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d. The proportion of lifetime observations in this sample that are less than 100 is .18 + .38 = 

.56, and the proportion that is at least 200 is .04 + .04 + .02 + .02 + .02 = .14. 
 
 
28. The sample size for this data set is n = 804. 

a. (5 + 11 + 13 + 30 + 46)/804 = 105/804 = .131. 
 

b. (73 + 38 + 19 + 11)/804 = 141/804 = .175. 
 

c. The number of trials resulting in deposited energy of 3.6 mJ or more is 126 + 92 + 73 + 
38 + 19 + 11 = 359. Additionally, 141 trials resulted in deposited energy within the 
interval 3.4-<3.6. If we assume that roughly half of these were in the interval 3.5-<3.6 
(since 3.5 is the midpoint), then our estimated frequency is 359 + (141)/2 = 429.5, for a 
rough proportion equal to 429.5/804 = .534. 
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d. The deposited energy distribution is roughly symmetric or perhaps slightly negatively 
skewed (there is a somewhat long left tail). Notice that the histogram must be made on a 
density scale, since the interval widths are not all the same. 
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29.  
Physical 
Activity 

Frequency Relative  
Frequency 

A 28 .28 
B  19 .19 
C 18 .18 
D 17 .17 
E 9 .09 
F 9 .09 
 100 1.00 
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30.  
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31.  
 

Class Frequency Cum. Freq. Cum. Rel. Freq. 
0.0–<4.0 2 2 0.050 
4.0–<8.0 14 16 0.400 

8.0–<12.0 11 27 0.675 
12.0–<16.0 8 35 0.875 
16.0–<20.0 4 39 0.975 
20.0–<24.0 0 39 0.975 
24.0–<28.0 1 40 1.000 

 
 
 
32.  

a. Cumulative percents must be restored to relative frequencies. Then the histogram may be 
constructed (see below). The relative frequency distribution is almost unimodal and 
exhibits a large positive skew.  The typical middle value is somewhere between 400 and 
450, although the skewness makes it difficult to pinpoint more exactly than this. 

 
           Class    Rel. Freq.                 Class            Rel. Freq. 

     0–< 150   .193     900–<1050    .019 
 150–< 300    .183   1050–<1200   .029 
 300–< 450   .251   1200–<1350   .005 
 450–< 600   .148   1350–<1500   .004 
 600–< 750    .097   1500–<1650    .001 
 750–< 900   .066   1650–<1800    .002 

1800–<1950    .002 
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b. The proportion of the fire loads less than 600 is .193 + .183 + .251 + .148 = .775.  The 
proportion of loads that are at least 1200 is .005 + .004 + .001 + .002 + .002 = .014. 

 
c. The proportion of loads between 600 and 1200 is 1 – .775 – .014 = .211. 
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Section 1.3 
 
33.  

a. Using software, x = 640.5 ($640,500) and x = 582.5 ($582,500). The average sale price 
for a home in this sample was $640,500. Half the sales were for less than $582,500, while 
half were for more than $582,500.  

 
b. Changing that one value lowers the sample mean to 610.5 ($610,500) but has no effect on 

the sample median. 
 

c. After removing the two largest and two smallest values, (20)trx = 591.2 ($591,200). 
 

d. A 10% trimmed mean from removing just the highest and lowest values is (10)trx = 596.3. 
To form a 15% trimmed mean, take the average of the 10% and 20% trimmed means to 
get (15)trx = (591.2 + 596.3)/2 = 593.75 ($593,750). 

 
 
34.  

a. For urban homes, x  = 21.55 EU/mg; for farm homes, x  = 8.56 EU/mg. The average 
endotoxin concentration in urban homes is more than double the average endotoxin 
concentration in farm homes. 

 
b. For urban homes, x~ = 17.00 EU/mg; for farm homes, x~ = 8.90 EU/mg. The median 

endotoxin concentration in urban homes is nearly double the median endotoxin 
concentration in farm homes. The mean and median endotoxin concentration for urban 
homes are so different because the few large values, especially the extreme value of 80.0, 
raise the mean but not the median. 

 
c. For urban homes, deleting the smallest (x = 4.0) and largest (x = 80.0) values gives a 

trimmed mean of trx  = 153/9 = 17 EU/mg.  The corresponding trimming percentage is 
100(1/11) ≈ 9.1%.  The trimmed mean is less than the mean of the entire sample, since 
the sample was positively skewed. Coincidentally, the median and trimmed mean are 
equal. 

 
For farm homes, deleting the smallest (x = 0.3) and largest (x = 21.0) values gives a 
trimmed mean of trx  = 107.1/13 = 8.24 EU/mg.  The corresponding trimming percentage 
is 100(1/15) ≈ 6.7%. The trimmed mean is below, though not far from, the mean and 
median of the entire sample. 

 
35. The sample size is n = 15. 

a. The sample mean is x = 18.55/15 = 1.237 µg/g and the sample median is x = the 8th 
ordered value = .56 µg/g. These values are very different due to the heavy positive 
skewness in the data.  
 

b. A 1/15 trimmed mean is obtained by removing the largest and smallest values and 
averaging the remaining 13 numbers: (.22 + … + 3.07)/13 = 1.162. Similarly, a 2/15 
trimmed mean is the average of the middle 11 values: (.25 + … + 2.25)/11 = 1.074. Since 
the average of 1/15 and 2/15 is .1 (10%), a 10% trimmed mean is given by the midpoint 
of these two trimmed means: (1.162 + 1.074)/2 = 1.118 µg/g. 
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c. The median of the data set will remain .56 so long as that’s the 8th ordered observation. 

Hence, the value .20 could be increased to as high as .56 without changing the fact that 
the 8th ordered observation is .56. Equivalently, .20 could be increased by as much as .36 
without affecting the value of the sample median.  

 
36.  

a. A stem-and leaf display of this data appears below: 

 
32 55 stem: ones 
33 49 leaf: tenths 
34   
35 6699  
36 34469  
37 03345  
38 9  
39 2347  
40 23  
41   
42 4  

 
The display is reasonably symmetric, so the mean and median will be close. 
 

b. The sample mean is x = 9638/26 = 370.7 sec, while the sample median is x~ = 
(369+370)/2 = 369.50 sec. 

 
c. The largest value (currently 424) could be increased by any amount.  Doing so will not 

change the fact that the middle two observations are 369 and 370, and hence, the median 
will not change.  However, the value x = 424 cannot be changed to a number less than 
370 (a change of 424 – 370 = 54) since that will change the middle two values. 

 
d. Expressed in minutes, the mean is (370.7 sec)/(60 sec) = 6.18 min, while the median is 

6.16 min. 
 
 
37. 01.12=x , 35.11~ =x , 46.11)10( =trx .  The median or the trimmed mean would be better 

choices than the mean because of the outlier 21.9. 
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38.  

a. The reported values are (in increasing order) 110, 115, 120, 120, 125, 130, 130, 135, and 
140. Thus the median of the reported values is 125. 

 
b. 127.6 is reported as 130, so the median is now 130, a very substantial change. When there 

is rounding or grouping, the median can be highly sensitive to small change. 
 
 
39.  

a. 475.16=Σ ix  so 0297.1
16
475.16

==x ; 009.1
2

)011.1007.1(~ =
+

=x  

 
b. 1.394 can be decreased until it reaches 1.011 (i.e. by 1.394 – 1.011 = 0.383), the largest 

of the 2 middle values. If it is decreased by more than 0.383, the median will change. 
 
 
40. 8.60~ =x , (25) 59.3083trx = , 3475.58)10( =trx , 54.58=x . All four measures of center have 

about the same value. 
 
 
41.  

a. x/n = 7/10 = .7 
 
b. 70.=x = the sample proportion of successes 
 
c. To have x/n equal .80 requires x/25 = .80 or x = (.80)(25) = 20. There are 7 successes (S) 

already, so another 20 – 7 = 13 would be required.  
 
42.  

a. cx
n
nc

n
x

n
cx

n
y

y iii +=+
Σ

=
+Σ

=
Σ

=
)(

 

=y~ the median of =+++ ),...,,( 21 cxcxcx n median of 

cxcxxx n +=+ ~),...,,( 21  
 

b. xc
n
xc

n
cx

n
y

y iii =
Σ

=
⋅Σ

=
Σ

=
)(

 

=y~ the median of ),...,,( 21 ncxcxcx 1 2the median of ( , ,..., )nc x x x cx= ⋅ =   
 
 
43. The median and certain trimmed means can be calculated, while the mean cannot — the exact 

values of the “100+” observations are required to calculate the mean. x = 0.68
2

)7957(
=

+ , 

(20)trx = 66.2, (30)trx = 67.5. 
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Section 1.4 
 
44.  

a. The maximum and minimum values are 182.6 and 180.3, respectively, so the range is 
182.6 – 180.3 = 2.3°C. 

 
b. Note: If we apply the hint and subtract 180 from each observation, the mean will be 1.41, 

and the middle two columns will not change. The sum and sum of squares will change, 
but those effects will cancel and the answer below will stay the same. 

ix  ( )ix x−  2( )ix x−  2
ix  

180.5 –0.90833 0.82507 32580.3 
181.7 0.29167 0.08507 33014.9 
180.9 –0.50833 0.25840 32724.8 
181.6 0.19167 0.03674 32978.6 
182.6 1.19167 1.42007 33342.8 
181.6 0.19167 0.03674 32978.6 
181.3 –0.10833 0.01174 32869.7 
182.1 0.69167 0.47840 33160.4 
182.1 0.69167 0.47840 33160.4 
180.3 –1.10833 1.22840 32508.1 
181.7 0.29167 0.08507 33014.9 
180.5 –0.90833 0.82507 32580.3 

sums:          2176.9 
x  = 181.41 

0 
 

5.769167 
 

394913.6 
 

 
s2 = 

1
2( / )) ( 1n

i i xx n
=

− −∑  = 5.769167/(12 – 1) = 0.52447. 
 
c. 0.52447s = = 0.724. 
 

d. 
2 2 2

2 ( ) / 394913.6 (2176.9) /12 0.52447
1 11

x x ns
n

Σ − Σ −
= = =

−
.  

 
 
45.  

a. x = 115.58.  The deviations from the mean are 116.4 – 115.58 = .82, 115.9 – 115.58 = 
.32, 114.6 –115.58 = –.98, 115.2 – 115.58 = –.38, and 115.8 – 115.58 = .22. Notice that 
the deviations from the mean sum to zero, as they should. 

 
b. s2 = [(.82)2 + (.32)2 + (-.98)2 + (-.38)2 + (.22)2]/(5 – 1) = 1.928/4 = .482, so s = .694. 

 
c. 2

ixΣ   = 66795.61, so s2 = Sxx/(n – 1) = ( )2 2)( / / ( 1)i i nx x n−Σ Σ − =                                   
(66795.61 –(577.9)2 /5)/4 = 1.928/4 = .482. 

d. The new sample values are: 16.4  15.9  14.6  15.2  15.8.  While the new mean is 15.58, 
all the deviations are the same as in part (a), and the variance of the transformed data is 
identical to that of part (b). 
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46.  

a. Since all three distributions are somewhat skewed and two contain outliers (see d), 
medians are the more appropriate central measures. The medians are 
Cooler: 1.760°C Control: 1.900°C  Warmer: 2.305°C  
The median difference between air and soil temperature increases as the conditions of the 
minichambers transition from cooler to warmer (1.76 < 1.9 < 2.305). 

 
b. With the aid of software, the standard deviations are 

Cooler: 0.401°C Control: 0.531°C  Warmer: 0.778°C 
For the 15 observations under the “cooler” conditions, the typical deviation between an 
observed temperature difference and the mean temperature difference (1.760°C) is 
roughly 0.4°C. A similar interpretation applies to the other two standard deviations. 
We see that, according to the standard deviations, variability increases as the conditions 
of the minichambers transition from cooler to warmer (0.401 < 0.531 < 0.778). 
  

c. Apply the definitions of lower fourth, upper fourth, and fourth spread to the sorted data 
within each condition. 
Cooler: lower fourth = (1.43 + 1.57)/2 = 1.50, upper fourth = (1.88 + 1.90)/2 = 1.89,  
fs = 1.89 – 1.50 = 0.39°C 
Control: lower fourth = (1.52 + 1.78)/2 = 1.65, upper fourth = (2.00 + 2.03)/2 = 2.015,  
fs = 2.015 – 1.65 = 0.365°C 
Warmer: lower fourth = 1.91, upper fourth = 2.60,  
fs = 2.60 – 1.91 = 0.69°C 
The fourth spreads do not communicate the same message as the standard deviations did. 
The fourth spreads indicate that variability is quite similar under the cooler and control 
settings, while variability is much larger under the warmer setting. The disparity between 
the results of b and c can be partly attributed to the skewness and outliers in the data, 
which unduly affect the standard deviations. 
 

d. As noted earlier, the temperature difference distributions are negatively skewed under all 
three conditions. The control and warmer data sets each have a single outlier. The 
boxplots confirm that median temperature difference increases as we transition from 
cooler to warmer, that cooler and control variability are similar, and that variability under 
the warmer condition is quite a bit larger. 
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47.  

a. From software, x  = 14.7% and x = 14.88%. The sample average alcohol content of 
these 10 wines was 14.88%. Half the wines have alcohol content below 14.7% and half 
are above 14.7% alcohol. 
 

b. Working long-hand, 2( )ix xΣ −  = (14.8 – 14.88)2 + … + (15.0 – 14.88)2 = 7.536. The 
sample variance equals s2 = 2( )ix xΣ −  = 7.536/(10 – 1) = 0.837. 
  

c. Subtracting 13 from each value will not affect the variance. The 10 new observations are 
1.8, 1.5, 3.1, 1.2, 2.9, 0.7, 3.2, 1.6, 0.8, and 2.0. The sum and sum of squares of these 10 
new numbers are iyΣ  = 18.8 and 2

iyΣ = 42.88. Using the sample variance shortcut, we 
obtain s2 = [42.88 – (18.8)2/10]/(10 – 1) = 7.536/9 = 0.837 again. 

 
48.  

a. Using the sums provided for urban homes, Sxx = 10,079 – (237.0)2/11 = 4972.73, so s = 

111
73.4972

−
= 22.3 EU/mg. Similarly for farm homes, Sxx = 518.836 and s = 6.09 EU/mg. 

The endotoxin concentration in an urban home “typically” deviates from the average of 
21.55 by about 22.3 EU/mg. The endotoxin concentration in a farm home “typically” 
deviates from the average of 8.56 by about 6.09 EU/mg. (These interpretations are very 
loose, especially since the distributions are not symmetric.) In any case, the variability in 
endotoxin concentration is far greater in urban homes than in farm homes. 

 
b. The upper and lower fourths of the urban data are 28.0 and 5.5, respectively, for a fourth 

spread of 22.5 EU/mg. The upper and lower fourths of the farm data are 10.1 and 4, 
respectively, for a fourth spread of 6.1 EU/mg.  Again, we see that the variability in 
endotoxin concentration is much greater for urban homes than for farm homes. 
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c. Consider the box plots below. The endotoxin concentration in urban homes generally 

exceeds that in farm homes, whether measured by settled dust or bag dust. The endotoxin 
concentration in bag dust generally exceeds that of settled dust, both in urban homes and 
in farm homes. Settled dust in farm homes shows far less variability than any other 
scenario. 
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49.  

a. 2.75 3.01 56.80ixΣ = + + = , 2 2 22.75 3.01 197.8040ixΣ = + + =  
 

b. ,5016.
16
0252.8

16
17/)80.56(8040.197 2

2 ==
−

=s  708.=s  

 
50. From software or from the sums provided, x = 20179/27 = 747.37 and 

224657511 (20179) 606.89
26

/ 27s −
= = .  The maximum award should be 2x s+ = 747.37 + 

2(606.89) = 1961.16, or $1,961,160.  This is quite a bit less than the $3.5 million that was 
awarded originally. 
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51.  

a. From software, s2 = 1264.77 min2 and s = 35.56 min. Working by hand,  2563=Σx  and 
2 368501xΣ = , so 

 
2

2 368501 (2563) /19 1264.766
19 1

s −
= =

−
 and 1264.766 35.564s ==  

 
b. If y = time in hours, then y = cx where c = 1

60 . So, ( )22 2
60

2 1 1264.766 .351y xs c s= = = hr2 and 

( )1
60 35.564 .593y xs cs= = = hr. 

 
 
52. Let d denote the fifth deviation.  Then 03.10.19.3. =++++ d  or 05.3 =+ d , so 5.3−=d .  

One sample for which these are the deviations is ,8.31 =x  ,4.42 =x  ,5.43 =x  ,8.44 =x  
.05 =x  (These were obtained by adding 3.5 to each deviation; adding any other number will 

produce a different sample with the desired property.) 
 
 
53.  

a. Using software, for the sample of balanced funds we have 1.121, 1.050, 0.536x x s= = = ; 
for the sample of growth funds we have 1.244, 1.100, 0.448x x s= = = . 

 
b. The distribution of expense ratios for this sample of balanced funds is fairly symmetric, 

while the distribution for growth funds is positively skewed. These balanced and growth 
mutual funds have similar median expense ratios (1.05% and 1.10%, respectively), but 
expense ratios are generally higher for growth funds. The lone exception is a balanced 
fund with a 2.86% expense ratio. (There is also one unusually low expense ratio in the 
sample of balanced funds, at 0.09%.) 
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54.  
a. Minitab provides the stem-and-leaf display below. Grip strengths for this sample of 42 

individuals are positively skewed, and there is one high outlier at 403 N. 
 

 6    0  111234 
 14   0  55668999 
(10)  1  0011223444  Stem = 100s 
 18   1  567889   Leaf = 10s 
 12   2  01223334 
 4    2  59 
 2    3  2 
 1    3 
 1    4  0 
 

b. Each half has 21 observations. The lower fourth is the 11th observation, 87 N. The upper 
fourth is the 32nd observation (11th from the top), 210 N. The fourth spread is the 
difference: fs = 210 – 87 = 123 N. 

 
c. min = 16; lower fourth = 87; median = 140; upper fourth = 210; max = 403 
 

The boxplot tells a similar story: grip strengths are slightly positively skewed, with a 
median of 140N and a fourth spread of 123 N.  

 

 

4003002001000
Grip strength

 
 

d. inner fences: 87 – 1.5(123) = –97.5, 210 + 1.5(123) = 394.5 
outer fences: 87 – 3(123) = –282, 210 + 3(123) = 579 
Grip strength can’t be negative, so low outliers are impossible here. A mild high outlier is 
above 394.5 N and an extreme high outlier is above 579 N. The value 403 N is a mild 
outlier by this criterion. (Note: some software uses slightly different rules to define 
outliers — using quartiles and interquartile range — which result in 403 N not being 
classified as an outlier.) 
 

e. The fourth spread is unaffected unless that observation drops below the current upper 
fourth, 210. That’s a decrease of 403 – 210 = 193 N. 
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55.  
a. Lower half of the data set: 325   325   334   339   356   356   359   359   363   364   364   

366   369, whose median, and therefore the lower fourth, is 359 (the 7th observation in the 
sorted list).  
 
Upper half of the data set: 370   373   373   374   375   389   392   393   394   397   402   
403   424, whose median, and therefore the upper fourth is 392.    

 
So, fs = 392 – 359 = 33. 

 
b. inner fences: 359 – 1.5(33) = 309.5, 392 + 1.5(33) = 441.5 

To be a mild outlier, an observation must be below 309.5 or above 441.5. There are none 
in this data set. Clearly, then, there are also no extreme outliers.   

 
c. A boxplot of this data appears below.  The distribution of escape times is roughly 

symmetric with no outliers. Notice the box plot “hides” the fact that the distribution 
contains two gaps, which can be seen in the stem-and-leaf display.   
 

420400380360340320
Escape time (sec)

 
 

 
d. Not until the value x = 424 is lowered below the upper fourth value of 392 would there be 

any change in the value of the upper fourth (and, thus, of the fourth spread).  That is, the 
value x = 424 could not be decreased by more than 424 – 392 = 32 seconds. 
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56. The alcohol content distribution of this sample of 35 port wines is roughly symmetric except 
for two high outliers. The median alcohol content is 19.2% and the fourth spread is 1.42%. 
[upper fourth = (19.90 + 19.62)/2 = 19.76; lower fourth = (18.00 + 18.68)/2 = 18.34] The two 
outliers were 23.25% and 23.78%, indicating two port wines with unusually high alcohol 
content. 
 

24232221201918171615
Alcohol content (%)

 
 
 
57.  

a. fs = 216.8 – 196.0 = 20.8 
inner fences: 196 – 1.5(20.8) = 164.6, 216.8 + 1.5(20.8) = 248 
outer fences: 196 – 3(20.8) = 133.6, 216.8 + 3(20.8) = 279.2 
Of the observations listed, 125.8 is an extreme low outlier and 250.2 is a mild high 
outlier. 

 
b. A boxplot of this data appears below.  There is a bit of positive skew to the data but, 

except for the two outliers identified in part (a), the variation in the data is relatively 
small. 

 

x120    140    160    180    200    220    240    260

* *

 
 
 
 
58. The most noticeable feature of the comparative boxplots is that machine 2’s sample values 

have considerably more variation than does machine 1’s sample values.  However, a typical 
value, as measured by the median, seems to be about the same for the two machines.  The 
only outlier that exists is from machine 1. 
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59.  
a. If you aren’t using software, don’t forget to sort the data first! 

ED:  median = .4, lower fourth = (.1 + .1)/2 = .1, upper fourth = (2.7 + 2.8)/2 = 2.75, 
fourth spread = 2.75 – .1 = 2.65 

 
Non-ED: median = (1.5 + 1.7)/2 = 1.6, lower fourth = .3, upper fourth = 7.9,  
fourth spread = 7.9 – .3 = 7.6. 

 
b. ED:  mild outliers are less than .1 – 1.5(2.65) = –3.875 or greater than 2.75 + 1.5(2.65) = 

6.725.  Extreme outliers are less than .1 – 3(2.65) = –7.85 or greater than 2.75 + 3(2.65) = 
10.7.  So, the two largest observations (11.7, 21.0) are extreme outliers and the next two 
largest values (8.9, 9.2) are mild outliers.  There are no outliers at the lower end of the 
data. 

 
Non-ED: mild outliers are less than .3 – 1.5(7.6) = –11.1 or greater than 7.9 + 1.5(7.6) = 
19.3.  Note that there are no mild outliers in the data, hence there cannot be any extreme 
outliers, either. 

 
c. A comparative boxplot appears below.  The outliers in the ED data are clearly visible.  

There is noticeable positive skewness in both samples; the Non-ED sample has more 
variability then the Ed sample; the typical values of the ED sample tend to be smaller 
than those for the Non-ED sample. 
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60. A comparative boxplot (created in Minitab) of this data appears below. The burst strengths for 
the test nozzle closure welds are quite different from the burst strengths of the production 
canister nozzle welds. The test welds have much higher burst strengths and the burst strengths 
are much more variable. The production welds have more consistent burst strength and are 
consistently lower than the test welds.  The production welds data does contain 2 outliers. 
 

Cannister

Test Nozzle

85008000750070006500600055005000
Burst strength (lb/in^2)

 
  
 
61. Outliers occur in the 6a.m. data.  The distributions at the other times are fairly symmetric.  

Variability and the “typical” gasoline-vapor coefficient values increase somewhat until 2p.m., 
then decrease slightly.   
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Supplementary Exercises 
 
62. To simplify the math, subtract the mean from each observation; i.e., let i iy x x= − = 

76831ix − . Then y1 = 76683 – 76831 = –148 and y4 = 77048 – 76831 = 217; by rescaling, 
76831 0y x= − = , so y2 + y3 = –(y1 + y4) = –69. Also,  

 
2 2

2 2( ) 97200
1 3

180 3(180)i i
i

x x y y
n

s Σ − Σ
⇒ Σ ====

−
=  

so 2 2 2 2 2 2
2 3 1 497200 ( ) 97200 (( 148) (217) ) 28207yy y y+ = − + = − − + = . 

To solve the equations y2 + y3 = –69 and 2 2
2 3 28207yy + = , substitute y3 = –69 – y2 into the 

second equation and use the quadratic formula to solve. This gives y2 = 79.14 or –148.14 (one 
is y2 and one is y3). 
Finally, x2 and x3 are given by y2 + 76831 and y3 + 76831, or 79,610 and 76,683. 

 
 
63. As seen in the histogram below, this noise distribution is bimodal (but close to unimodal) with 

a positive skew and no outliers. The mean noise level is 64.89 dB and the median noise level 
is 64.7 dB. The fourth spread of the noise measurements is about 70.4 – 57.8 = 12.6 dB. 
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64.  
a. The sample coefficient of variation is similar for the three highest oil viscosity levels 

(29.66, 32.30, 27.86) but is much higher for the lowest viscosity (56.01). At low 
viscosity, it appears that there is much more variation in volume wear relative to the 
average or “typical” amount of wear.  

 
  Wear 

Viscosity  x  s cv 
20.4  40.17 22.50 56.01 
30.2  38.83 11.52 29.66 
89.4  84.10 27.20 32.30 

252.6  27.10 7.55 27.86 
 
 

b. Volume wear varies dramatically by viscosity level.  At very high viscosity, wear is 
typically the least and the least variable. Volume wear is actually by far the highest at a 
“medium” viscosity level and also has the greatest variability at this viscosity level. 
“Lower” viscosity levels correspond to less wear than a medium level, though there is 
much greater (relative) variation at a very low viscosity level. 
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65.  

a. The histogram appears below.   A representative value for this data would be around 90 
MPa.  The histogram is reasonably symmetric, unimodal, and somewhat bell-shaped with 
a fair amount of variability (s ≈ 3 or 4 MPa). 
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b. The proportion of the observations that are at least 85 is 1 – (6+7)/169 = .9231.  The 
proportion less than 95 is 1 – (13+3)/169 = .9053. 

 
c. 90 is the midpoint of the class 89–<91, which contains 43 observations (a relative 

frequency of 43/169 = .2544).  Therefore about half of this frequency, .1272, should be 
added to the relative frequencies for the classes to the left of x = 90.  That is, the 
approximate proportion of observations that are less than 90 is .0355 + .0414 + .1006 + 
.1775 + .1272 = .4822.   
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66.  

a. The initial Se concentrations in the treatment and control groups are not that different. 
The differences in the box plots below are minor. The median initial Se concentrations 
for the treatment and control groups are 10.3 mg/L and 10.5 mg/L, respectively, each 
with fourth spread of about 1.25 mg/L. So, the two groups of cows are comparable at the 
beginning of the study. 
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b. The final Se concentrations of the two groups are extremely different, as evidenced by 
the box plots below. Whereas the median final Se concentration for the control group is 
9.3 mg/L (actually slightly lower than the initial concentration), the median Se 
concentration in the treatment group is now 103.9 mg/L, nearly a 10-fold increase. 
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67.  

a. Aortic root diameters for males have mean 3.64 cm, median 3.70 cm, standard deviation 
0.269 cm, and fourth spread 0.40. The corresponding values for females are x  = 3.28 
cm, x~ = 3.15 cm, s = 0.478 cm, and fs = 0.50 cm. Aortic root diameters are typically 
(though not universally) somewhat smaller for females than for males, and females show 
more variability. The distribution for males is negatively skewed, while the distribution 
for females is positively skewed (see graphs below). 
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b. For females (n = 10), the 10% trimmed mean is the average of the middle 8 observations: 
)10(trx  = 3.24 cm. For males (n = 13), the 1/13 trimmed mean is 40.2/11 = 3.6545, and 

the 2/13 trimmed mean is 32.8/9 = 3.6444. Interpolating, the 10% trimmed mean is 
)10(trx  = 0.7(3.6545) + 0.3(3.6444) = 3.65 cm. (10% is three-tenths of the way from 1/13 

to 2/13). 
 
 
68.  

a. { }2 2( ) ( ) 2 ( ) 0 ( ) 0i i i i
d dx c x c x c x c
dc dc

− = − = − − = ⇒ − = ⇒∑ ∑ ∑ ∑  

0 0 i
i i i

x
x c x nc nc x c x

n
− = ⇒ − = ⇒ = ⇒ = =∑∑ ∑ ∑ ∑  

 
b.       Since c x= minimizes 2( )ix cΣ − , 2 2( ) ( )i ix x x µΣ − < Σ − . 
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69.  

a.  
( )

( ) ( ) ( )

( )

2 2 2
2

22
2 2
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1 1 1
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i i i i

i i i
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b.  
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70.  
a. There is a significant difference in the variability of the two samples.  The weight training 

produced much higher oxygen consumption, on average, than the treadmill exercise, with 
the median consumptions being approximately 20 and 11 liters, respectively. 

 

Treadmill

Weight

2520151050
Oxygen consumption (liters)
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b. The differences in oxygen consumption (weight minus treadmill) for the 15 subjects are 

3.3, 9.1, 10.4, 9.1, 6.2, 2.5, 2.2, 8.4, 8.7, 14.4, 2.5, –2.8, –0.4, 5.0, and 11.5. The majority 
of the differences are positive, which suggests that the weight training produced higher 
oxygen consumption for most subjects than the treadmill did. The median difference is 
about 6 liters. 
 

151050-5
Difference in oxygen consumption (liters)

 
 

71.  
a. The mean, median, and trimmed mean are virtually identical, which suggests symmetry.  

If there are outliers, they are balanced.  The range of values is only 25.5, but half of the 
values are between 132.95 and 138.25. 

 
b. See the comments for (a). In addition, using 1.5(Q3 – Q1) as a yardstick, the two largest 

and three smallest observations are mild outliers. 
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72. A table of summary statistics, a stem and leaf display, and a comparative boxplot are below.  
The healthy individuals have higher receptor binding measure, on average, than the 
individuals with PTSD.  There is also more variation in the healthy individuals’ values.  The 
distribution of values for the healthy is reasonably symmetric, while the distribution for the 
PTSD individuals is negatively skewed.  The box plot indicates that there are no outliers, and 
confirms the above comments regarding symmetry and skewness. 

 
 PTSD Healthy 

Mean 32.92 52.23 
Median 37 51 
Std Dev 9.93 14.86 

Min 10 23 
Max 46 72 

 
 
 
 
 

Healthy  PTSD  
 1 0 stem = tens 

3 2 058 leaf = ones 
9 3 1578899  

7310 4 26  
81 5   

9763 6   
2 7   

 
 

Healthy

PTSD

8070605040302010
Receptor binding measure
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73. From software, x  = .9255, s = .0809; x = .93, fs = .1. The cadence observations are slightly 
skewed (mean = .9255 strides/sec, median = .93 strides/sec) and show a small amount of 
variability (standard deviation = .0809, fourth spread = .1). There are no apparent outliers in 
the data. 
 

7 8 stem = tenths 
8 11556 leaf = hundredths 
9 2233335566  
0 0566  

 

1.051.000.950.900.850.80
Cadence (strides per second)

 
 
 

74.  
a. The mode is .93.  It occurs four times in the data set.  
 
b. The modal category is the one in which the most observations occur; i.e., the modal 

category has the highest frequency. In a survey, the modal category is the most 
popular answer. 
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75.  
a. The median is the same (371) in each plot and all three data sets are very symmetric.  In 

addition, all three have the same minimum value (350) and same maximum value (392).  
Moreover, all three data sets have the same lower (364) and upper quartiles (378).  So, all 
three boxplots will be identical. (Slight differences in the boxplots below are due to the 
way Minitab software interpolates to calculate the quartiles.) 

 

Type 3

Type 2

Type 1

390380370360350
Fatigue limit (MPa)

 
 
b. A comparative dotplot is shown below.  These graphs show that there are differences in 

the variability of the three data sets.  They also show differences in the way the values are 
distributed in the three data sets, especially big differences in the presence of gaps and 
clusters. 
 

390384378372366360354

Type 1
Type 2

Type 3

Fatigue limit (MPa)

 
 

c. The boxplot in (a) is not capable of detecting the differences among the data sets.  The 
primary reason is that boxplots give up some detail in describing data because they use 
only five summary numbers for comparing data sets.   
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76. The measures that are sensitive to outliers are:  the mean and the midrange.  The mean is 
sensitive because all values are used in computing it.  The midrange is sensitive because it 
uses only the most extreme values in its computation. 

The median, the trimmed mean, and the midfourth are not sensitive to outliers. 

 The median is the most resistant to outliers because it uses only the middle value (or values) 
in its computation. 

 The trimmed mean is somewhat resistant to outliers.  The larger the trimming percentage, the 
more resistant the trimmed mean becomes. 

 The midfourth, which uses the quartiles, is reasonably resistant to outliers because both 
quartiles are resistant to outliers. 

 
 
77.  

a.  
 

0   444444444577888999  leaf = 1.0 
1   00011111111124455669999 stem = 0.1 
2   1234457 
3   11355 
4   17 
5   3 
6 
7   67 
8   1 
 
HI  10.44, 13.41  

 
b. Since the intervals have unequal width, you must use a density scale. 
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c. Representative depths are quite similar for the three types of soils — between 1.5 and 2. 
Data from the C and CL soils shows much more variability than for the other two types. 
The boxplots for the first three types show substantial positive skewness both in the 
middle 50% and overall. The boxplot for the SYCL soil shows negative skewness in the 
middle 50% and mild positive skewness overall. Finally, there are multiple outliers for 
the first three types of soils, including extreme outliers. 

 
78.  

a. Since the constant x is subtracted from each x value to obtain each y value, and addition 
or subtraction of a constant doesn’t affect variability, 22

xy ss = and xy ss = . 
b. Let c = 1/s, where s is the sample standard deviation of the x’s (and also, by part (a), of 

the y’s).  Then 2 2 2 2 2(1/ )i i z ycy c s sz s s== =⇒ = 1 and sz = 1.  That is, the “standardized” 
quantities z1, …, zn have a sample variance and standard deviation of 1. 

 
79.  

a. 
1

1 1
1 1

,
n n

i i n n n
i i

x x x nx x
+

+ +
= =

= + = +∑ ∑ so 1
1

1
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x xx
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b.  In the second line below, we artificially add and subtract 2

nnx  to create the term needed 
for the sample variance: 

{ }

1 1
2 2 2 2

1 1 1
1 1

2 2 2 2 2 2 2 2
1 1 1 1

1 1

2 2 2 2
1 1

( ) ( 1)

( 1) ( 1)

( 1) ( 1)

n n

n i n i n
i i

n n

i n n i n n n n
i i

n n n n

ns x x x n x

x x n x x nx nx x n x

n s x nx n x

+ +

+ + +
= =

+ + + +
= =

+ +

= − = − +

 
= + − + = − + + − + 

 

= − + + − +

∑ ∑

∑ ∑  

Substitute the expression for 1nx + from part (a) into the expression in braces, and it 

simplifies to 2
1( )

1 n n
n x x

n + −
+

, as desired.  

c. First, 16
15(12.58) 11.8 200.5 12.53

16 16
x +

= = = . Then, solving (b) for 2
1ns + gives 

2 2 22 2
1 1

1 1 14 1( ) (.512) (11.8 12.58)
1 15 16n n n n

ns s x x
n n+ +

−
= + − = + −

+
= .238.  Finally, the 

standard deviation is 16 .238 .532s = = . 
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80.  
a.  
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b. There are 391 observations. The proportion of route lengths less than 20 km is (6 + 23 + 
… + 42)/391 = 216/391 = .552. The proportion of route lengths at least 30 km is (27 + 11 
+ 2)/391 = 40/391 = .102.  

c. First compute (.90)(391 + 1) = 352.8.  Thus, the 90th percentile should be about the 352nd 
ordered value.  The 352nd ordered value is the first value in the interval 30–<35.  We do 
not know how the values in that interval are distributed, however, the smallest value (i.e., 
the 352nd value in the data set) cannot be smaller than 30.  So, the 90th percentile is 
roughly 30. 

d. First compute (.50)(391 + 1) = 196.  Thus the median (50th percentile) should be the 196th 
ordered value.  The 196th observation lies in the interval 18–<20, which includes 
observations #175 to #216.  The 196th observation is about in the middle of these.  Thus, 
we would say the median is roughly 19. 

 
81. Assuming that the histogram is unimodal, then there is evidence of positive skewness in the 

data since the median lies to the left of the mean (for a symmetric distribution, the mean and 
median would coincide).    
 
For more evidence of skewness, compare the distances of the 5th and 95th percentiles from the 
median:  median – 5th %ile = 500 – 400 = 100, while 95th %ile – median = 720 – 500 = 220.   
Thus, the largest 5% of the values (above the 95th percentile) are further from the median 
than are the lowest 5%.  The same skewness is evident when comparing the 10th and 90th 
percentiles to the median, or comparing the maximum and minimum to the median. 
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82.  

a. There is some evidence of a cyclical pattern. 
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b. A complete listing of the smoothed values appears below. To illustrate, with α = .1 we 

have 2 2 1.1 .9 (.1)(54) (.9)(47) 47.7x x x= + = + = , 3 3 2.1 .9x x x= +  = (.1)(.53) + (.9)(47.7) = 
48.23 ≈ 48.2, etc. It’s clear from the values below that α = .1 gives a smoother series. 

 
t tx for α = .1 tx for α = .5 
1 47.0 47.0 
2 47.7 50.5 
3 48.2 51.8 
4 48.4 50.9 
5 48.2 48.4 
6 48.0 47.2 
7 47.9 47.1 
8 48.1 48.6 
9 48.4 49.8 

10 48.5 49.9 
11 48.3 47.9 
12 48.6 50.0 
13 48.8 50.0 
14 48.9 50.0 

 
c. As seen below, tx depends on xt and all previous values.  As k increases, the coefficient 

on xt–k decreases (further back in time implies less weight). 
1 1 2

2
1 2 3

2 2 1
1 2 2 1

(1 ) (1 )[ (1 ) ]

(1 ) (1 ) [ (1 ) ]

(1 ) (1 ) (1 ) (1 )

t t t t t t

t t t t
t t

t t t

x x x x x x

x x x x

x x x x x

α α α α α α

α α α α α α

α α α α α α α α

− − −

− − −

− −
− −

= + − = + − + −

= + − + − + − =

= + − + − + + − + −





 

 
d. For large t, the smoothed series is not very sensitive to the initival value x1, since the 

coefficient (1 – α)t–1 will be very small. 
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83.  
a. When there is perfect symmetry, the smallest observation y1 and the largest observation 

yn will be equidistant from the median, so 1n x yxy − = −  .  Similarly, the second-smallest 
and second-largest will be equidistant from the median, so 1 2n x xy y− − = −  , and so on.  
Thus, the first and second  numbers in each pair will be equal, so that each point in the 
plot will fall exactly on the 45° line.   

 
When the data is positively skewed, yn will be much further from the median than is y1, 
so ny x−   will considerably exceed 1x y−  and the point 1( , )n x xy y− −  will fall 
considerably below the 45° line, as will the other points in the plot. 

 
b. The median of these n = 26 observations is 221.6 (the midpoint of the 13th and 14th 

ordered values). The first point in the plot is (2745.6 – 221.6, 221.6 – 4.1) = (2524.0, 
217.5).  The others are: (1476.2, 213.9), (1434.4, 204.1), (756.4, 190.2), (481.8, 188.9), 
(267.5, 181.0), (208.4, 129.2), (112.5, 106.3), (81.2, 103.3), (53.1, 102.6), (53.1,  92.0), 
(33.4,  23.0), and (20.9, 20.9).  The first number in each of the first seven pairs greatly 
exceeds the second number, so each of those points falls well below the 45° line.  A 
substantial positive skew (stretched upper tail) is indicated. 
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84.  As suggested in the hint, split the sum into two “halves” corresponding to the lowest n/2 
observations and the highest n/2 observations (we’ll use L and U to denote these). 

 
|| | |

(

| |

) )(

i i i

i i

L U

L U

L L
i i

U U

x x x

x x x

x x x

x x x

x

x

= +

= +

= − + −

− − −

− −

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

  

 

 

  

Each of these four sums covers exactly n/2 terms. The first and fourth sums are, therefore, 
both equal to (n/2) x ; these cancel. The inner two sums may be re-written in terms of 
averages: 

|

( / 2) ( / 2)
| /

|

| 2( ) /

L L U U
i i i i i

L U

i U L

L U
x x xx x x x x

x x
x x

n n
x n x

= − +−

−

− = − +

= − + ⇒

= −

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

  



 

 
When n is odd, the middle (ordered) value is exactly x . Using L and U to denote the lowest 
(n – 1)/2 observations and largest (n – 1)/2 observations, respectively, we may write 

| || || 0 |
L

i
U

i ix xxx xx= + +− − −∑ ∑ ∑   , where the 0 comes from the middle (ordered) value, 

viz. | 0| x x− =  . The rest of the derivation proceeds exactly as before, except that the surviving 
sums each have (n – 1)/2 terms in them, not n/2. As a result, for n odd we have 

| / ( 1)| ) / 2(i U Lx x xx n − = −−∑  . 
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CHAPTER 2 
 

Section 2.1 
 
1.  

a. S = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 
4231}. 

 
b. Event A contains the outcomes where 1 is first in the list: 

A = {1324, 1342, 1423, 1432}. 
 

c. Event B contains the outcomes where 2 is first or second: 
B = {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

  
d. The event A∪B contains the outcomes in A or B or both: 

A∪B = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 
A∩B = ∅, since 1 and 2 can’t both get into the championship game. 
A′ = S – A = {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}. 

 
 
2.  

a. A = {RRR, LLL, SSS}. 
 
b. B = {RLS, RSL, LRS, LSR, SRL, SLR}. 
 
c. C = {RRL, RRS, RLR, RSR, LRR, SRR}. 
 
d. D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS} 
 
e. Event D′ contains outcomes where either all cars go the same direction or they all go different 

directions: 
D′ = {RRR, LLL, SSS, RLS, RSL, LRS, LSR, SRL, SLR}. 
Because event D totally encloses event C (see the lists above), the compound event C∪D is just event 
D: 
C∪D = D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, 
RSS, LSS}. 
Using similar reasoning, we see that the compound event C∩D is just event C: 
C∩D = C = {RRL, RRS, RLR, RSR, LRR, SRR}. 
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3.  
a. A = {SSF, SFS, FSS}. 
 
b. B = {SSS, SSF, SFS, FSS}. 
 
c. For event C to occur, the system must have component 1 working (S in the first position), then at least 

one of the other two components must work (at least one S in the second and third positions):  C = 
{SSS, SSF, SFS}. 

 
d. C′ = {SFF, FSS, FSF, FFS, FFF}. 

A∪C = {SSS, SSF, SFS, FSS}. 
A∩C = {SSF, SFS}. 
B∪C = {SSS, SSF, SFS, FSS}. Notice that B contains C, so B∪C = B.   
B∩C = {SSS SSF, SFS}. Since B contains C, B∩C = C. 

 
4.  

a. The 24 = 16 possible outcomes have been numbered here for later reference. 
 

 Home Mortgage Number 
Outcome 1 2 3 4 

1 F F F F 
2 F F F V 
3 F F V F 
4 F F V V 
5 F V F F 
6 F V F V 
7 F V V F 
8 F V V V 
9 V F F F 

10 V F F V 
11 V F V F 
12 V F V V 
13 V V F F 
14 V V F V 
15 V V V F 
16 V V V V 

 
b. Outcome numbers 2, 3, 5, 9 above. 
 
c. Outcome numbers 1, 16 above. 
 
d. Outcome numbers 1, 2, 3, 5, 9 above. 
 
e. In words, the union of (c) and (d) is the event that either all of the mortgages are variable, or that at 

most one of them is variable-rate: outcomes 1, 2, 3, 5, 9, 16.  The intersection of (c) and (d) is the event 
that all of the mortgages are fixed-rate: outcome 1. 

 
f. The union of (b) and (c) is the event that either exactly three are fixed, or that all four are the same:  

outcomes 1, 2, 3, 5, 9, 16.  The intersection of (b) and (c) is the event that exactly three are fixed and 
all four are the same type.  This cannot happen (the events have no outcomes in common), so the 
intersection of (b) and (c) is ∅. 
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5.  

a. The 33 = 27 possible outcomes are numbered below for later reference. 
  

Outcome   Outcome  
Number Outcome  Number Outcome 

1 111  15 223 
2 112  16 231 
3 113  17 232 
4 121  18 233 
5 122  19 311 
6 123  20 312 
7 131  21 313 
8 132  22 321 
9 133  23 322 
10 211  24 323 
11 212  25 331 
12 213  26 332 
13 221  27 333 
14 222    

 
b. Outcome numbers 1, 14, 27 above. 
 
c. Outcome numbers 6, 8, 12, 16, 20, 22 above. 
 
d. Outcome numbers 1, 3, 7, 9, 19, 21, 25, 27 above. 

 
 
6.  

a. S = {123, 124, 125, 213, 214, 215, 13, 14, 15, 23, 24, 25, 3, 4, 5}. 
 

b. A = {3, 4, 5}. 
 
c. B = {125, 215, 15, 25, 5}. 
 
d. C = {23, 24, 25, 3, 4, 5}. 

 
 
7.  

a. S = {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA, 
BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, 
ABBABAA, ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, 
ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, 
AAABBAB, AAABABB, AAAABBB}. 

 
b. AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB. 
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8.  

a. A1 ∪ A2 ∪ A3  

b. A1 ∩ A2 ∩ A3  

c. 1 2 3A AA ′ ′∩ ∩  

d. 1 2 3 1 2 3 1 2 3 )(( ) ( )A AA A A A A AA′ ′ ′ ′∩ ∩ ∪ ∩′ ′∩ ∪ ∩ ∩  

e. A1 ∪ (A2 ∩ A3)  
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9.  
a. In the diagram on the left, the shaded area is (A∪B)′.  On the right, the shaded area is A′, the striped 

area is B′, and the intersection A′∩B′ occurs where there is both shading and stripes.  These two 
diagrams display the same area. 

b. In the diagram below, the shaded area represents (A∩B)′.  Using the right-hand diagram from (a), the 
union of A′ and B′ is represented by the areas that have either shading or stripes (or both).  Both of the 
diagrams display the same area. 

 
10.  

a. Many examples exist; e.g., A = {Chevy, Buick}, B = {Ford, Lincoln}, C = {Toyota} are three mutually 
exclusive events. 

 
b. No. Let E = {Chevy, Buick}, F = {Buick, Ford}, G = {Toyota}.  These events are not mutually 

exclusive (E and F have an outcome in common), yet there is no outcome common to all three events. 
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Section 2.2 
 
11.  

a. .07. 
 
b. .15 + .10 + .05 = .30. 
 
c. Let A = the selected individual owns shares in a stock fund. Then P(A) = .18 + .25 = .43. The desired 

probability, that a selected customer does not shares in a stock fund, equals P(A′) = 1 – P(A) = 1 – .43 
= .57. This could also be calculated by adding the probabilities for all the funds that are not stocks. 

 
12.  

a. No, this is not possible. Since event A ∩ B is contained within event B, it must be the case that         
P(A ∩ B) ≤ P(B). However, .5 > .4. 
 

b. By the addition rule, P(A ∪ B) = .5 + .4 – .3 = .6. 
 
c. P(neither A nor B) = P(A′ ∩ B′) = P((A ∪ B)′) = 1 – P(A∪B) = 1 – .6 = .4. 
 
d. The event of interest is A∩B′; from a Venn diagram, we see P(A ∩ B′) = P(A) – P(A ∩ B) = .5 – .3 = 

.2. 
 

e. From a Venn diagram, we see that the probability of interest is P(exactly one) = P(at least one) – 
P(both) = P(A ∪ B) – P(A ∩ B) = .6 – .3 = .3. 

 
 
13.  

a. 1 2A A∪ = “awarded either #1 or #2 (or both)”: from the addition rule, 
P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) = .22 + .25 – .11 = .36. 

 
b. 1 2AA′ ′∩ = “awarded neither #1 or #2”: using the hint and part (a), 

 1 2 1 2 1 2( ) (( ) ) 1 ( )P A A A P A AP A′ ′∩ ∪ = − ∪′ = = 1 – .36 = .64. 
 

c. 1 2 3A A A∪ ∪ = “awarded at least one of these three projects”: using the addition rule for 3 events, 

1 2 3( )AP A A∪ ∪ =  1 2 3 1 2 1 3 2 3 1 2 3) ( ) ( ) ( ) ( ) ( ) )( (P A P A P A A P A A P A A P A A AP A + + − ∩ − ∩ − ∩ + ∩ ∩ = 
.22 +.25 + .28 – .11 – .05 – .07 + .01 = .53. 
 

d. 1 2 3A AA ′′ ′∩ ∩ = “awarded none of the three projects”: 
 1 2 3( )AP A A′ ′∩ ∩′ = 1 – P(awarded at least one) = 1 – .53 = .47. 
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e. 1 2 3A AA ′′∩ ∩ = “awarded #3 but neither #1 nor #2”: from a Venn diagram,  

 1 2 3( )A AP A′∩ ∩′ = P(A3) – P(A1 ∩ A3) – P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3) = 
.28 – .05 – .07 + .01 = .17. The last term addresses the “double counting” of the two subtractions. 

     
f. 1 2 3( )AA A′∩ ∪′ = “awarded neither of #1 and #2, or awarded #3”: from a Venn diagram, 

1 2 3( ))( A AP A′∩ ∪′ = P(none awarded) + P(A3) = .47 (from d) + .28 = 75.   

 
Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram: 

 
14. Let A = an adult consumes coffee and B = an adult consumes carbonated soda. We’re told that P(A) = .55, 

P(B) = .45, and P(A ∪ B) = .70. 
a. The addition rule says P(A∪B) = P(A) + P(B) – P(A∩B), so .70 = .55 + .45 – P(A∩B) or P(A∩B) = .55 

+ .45 – .70 = .30. 
 

b. There are two ways to read this question. We can read “does not (consume at least one),” which means 
the adult consumes neither beverage. The probability is then P(neither A nor B) = )(P BA′ ′∩ = 1 –   
P(A ∪ B) = 1 – .70 = .30. 

 
The other reading, and this is presumably the intent, is “there is at least one beverage the adult does not 
consume, i.e. BA′ ′∪ . The probability is )(P BA′ ′∪  = 1 – P(A ∩ B) = 1 – .30 from a = .70.  (It’s just a 
coincidence this equals P(A ∪ B).) 
 
Both of these approaches use deMorgan’s laws, which say that )(P BA′ ′∩ = 1 – P(A∪B) and 

)(P BA′ ′∪  = 1 – P(A∩B). 
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15.   

a. Let E be the event that at most one purchases an electric dryer.  Then E′ is the event that at least two 
purchase electric dryers, and P(E′) = 1 – P(E) = 1 – .428 = .572. 

 
b. Let A be the event that all five purchase gas, and let B be the event that all five purchase electric.  All 

other possible outcomes are those in which at least one of each type of clothes dryer is purchased.  
Thus, the desired probability is 1 – [P(A) – P(B)] =  
1 – [.116 + .005] = .879. 

 
 

16.  
a. There are six simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD, and PDC.  

Since the same cola is in every glass, these six outcomes are equally likely to occur, and the probability 
assigned to each is 6

1 . 
 
b. P(C ranked first) = P({CPD, CDP}) = 1 1 2

6 6 6+ = = .333. 
 
c. P(C ranked first and D last) = P({CPD}) = 6

1 . 
 
17.  

a. The probabilities do not add to 1 because there are other software packages besides SPSS and SAS for 
which requests could be made. 

 
b. P(A′) = 1 – P(A) = 1 – .30 = .70. 
 
c. Since A and B are mutually exclusive events, P(A ∪ B) = P(A) + P(B) = .30 + .50 = .80.  
 
d. By deMorgan’s law, P(A′ ∩ B′) = P((A ∪ B)′) = 1 – P(A ∪ B) = 1 – .80 = .20. 

In this example, deMorgan’s law says the event “neither A nor B” is the complement of the event 
“either A or B.”  (That’s true regardless of whether they’re mutually exclusive.) 

 
 
18. The only reason we’d need at least two selections to find a $10 bill is if the first selection was not a $10 bill 

bulb. There are 4 + 6 = 10 non-$10 bills out of 5 + 4 + 6 = 15 bills in the wallet, so the probability of this 
event is simply 10/15, or 2/3. 

 
 
19. Let A be that the selected joint was found defective by inspector A, so P(A) = 000,10

724 .  Let B be analogous 

for inspector B, so P(B) = 000,10
751 .  The event “at least one of the inspectors judged a joint to be defective is 

A∪B, so P(A∪B) = 000,10
1159 . 

 
a. By deMorgan’s law, P(neither A nor B) = )(P BA′ ′∩ = 1 – P(A∪B) = 1 – 000,10

1159  = 000,10
8841  = .8841. 

 
b. The desired event is B∩A′. From a Venn diagram, we see that P(B∩A′) = P(B) – P(A∩B). From the 

addition rule,  P(A∪B) = P(A) + P(B) – P(A∩B) gives P(A∩B) = .0724 + .0751 – .1159 = .0316.  
Finally, P(B∩A′) = P(B) – P(A∩B) = .0751 – .0316 = .0435. 
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20.  
a. Let S1, S2 and S3 represent day, swing, and night shifts, respectively.  Let C1 and C2 represent unsafe 

conditions and unrelated to conditions, respectively. Then the simple events are S1C1, S1C2, S2C1, S2C2, 
S3C1, S3C2. 

 
b. P(C1)= P({S1C1, S2C1, S3C1})= .10 + .08 + .05 = .23. 
 
c. P( 1S ′ ) = 1 – P({S1C1, S1C2}) = 1 – ( .10 + .35) = .55. 
 
 

21. In what follows, the first letter refers to the auto deductible and the second letter refers to the homeowner’s 
deductible. 
a. P(MH) = .10. 
 
b. P(low auto deductible) = P({LN, LL, LM, LH}) = .04 + .06 + .05 + .03 = .18. Following a similar 

pattern, P(low homeowner’s deductible) = .06 + .10 + .03 = .19. 
 
c. P(same deductible for both) = P({LL, MM, HH}) = .06 + .20 + .15 = .41. 
 
d. P(deductibles are different) = 1 – P(same deductible for both) = 1 – .41 = .59. 
 
e. P(at least one low deductible) = P({LN, LL, LM, LH, ML, HL}) = .04 + .06 + .05 + .03 + .10 + .03 = 

.31. 
 

f. P(neither deductible is low) = 1 – P(at least one low deductible) = 1 – .31 = .69. 
 
 
22. Let A = motorist must stop at first signal and B = motorist must stop at second signal. We’re told that P(A) 

= .4, P(B) = .5, and P(A ∪ B) = .6. 
a. From the addition rule, P(A ∪ B) = P(A) + P(B) – P(A ∩ B), so .6 = .4 + .5 – P(A ∩ B), from which 

P(A ∩ B) = .4 + .5 – .6 = .3. 
 
b. From a Venn diagram, P(A ∩ B′) = P(A) – P(A ∩ B) = .4 – .3 = .1. 
 
c. From a Venn diagram, P(stop at exactly one signal) = P(A ∪ B) – P(A ∩ B) = .6 – .3 = .3. Or, P(stop at 

exactly one signal) = P([A ∩ B′]∪ [A′ ∩ B]) = P(A ∩ B′) + P(A′ ∩ B) = [P(A) – P(A ∩ B)] + [P(B) – 
P(A ∩ B)] = [.4 – .3] + [.5 – .3] = .1 + .2 = .3. 

 
 

23. Assume that the computers are numbered 1-6 as described and that computers 1 and 2 are the two laptops.  
There are 15 possible outcomes: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) 
(4,6) and (5,6). 

 
a. P(both are laptops) = P({(1,2)}) = 15

1 =.067. 
 
b. P(both are desktops) = P({(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}) = 15

6 = .40. 
 
c. P(at least one desktop) = 1 – P(no desktops) = 1 – P(both are laptops) = 1 – .067 = .933. 

 
d. P(at least one of each type) =  1 – P(both are the same) = 1 – [P(both are laptops) +      P(both are 

desktops)]  =  1 – [.067 + .40] = .533. 



Chapter 2:  Probability 

 57 

24. Since A is contained in B, we may write B = A ∪ (B ∩ A′), the union of two mutually exclusive events. (See 
diagram for these two events.) Apply the axioms: 
P(B) = P(A ∪ (B ∩ A′)) = P(A) + P(B ∩ A′) by Axiom 3. Then, since P(B ∩ A′) ≥ 0 by Axiom 1, P(B) = 
P(A) + P(B ∩ A′) ≥ P(A) + 0 = P(A). This proves the statement. 
 
 
 
 
 
 
 
 
 
 
 
 
For general events A and B (i.e., not necessarily those in the diagram), it’s always the case that A∩B is 
contained in A as well as in B, while A and B are both contained in A∪B. Therefore, P(A∩B) ≤ P(A) ≤ 
P(A∪B) and P(A∩B) ≤ P(B) ≤ P(A∪B). 
 

 
25. By rearranging the addition rule, P(A ∩ B) =  P(A) + P(B) – P(A∪B) = .40 + .55 – .63 = .32. By the same 

method, P(A ∩ C) = .40 + .70 – .77 = .33 and P(B ∩ C) = .55 + .70 – .80 = .45. Finally, rearranging the 
addition rule for 3 events gives 
P(A ∩ B ∩ C) = P(A ∪ B ∪ C) – P(A) – P(B) – P(C) + P(A ∩ B) + P(A ∩ C) + P(B ∩ C) = .85 – .40 – .55 
– .70 + .32 + .33 + .45 = .30. 
 
These probabilities are reflected in the Venn diagram below. 

 

 
 

a. P(A ∪ B ∪ C) = .85, as given. 
 
b. P(none selected) = 1 – P(at least one selected) = 1 – P(A ∪ B ∪ C) = 1 – .85 = .15. 
 
c. From the Venn diagram, P(only automatic transmission selected) = .22. 
 
d. From the Venn diagram, P(exactly one of the three) = .05 + .08 + .22 = .35. 

 
 

A 

B 

shaded area = B ∩ A′ 

.05 
.02 

.03 

.08 

.30 
.15 

.22 .15 

A B 

C 
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26. These questions can be solved algebraically, or with the Venn diagram below. 

a. 1 1( ) 1 ( )P A P A′ = − = 1 – .12 = .88. 
   

b. The addition rule says ) ( )( ( ) ( )P B P A P B A BA P∪ = + − ∩ . Solving for the intersection (“and”) 
probability, you get 1 2 1 2 1 2) ( ) ( ) ( )( A P A P AP A P A A∩ = + − ∪ = .12 + .07 – .13 = .06. 

 
c. A Venn diagram shows that ) ( ) ( )( B P AP A P A B′∩ = − ∩ . Applying that here with 1 2A AA= ∩  and B 

= A3, you get 1 2 3 1 2 1 2 3([ ) ((] ) )P A P AA A A P A A A′∩ − ∩ ∩=∩ ∩ =     .06 – .01 = .05. 
 

d. The event “at most two defects” is the complement of “all three defects,” so the answer is just 1 – 
1 2 3( )P A A A∩ ∩  = 1 – .01 = .99. 

 
 

 
 

 
 
27. There are 10 equally likely outcomes: {A, B} {A, Co} {A, Cr} {A,F} {B, Co} {B, Cr} {B, F} {Co, Cr} 

{Co, F} and {Cr, F}. 
a. P({A, B}) = 1

10  = .1. 
 
b. P(at least one C) = P({A, Co} or {A, Cr} or {B, Co} or {B, Cr} or {Co, Cr} or {Co, F} or {Cr, F}) = 

7
10 = .7. 

 
c. Replacing each person with his/her years of experience, P(at least 15 years) = P({3, 14} or {6, 10} or 

{6, 14} or {7, 10} or {7, 14} or {10, 14}) = 6
10 = .6. 

 
 

28. Recall there are 27 equally likely outcomes. 
a. P(all the same station) = P((1,1,1) or (2,2,2) or (3,3,3)) = 9

1
27
3 = . 

 
b. P(at most 2 are assigned to the same station) = 1 – P(all 3 are the same) = 1 – 1

9 = 8
9 . 

 
c. P(all different stations) = P((1,2,3) or (1,3,2) or (2,1,3) or (2,3,1) or (3,1,2) or (3,2,1))  

= 9
2

27
6 = . 

 

.04
  

.05 

.02 

.00 

.01 
.01 

.01 .86 

A1 A2 

A3 
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Section 2.3 
 
29.  

a. There are 26 letters, so allowing repeats there are (26)(26) = (26)2 = 676 possible 2-letter domain 
names. Add in the 10 digits, and there are 36 characters available, so allowing repeats there are 
(36)(36) = (36)2 = 1296 possible 2-character domain names. 

 
b. By the same logic as part a, the answers are (26)3 = 17,576 and (36)3 = 46,656. 

 
c. Continuing, (26)4 = 456,976; (36)4 = 1,679,616. 

 
d. P(4-character sequence is already owned) = 1 – P(4-character sequence still available) = 1 – 

97,786/(36)4 = .942. 
 

30.  
a. Because order is important, we’ll use P3,8 = (8)(7)(6) = 336. 
 

b. Order doesn’t matter here, so we use 
30
6

 
 
 

 = 593,775. 

 

c. The number of ways to choose 2 zinfandels from the 8 available is 
8
2
 
 
 

. Similarly, the number of ways 

to choose the merlots and cabernets are 
10
2

 
 
 

and 
12
2

 
 
 

, respectively. Hence, the total number of 

options (using the Fundamental Counting Principle) equals  
8 10 12
2 2 2
   
   
   

= (28)(45)(66) = 83,160. 

d. The numerator comes from part c and the denominator from part b:  83,160
593,775

= .140. 

e. We use the same denominator as in part d.  The number of ways to choose all zinfandel is 
8
6
 
 
 

, with 

similar answers for all merlot and all cabernet. Since these are disjoint events,  P(all same) = P(all zin) + 

P(all merlot) + P(all cab) = 002.
775,593

1162

6
30

6
12

6
10

6
8

==


















+








+









. 

 
 
31.  

a. Use the Fundamental Counting Principle: (9)(5) = 45. 
 
b. By the same reasoning, there are (9)(5)(32) = 1440 such sequences, so such a policy could be carried 

out for 1440 successive nights, or almost 4 years, without repeating exactly the same program. 
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32.  

a. Since there are 5 receivers, 4 CD players, 3 speakers, and 4 turntables, the total number of possible 
selections is (5)(4)(3)(4) = 240. 

 
b. We now only have 1 choice for the receiver and CD player: (1)(1)(3)(4) = 12. 
 
c. Eliminating Sony leaves 4, 3, 3, and 3 choices for the four pieces of equipment, respectively: 

(4)(3)(3)(3) = 108. 
 
d. From a, there are 240 possible configurations. From c, 108 of them involve zero Sony products.  So, 

the number of configurations with at least one Sony product is 240 – 108 = 132. 
 

e. Assuming all 240 arrangements are equally likely, P(at least one Sony) =
132
240

= .55. 

 
Next, P(exactly one component Sony) = P(only the receiver is Sony) + P(only the CD player is Sony) 
+ P(only the turntable is Sony). Counting from the available options gives  

P(exactly one component Sony) = 
(1)(3)(3)(3) (4)(1)(3)(3) (4)(3)(3)(1) 99 .413

240 240
+ +

= = . 

 
 

33.  
a. Since there are 15 players and 9 positions, and order matters in a line-up (catcher, pitcher, shortstop, 

etc. are different positions), the number of possibilities is P9,15 = (15)(14)…(7) or 15!/(15–9)! = 
1,816,214,440. 

 
b. For each of the starting line-ups in part (a), there are 9! possible batting orders. So, multiply the answer 

from (a) by 9! to get (1,816,214,440)(362,880) = 659,067,881,472,000. 
 
c. Order still matters: There are P3,5 = 60 ways to choose three left-handers for the outfield and P6,10 = 

151,200 ways to choose six right-handers for the other positions. The total number of possibilities is  = 
(60)(151,200) = 9,072,000. 

 
 
34.  

a. Since order doesn’t matter, the number of ways to randomly select 5 keyboards from the 25 available 

is 
25
5

 
 
 

= 53,130. 

 
b. Sample in two stages. First, there are 6 keyboards with an electrical defect, so the number of ways to 

select exactly 2 of them is 
6
2
 
 
 

. Next, the remaining 5 – 2 = 3 keyboards in the sample must have 

mechanical defects; as there are 19 such keyboards, the number of ways to randomly select 3 is 
19
3

 
 
 

. 

So, the number of ways to achieve both of these in the sample of 5 is the product of these two counting 

numbers: 
6
2
 
 
 

19
3

 
 
 

= (15)(969) = 14,535.  
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c. Following the analogy from b, the number of samples with exactly 4 mechanical defects is 
19 6
4 1

  
  
  

, 

and the number with exactly 5 mechanical defects is 
19
5 0

6  
  
  

. So, the number of samples with at least 

4 mechanical defects is 
19 6
4 1

  
  
  

 + 
19
5 0

6  
  
  

, and the probability of this event is 

19 6 19 6
4 1 5 0

25
5

     
+     

     
 
 
 

= 34,884
53,130

= .657. (The denominator comes from a.) 

 
35.  

a. There are 
10
5

 
 
 

= 252 ways to select 5 workers from the day shift. In other words, of all the ways to 

select 5 workers from among the 24 available, 252 such selections result in 5 day-shift workers.  Since 

the grand total number of possible selections is 
24
5

 
 
 

 = 42504, the probability of randomly selecting 5 

day-shift workers (and, hence, no swing or graveyard workers) is 252/42504 = .00593. 
 

 

b. Similar to a, there are 
8
5
 
 
 

 = 56 ways to select 5 swing-shift workers and 
6
5
 
 
 

 = 6 ways to select 5 

graveyard-shift workers. So, there are 252 + 56 + 6 = 314 ways to pick 5 workers from the same shift. 
The probability of this randomly occurring is 314/42504 = .00739.    

 
c. P(at least two shifts represented) = 1 – P(all from same shift) = 1 – .00739 = .99261. 
       
 
d. There are several ways to approach this question. For example, let A1 = “day shift is unrepresented,”  

A2 = “swing shift is unrepresented,” and A3 = “graveyard shift is unrepresented.”  Then we want      
P(A1 ∪ A2 ∪ A3). 

N(A1) = N(day shift unrepresented) = N(all from swing/graveyard) =
8 6

5
 
 
 

+
 = 2002,  

since there are 8 + 6 = 14 total employees in the swing and graveyard shifts. Similarly,  

N(A2) = 
10 6

5
 + 
 
 

 = 4368 and N(A3) = 
10 8

5
 + 
 
 

 = 8568. Next, N(A1 ∩ A2) = N(all from graveyard) = 6 

from b. Similarly, N(A1 ∩ A3) = 56 and N(A2 ∩ A3) = 252. Finally, N(A1 ∩ A2 ∩ A3) = 0, since at least 
one shift must be represented. Now, apply the addition rule for 3 events: 

P(A1 ∪ A2 ∪ A3) =
2002 4368 8568 6 56 252 0

4250
14624
425044

+ + − − − +
=  = .3441. 

 

36. There are 







2
5

= 10 possible ways to select the positions for B’s votes:  BBAAA, BABAA, BAABA, BAAAB, 

ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.  Only the last two have A ahead of B throughout 
the vote count.  Since the outcomes are equally likely, the desired probability is 2/10 = .20. 
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37.  

a. By the Fundamental Counting Principle, with n1 = 3, n2 = 4, and n3 = 5, there are (3)(4)(5) = 60 runs. 
 
b. With n1 = 1 (just one temperature), n2 = 2, and n3 = 5, there are (1)(2)(5) = 10 such runs. 

 
c. For each of the 5 specific catalysts, there are (3)(4) = 12 pairings of temperature and pressure. Imagine 

we separate the 60 possible runs into those 5 sets of 12. The number of ways to select exactly one run 

from each of these 5 sets of 12 is 
512

1
 
 
 

= 125. Since there are 







5
60

ways to select the 5 runs overall, 

the desired probability is 
5

5/ 1
12 60 60

/
1 5 5

2     
=     

     
= .0456. 

 
38.  

a. A sonnet has 14 lines, each of which may come from any of the 10 pages. Order matters, and we’re 
sampling with replacement, so the number of possibilities is 10 × 10 × … × 10 = 1014. 
 

b. Similarly, the number of sonnets you could create avoiding the first and last pages (so, only using lines 
from the middle 8 sonnets) is 814. Thus, the probability that a randomly-created sonnet would not use 
any lines from the first or last page is 814/1014 = .814 = .044. 
 

39. In a-c, the size of the sample space is N = 
5 6 4 15

3 3
   

= 
 

+



+



= 455. 

a. There are four 23W bulbs available and 5+6 = 11 non-23W bulbs available. The number of ways to 

select exactly two of the former (and, thus, exactly one of the latter) is 
4 11
2 1
  
  
  

 = 6(11) = 66. Hence, 

the probability is 66/455 = .145. 
 

b. The number of ways to select three 13W bulbs is 
5
3
 
 
 

 = 10. Similarly, there are 
6
3
 
 
 

 = 20 ways to 

select three 18W bulbs and 
4
3
 
 
 

= 4 ways to select three 23W bulbs. Put together, there are 10 + 20 + 4 

= 34 ways to select three bulbs of the same wattage, and so the probability is 34/455 = .075. 
 
 

c. The number of ways to obtain one of each type is 
5 6 4
1 1 1
   
   
   

 = (5)(6)(4) = 120, and so the probability 

is 120/455 = .264. 
 

d. Rather than consider many different options (choose 1, choose 2, etc.), re-frame the problem this way: 
at least 6 draws are required to get a 23W bulb iff a random sample of five bulbs fails to produce a 
23W bulb. Since there are 11 non-23W bulbs, the chance of getting no 23W bulbs in a sample of size 5 

is 
11 15

/
5 5

   
   
   

 = 462/3003 = .154. 
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40.  

a. If the A’s were distinguishable from one another, and similarly for the B’s, C’s and D’s, then there 
would be 12! possible chain molecules.  Six of these are: 

A1A2A3B2C3C1D3C2D1D2B3B1  A1A3A2B2C3C1D3C2D1D2B3B1 
A2A1A3B2C3C1D3C2D1D2B3B1  A2A3A1B2C3C1D3C2D1D2B3B1 
A3A1A2B2C3C1D3C2D1D2B3B1  A3A2A1B2C3C1D3C2D1D2B3B1 

These 6 (=3!) differ only with respect to ordering of the 3 A’s.  In general, groups of 6 chain molecules 
can be created such that within each group only the ordering of the A’s is different.  When the A 
subscripts are suppressed, each group of 6 “collapses” into a single molecule (B’s, C’s and D’s are still 
distinguishable).   
At this point there are (12!/3!) different molecules.  Now suppressing subscripts on the B’s, C’s, and 

D’s in turn gives 4

12 3!
(

6 0
3!)

9,60=  chain molecules. 

 
b. Think of the group of 3 A’s as a single entity, and similarly for the B’s, C’s, and D’s.  Then there are 4! 

= 24 ways to order these triplets, and thus 24 molecules in which the A’s are contiguous, the B’s, C’s, 

and D’s also.  The desired probability is 24 .00006494
369,600

= . 

 
41.  

a. (10)(10)(10)(10) = 104 = 10,000.  These are the strings 0000 through 9999. 
 

b. Count the number of prohibited sequences. There are (i) 10 with all digits identical (0000, 1111, …, 
9999); (ii) 14 with sequential digits (0123, 1234, 2345, 3456, 4567, 5678, 6789, and 7890, plus these 
same seven descending); (iii) 100 beginning with 19 (1900 through 1999).  That’s a total of 10 + 14 + 
100 = 124 impermissible sequences, so there are a total of 10,000 – 124 = 9876 permissible sequences. 

The chance of randomly selecting one is just 9876
10,000

= .9876. 

 
c. All PINs of the form 8xx1 are legitimate, so there are (10)(10) = 100 such PINs. With someone 

randomly selecting 3 such PINs, the chance of guessing the correct sequence is 3/100 = .03. 
 

d. Of all the PINs of the form 1xx1, eleven is prohibited: 1111, and the ten of the form 19x1. That leaves 
89 possibilities, so the chances of correctly guessing the PIN in 3 tries is 3/89 = .0337. 
 

42.  

a. If Player X sits out, the number of possible teams is 
3 4 4
1 2 2
   
   
   

= 108. If Player X plays guard, we 

need one more guard, and the number of possible teams is
3 4 4
1 21
   
   
   

= 72. Finally, if Player X plays 

forward, we need one more forward, and the number of possible teams is 
3 4 4
1 2 1
   
   
   

= 72. So, the 

total possible number of teams from this group of 12 players is 108 + 72 + 72 = 252. 
 

b. Using the idea in a, consider all possible scenarios. If Players X and Y both sit out, the number of 

possible teams is 
3 5 5
1 2 2
   
   
   

= 300. If Player X plays while Player Y sits out, the number of possible 
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teams is 
3 5 5
1 1 2
   
   
   

+
3 5 5
1 2 1
   
   
   

= 150 + 150 = 300. Similarly, there are 300 teams with Player X 

benched and Player Y in. Finally, there are three cases when X and Y both play: they’re both guards, 
they’re both forwards, or they split duties. The number of ways to select the rest of the team under 

these scenarios is 
3 5 5
1 0 2
   
   
   

+ 
3 5 5
1 2 0
   
   
   

 + 
3 5 5
1 1 1
   
   
   

= 30 + 30 + 75 = 135.  

 

Since there are 
15
5

 
 
 

= 3003 ways to randomly select 5 players from a 15-person roster, the probability 

of randomly selecting a legitimate team is
300 300 135

3003
+ +

=
735

3003
= .245. 

 

43. There are 
52
5

 
 
 

= 2,598,960 five-card hands. The number of 10-high straights is (4)(4)(4)(4)(4) = 45 = 1024 

(any of four 6s, any of four 7s, etc.). So, P(10 high straight) = 1024 .000394
2,598,960

= . Next, there ten “types 

of straight: A2345, 23456, …, 910JQK, 10JQKA. So, P(straight) = 102410 .00394
2,598,960

× = . Finally, there 

are only 40 straight flushes: each of the ten sequences above in each of the 4 suits makes (10)(4) = 40. So, 

P(straight flush) = 40 .00001539
2,598,960

= . 

 

44. 







−

=
−

=
−

=







kn

n
kkn

n
knk

n
k
n

!)!(
!

)!(!
!  

 
The number of subsets of size k equals the number of subsets of size n – k, because to each subset of size k 
there corresponds exactly one subset of size n – k: the n – k objects not in the subset of size k. The 
combinations formula counts the number of ways to split n objects into two subsets: one of size k, and one 
of size n – k. 
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Section 2.4 
 
45.  

a. P(A) =  .106 + .141 + .200 = .447, P(C) =.215 + .200 + .065 + .020 = .500, and P(A ∩ C) = .200. 
 

b. P(A|C) = 400.
500.
200.

)(
)(

==
∩
CP

CAP .  If we know that the individual came from ethnic group 3, the 

probability that he has Type A blood is .40. P(C|A) = ( )
( )

P A C
P A
∩

 
=

.200

.447
= .447. If a person has Type A 

blood, the probability that he is from ethnic group 3 is .447. 
 
c. Define D = “ethnic group 1 selected.”   We are asked for P(D|B′). From the table, P(D∩B′) = .082 + 

.106 + .004 = .192 and P(B′) = 1 – P(B) = 1 – [.008 + .018 + .065] = .909. So, the desired probability is 

P(D|B′) = 211.
909.
192.

)(
)(

==
′
′∩

BP
BDP .   

 
46. Let A be that the individual is more than 6 feet tall.  Let B be that the individual is a professional basketball 

player. Then  P(A|B) = the probability of the individual being more than 6 feet tall, knowing that the 
individual is a professional basketball player, while P(B|A) = the probability of the individual being a 
professional basketball player, knowing that the individual is more than 6 feet tall.   P(A|B) will be larger. 
Most professional basketball players are tall, so the probability of an individual in that reduced sample 
space being more than 6 feet tall is very large.  On the other hand, the number of individuals that are pro 
basketball players is small in relation to the number of males more than 6 feet tall. 

 
47.  

a. Apply the addition rule for three events: P(A ∪ B ∪ C) = .6 + .4 + .2 – .3 – .15 – .1 + .08 = .73. 
 
b. P(A ∩ B ∩ C′) = P(A ∩ B) – P(A ∩ B ∩ C) = .3 – .08 = .22. 
 

c. P(B|A) = ( ) .3 .50
( ) .6

P A B
P A
∩

= = and P(A|B) = ( ) .3 .75
( ) .4

P A B
P B
∩

= = . Half of students with Visa cards also 

have a MasterCard, while three-quarters of students with a MasterCard also have a Visa card. 
 

d. P(A ∩ B | C) = ([ ] ) ( ) .08
( ) ( ) .2

P A B P A B
P C P C

C C∩ ∩
= =

∩ ∩ = .40. 

e. P(A ∪ B | C) = ([ ] ) ([ [ )
( ) ( )

] ]P A B P A B
P C P C

C C C∪ ∩ ∩ ∪ ∩
= . Use a distributive law: 

= ( ) ([
)

) ( ])
(

] [P C P CA B P A
P C

C B C∩ + ∩ ∩ ∩ ∩− = ( ) (
( )

) ( )CP A B PP C CA
P

B
C

−∩ + ∩ ∩ ∩  = 

.15 .1 .08
.2

+ −  = .85. 
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48.  

a. 2 1
2 1

1

( ) .06( | )
( ) .12

P A A
A

A
P

P A ∩
= = = .50. The numerator comes from Exercise 26. 

b. 1 2 3 1 1 2 3
1 2 3 1

1 1

) ) .01| ([ ])
( ) ( ) . 2

(
1

(P A PA A A A AA A A
P

AP A
A P A

∩ ∩ ∩ ∩ ∩
∩ ∩ = = = = .0833. The numerator 

simplifies because 1 2 3A A A∩ ∩ is a subset of A1, so their intersection is just the smaller event. 
 
c. For this example, you definitely need a Venn diagram. The seven pieces of the partition inside the 

three circles have probabilities .04, .05, .00, .02, .01, .01, and .01.  Those add to .14 (so the chance of 
no defects is .86).  
Let E = “exactly one defect.” From the Venn diagram, P(E) = .04 + .00 + .01 = .05. From the addition 
above, P(at least one defect) = 1 2 3( )AP A A∪ ∪ = .14. Finally, the answer to the question is 

1 2 3
1 2 3

1 2 3 1 2 3

[ ) ) .05)
) ) .14

( ] (( |
( (

P E A P EP E A
P A P A

A AA A
A A A A

∩ ∪ ∪
∪ ∪ = = =

∪ ∪ ∪ ∪
= .3571. The numerator 

simplifies because E is a subset of 1 2 3A A A∪ ∪ . 
 

d. 3 1 2
3 1 2

1 2

[ ) .05)
) .0

(
6

( ]|
(

AP A AP A A
P A

A
A

∩ ∩
=

∩
′

′ ∩ = = .8333. The numerator is Exercise 26(c), while the 

denominator is Exercise 26(b). 
 
49.  

a. P(small cup) = .14 + .20 = .34. P(decaf) = .20 + .10 + .10 = .40. 
 

b. P(decaf | small) = decaf )(small .20
(small) .34

P
P

=
∩ = .588. 58.8% of all people who purchase a small cup of 

coffee choose decaf. 

c. P(small | decaf) = decaf )(small .20
(decaf ) .40

P
P

=
∩ = .50. 50% of all people who purchase decaf coffee choose 

the small size. 
 

50.  
a. P(M ∩ LS ∩ PR) = .05, directly from the table of probabilities. 
 
b. P(M ∩ Pr) = P(M ∩ LS ∩ PR) + P(M ∩ SS ∩ PR) = .05 + .07 = .12. 
 
c. P(SS) = sum of 9 probabilities in the SS table = .56. P(LS) = 1 – .56 = .44. 
 
d. From the two tables, P(M) = .08 + .07 + .12 + .10 + .05 + .07 = .49. P(Pr) = .02 + .07 + .07 + .02 + .05 

+ .02 = .25. 

e. P(M|SS ∩ Pl) = ( ) .08 .533
( ) .04 .08 .03

P
P
∩

= =
+

∩
∩ +

M SS Pl
SS Pl

. 

f. P(SS|M ∩ Pl) = ( ) .08 .444
( ) .08 .10

P
P

∩ ∩
= =

∩ +
SS M Pl

M Pl
. P(LS|M ∩ Pl) = 1 – P(SS|M ∩ Pl) = 1 – .444 = 

.556. 
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51.  

a. Let A = child has a food allergy, and R = child has a history of severe reaction. We are told that P(A) = 
.08 and P(R | A) = .39. By the multiplication rule, P(A ∩ R) = P(A) × P(R | A) = (.08)(.39) = .0312. 
 

b. Let M = the child is allergic to multiple foods. We are told that P(M | A) = .30, and the goal is to find 
P(M).  But notice that M is actually a subset of A: you can’t have multiple food allergies without 
having at least one such allergy! So, apply the multiplication rule again: 
P(M) = P(M ∩ A) = P(A) × P(M | A) = (.08)(.30) = .024. 

 
52. We know that P(A1 ∪ A2) = .07 and P(A1 ∩ A2) = .01, and that P(A1) = P(A2) because the pumps are 

identical. There are two solution methods. The first doesn’t require explicit reference to q or r: Let A1 be 
the event that #1 fails and A2 be the event that #2 fails.   
Apply the addition rule: P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) ⇒ .07 = 2P(A1)  – .01 ⇒ P(A1) = .04. 
 
Otherwise, we assume that P(A1) = P(A2) = q and that P(A1 | A2) = P(A2 | A1) = r (the goal is to find q). 
Proceed as follows:  .01 = P(A1 ∩ A2) = P(A1) P(A2 | A1) = qr and .07 = P(A1 ∪ A2) = 

1 2 1 2 1 2) (( )( )P A P AA A P A A′∩ + ∩ + ∩′  = .01 + q(1 – r) + q(1 – r) ⇒ q(1 – r) = .03. 
These two equations give 2q – .01 = .07, from which q = .04 (and r = .25). 

 

53. P(B|A) = 
)(
)(

)(
)(

AP
BP

AP
BAP

=
∩   (since B is contained in A, A ∩ B = B) 

= 0833.
60.
05.

=
 

 
54.  

a. P(A2 | A1) = 50.
22.
11.

)(
)(

1

21 ==
∩
AP

AAP
. If the firm is awarded project 1, there is a 50% chance they will 

also be awarded project 2. 
 

b. P(A2 ∩ A3 | A1) = 0455.
22.
01.

)(
)(

1

321 ==
∩∩

AP
AAAP

. If the firm is awarded project 1, there is a 4.55% 

chance they will also be awarded projects 2 and 3. 
 

c. 
)(

)]()[(
)(

)]([
)|(

1

3121

1

321
132 AP

AAAAP
AP

AAAP
AAAP

∩∪∩
=

∪∩
=∪  

682.
22.
15.

)(
)()()(

1

3213121 ==
∩∩−∩+∩

=
AP

AAAPAAPAAP
. If the firm is awarded project 1, there is 

a 68.2% chance they will also be awarded at least one of the other two projects. 
 

d. 0189.
53.
01.

)(
)(

)|(
321

321
321321 ==

∪∪
∩∩

=∪∪∩∩
AAAP
AAAP

AAAAAAP . If the firm is awarded at least one 

of the projects, there is a 1.89% chance they will be awarded all three projects. 
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55. Let A = {carries Lyme disease} and B = {carries HGE}. We are told P(A) = .16, P(B) = .10, and P(A ∩ B | 

A ∪ B) = .10. From this last statement and the fact that A∩B is contained in A∪B,  

.10 = ( )
( )

P A B
P A B

∩
∪

⇒ P(A ∩ B) = .10P(A ∪ B) = .10[P(A) + P(B) – P(A ∩ B)] = .10[.10 + .16 – P(A ∩ B)] ⇒ 

1.1P(A ∩ B) = .026 ⇒ P(A ∩ B) = .02364. 

Finally, the desired probability is P(A | B) = ( ) .02364
( ) .10

P A B
P B
∩

= = .2364. 

 
 

56. 1
)(
)(

)(
)()(

)(
)(

)(
)()|()|( ==

∩′+∩
=

∩′
+

∩
=′+

BP
BP

BP
BAPBAP

BP
BAP

BP
BAPBAPBAP  

 
 
57. P(B | A) > P(B) iff P(B | A) + P(B′ | A) > P(B) + P(B′|A) iff 1 > P(B) + P(B′|A) by Exercise 56 (with the 

letters switched). This holds iff 1 – P(B) > P(B′ | A) iff P(B′) > P(B′ | A), QED. 
 
 

58. 
)(

)]()[(
)(

))[()|(
CP

CBCAP
CP

CBAPCBAP ∩∪∩
=

∩∪
=∪

)(
)()()(

CP
CBAPCBPCAP ∩∩−∩+∩

=  = P(A | 

C) + P(B | C) – P(A ∩ B | C) 
 
59. The required probabilities appear in the tree diagram below. 

a. P(A2 ∩ B) = .21. 
 
b. By the law of total probability, P(B) = P(A1 ∩ B) + P(A2 ∩ B) + P(A3 ∩ B) = .455. 
 

c. Using Bayes’ theorem, P(A1 | B) = 264.
455.
12.

)(
)( 1 ==

∩
BP

BAP
; P(A2 | B) = 462.

455.
21.

= ; P(A3 | B) = 1 – 

.264 – .462 = .274. Notice the three probabilities sum to 1. 

1 11.4 .3 .12 ( ) ( ) ( | )P A B P A P B A× = = ∩ =

)(21.6.35. 2 BAP ∩==×

)(125.5.25. 3 BAP ∩==×
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60. The tree diagram below shows the probability for the four disjoint options; e.g., P(the flight is discovered 

and has a locator) = P(discovered)P(locator | discovered) = (.7)(.6) = .42. 

 

a. P(not discovered | has locator) = (not discovered has locator) .03 .067
(has locator) .03 .42

P
P

∩
= =

+
. 

 

b. P(discovered | no locator) = (discovered no locator) .28 .509
(no locator) .55

P
P

∩
= = . 

 
61. The initial (“prior”) probabilities of 0, 1, 2 defectives in the batch are .5, .3, .2. Now, let’s determine the 

probabilities of 0, 1, 2 defectives in the sample based on these three cases. 
• If there are 0 defectives in the batch, clearly there are 0 defectives in the sample.  
P(0 def in sample | 0 def in batch) = 1. 
• If there is 1 defective in the batch, the chance it’s discovered in a sample of 2 equals 2/10 = .2, and the 

probability it isn’t discovered is 8/10 = .8.  
P(0 def in sample | 1 def in batch) = .8, P(1 def in sample | 1 def in batch) = .2. 
• If there are 2 defectives in the batch, the chance both are discovered in a sample of 2 equals 

2 1 .022
10 9

× = ; the chance neither is discovered equals 8 7 .622
10 9

× = ; and the chance exactly 1 is 

discovered equals 1 – (.022 + .622) = .356. 
P(0 def in sample | 2 def in batch) = .622, P(1 def in sample | 2 def in batch) = .356,  
P(2 def in sample | 2 def in batch) = .022. 
 
These calculations are summarized in the tree diagram below. Probabilities at the endpoints are 
intersectional probabilities, e.g. P(2 def in batch ∩ 2 def in sample) = (.2)(.022) = .0044. 
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a. Using the tree diagram and Bayes’ rule, 

P(0 def in batch | 0 def in sample) = 578.
1244.24.5.

5.
=

++
 

P(1 def in batch | 0 def in sample) = 278.
1244.24.5.

24.
=

++
 

P(2 def in batch | 0 def in sample) = 144.
1244.24.5.

1244.
=

++
 

 
b. P(0 def in batch | 1 def in sample) = 0 

P(1 def in batch | 1 def in sample) = 457.
0712.06.

06.
=

+
 

P(2 def in batch | 1 def in sample) = 543.
0712.06.

0712.
=

+
 

 
 
62. Let B = blue cab was involved, G = B′ = green cab was involved, and W = witness claims to have seen a 

blue cab. Before any witness statements, P(B) = .15 and P(G). The witness’ reliability can be coded as 
follows: P(W | B) = .8 (correctly identify blue), P(W′ | G) = .8 (correctly identify green), and by taking 
complements P(W′ | B) = P(W | G) = .2 (the two ways to mis-identify a color at night). 
The goal is to determine P(B | W), the chance a blue cab was involved given that’s what the witness claims 
to have seen. Apply Bayes’ Theorem: 

( ) ( | ) (.15)(.8)( | )
( ) ( | ) ( ) ( | ) (.15)(.8) (.85)(.2)

P B P W BP B W
P B P W B P B P W B

= =
′ ′+ +

 = .4138. 

The “posterior” probability that the cab was really blue is actually less than 50%.  That’s because there are 
so many more green cabs on the street, that it’s more likely the witness mis-identified a green cab (.85 × .2) 
than that the witness correctly identified a blue cab (.15 × .8). 
 

63.  
a.  

 
b. From the top path of the tree diagram, P(A ∩ B ∩ C) = (.75)(.9)(.8) = .54. 
 
c. Event B ∩ C occurs twice on the diagram: P(B ∩ C) = P(A ∩ B ∩ C) + P(A′ ∩ B ∩ C) = .54 + 

(.25)(.8)(.7) = .68. 
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d. P(C) = P(A ∩ B ∩ C) + P(A′ ∩ B ∩ C) + P(A ∩ B′ ∩ C) + P(A′ ∩ B′ ∩ C) = .54 + .045 + .14 + .015 = 
.74. 

e. Rewrite the conditional probability first: P(A | B ∩ C) = 7941.
68.
54.

)(
)(

==
∩
∩∩
CBP

CBAP . 

 
 

64. A tree diagram can help. We know that P(short) = .6, P(medium) = .3, P(long) = .1; also, P(Word | short) = 
.8, P(Word | medium) = .5, P(Word | long) = .3. 

 
a. Use the law of total probability: P(Word) = (.6)(.8) + (.3)(.5) + (.1)(.3) = .66. 
 

b. P(small | Word) = (small Word) (.6)(.8)
(Word) .66

P
P

∩
= = .727. Similarly, P(medium | Word) = (.3)(.5)

.66
= .227, 

and P(long | Word) = .045. (These sum to .999 due to rounding error.) 
 

65. A tree diagram can help. We know that P(day) = .2, P(1-night) = .5, P(2-night) = .3; also, P(purchase | day) 
= .1, P(purchase | 1-night) = .3, and P(purchase | 2-night) = .2. 
 

Apply Bayes’ rule: e.g., P(day | purchase) =  (day purchase) (.2)(.1)
(purchase) (.2)(.1) (.5)(.3) (.3)(.2)

P
P

∩
=

+ +
  = .02

.23
= .087. 

Similarly, P(1-night | purchase) = (.5)(.3)
.23

= .652 and P(2-night | purchase) = .261. 

 
66. Let E, C, and L be the events associated with e-mail, cell phones, and laptops, respectively. We are told 

P(E) = 40%, P(C) = 30%, P(L) = 25%, P(E∩C) = 23%, P(E′∩C′∩L′) = 51%,   P(E | L) = 88%, and P(L | 
C) = 70%. 

 
a. P(C | E) = P(E ∩ C)/P(E) = .23/.40 = .575. 
 
b. Use Bayes’ rule: P(C | L) = P(C ∩ L)/P(L) = P(C)P(L | C)/P(L) = .30(.70)/.25 = .84. 
 
c. P(C|E ∩ L) = P(C ∩ E ∩ L)/P(E ∩ L).  

For the denominator, P(E ∩ L) = P(L)P(E | L) = (.25)(.88) = .22.  
For the numerator, use P(E∪C∪L) = 1 – P(E′∩C′∩L′) = 1 – .51 = .49 and write 
P(E∪C∪L) = P(C) + P(E) + P(L) – P(E∩C) – P(C∩L) – P(E∩L) + P(C∩E∩L) 
⇒ .49 = .30 + .40 + .25 – .23 – .30(.70) – .22 + P(C∩E∩L) ⇒ P(C∩E∩L) = .20. 
So, finally, P(C|E ∩ L) = .20/.22 = .9091. 
 

 
67. Let T denote the event that a randomly selected person is, in fact, a terrorist. Apply Bayes’ theorem, using 

P(T) = 1,000/300,000,000 = .0000033: 

P(T | +) = ( ) ( | )
( ) ( | ) ( ) ( | )

P T P T
P T P T P T P T

+
′ ′+ + +

= 
)999.1)(0000033.1()99)(.0000033(.

)99)(.0000033(.
−−+

= .003289. That is to 

say, roughly 0.3% of all people “flagged” as terrorists would be actual terrorists in this scenario. 
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68. Let’s see how we can implement the hint. If she’s flying airline #1, the chance of 2 late flights is 
(30%)(10%) = 3%; the two flights being “unaffected” by each other means we can multiply their 
probabilities. Similarly, the chance of 0 late flights on airline #1 is (70%)(90%) = 63%. Since percents add 
to 100%, the chance of exactly 1 late flight on airline #1 is 100% – (3% + 63%) = 34%. A similar approach 
works for the other two airlines: the probability of exactly 1 late flight on airline #2 is 35%, and the chance 
of exactly 1 late flight on airline #3 is 45%. 
 
The initial (“prior”) probabilities for the three airlines are P(A1) = 50%, P(A2) = 30%, and P(A3) = 20%. 
Given that she had exactly 1 late flight (call that event B), the conditional (“posterior”) probabilities of the 
three airlines can be calculated using Bayes’ Rule:  
 

2 2 3

1 1
1

1 1 3

( ) ( | ) (.5)(.34)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) (.5)(.34) (.3)(.35) (.2)(.45)

( P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ + + +

= .170
.365

= 

.4657; 
2 2

2
2 31 321

( ) ( | ) (.3)(.35)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5

(
6

P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ +

= .2877; and 

3 3
3

2 31 321

( ) ( | ) (.2)(.45)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5

(
6

P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ +

= .2466. 

Notice that, except for rounding error, these three posterior probabilities add to 1. 
 
The tree diagram below shows these probabilities. 
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69. The tree diagram below summarizes the information in the exercise (plus the previous information in 

Exercise 59). Probabilities for the branches corresponding to paying with credit are indicated at the far 
right. (“extra” = “plus”) 

a. P(plus ∩ fill ∩ credit) = (.35)(.6)(.6) = .1260. 
 
b. P(premium ∩ no fill ∩ credit) = (.25)(.5)(.4) = .05. 
 
c. From the tree diagram, P(premium ∩ credit) = .0625 + .0500 = .1125. 
 
d. From the tree diagram, P(fill ∩ credit) = .0840 + .1260 + .0625 = .2725. 
 
e. P(credit) = .0840 + .1400 + .1260 + .0700 + .0625 + .0500 = .5325. 
 

f. P(premium | credit) = (premium credit) .1125 .2113
(credit) .5325

P
P

∩
= = . 
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Section 2.5 
 
70. Using the definition, two events A and B are independent if P(A | B) = P(A); 

P(A | B) = .6125; P(A) = .50; .6125 ≠ .50, so A and B are not independent. 
Using the multiplication rule, the events are independent if P(A ∩ B)=P(A)P(B); 
P(A ∩ B) = .25; P(A)P(B) = (.5)(.4) = .2.  .25 ≠ .2, so A and B are not independent. 

 
71.  

a. Since the events are independent, then A′ and B′ are independent, too. (See the paragraph below 
Equation 2.7.) Thus, P(B′|A′) = P(B′) = 1 – .7 = .3. 

 
b. Using the addition rule, P(A ∪ B) = P(A) + P(B) – P(A ∩ B) =.4 + .7 – (.4)(.7) = .82. Since A and B are 

independent, we are permitted to write P(A ∩ B) = P(A)P(B) = (.4)(.7). 
 

c. P(AB′ | A ∪ B) = ( ( )) ( ( ) ( ) (.4)(1 .7) .12 .146
( ) ( )

)
( ) .8 .822

P A PP AB A B P AB
P A B

B
P AP A B B

′ ′∩ ∪
= = = = =

∪
′

∪∪
− . 

 
 
72. P(A1 ∩ A2) = .11 while P(A1)P(A2) = .055, so A1 and A2 are not independent. 

P(A1 ∩ A3) = .05 while P(A1)P(A3) = .0616, so A1 and A3 are not independent. 
P(A2 ∩ A3) = .07 and P(A2)P(A3) = .07, so A2 and A3 are independent. 

 
 
73. From a Venn diagram, P(B) = P(A′ ∩ B) + P(A ∩ B) = P(B) ⇒ P(A′ ∩ B) = P(B) –  P(A ∩ B). If A and B 

are independent, then P(A′ ∩ B) = P(B) – P(A)P(B) = [1 – P(A)]P(B) = P(A′)P(B). Thus, A′ and B are 
independent. 

Alternatively, ( ) ( ) ( )( | )
( ) ( )

P A B P B P A BP A B
P B P B
′∩ − ∩′ = = = ( ) ( ) ( )

( )
P B P A P B

P B
−

 
= 1 – P(A) = P(A′). 

 
 
74. Using subscripts to differentiate between the selected individuals,  

P(O1 ∩ O2) = P(O1)P(O2) = (.45)(.45) = .2025. 
P(two individuals match) = P(A1 ∩ A2) + P(B1 ∩ B2) + P(AB1 ∩ AB2) + P(O1∩O2) =  
.402 + .112 + .042 + .452 = .3762. 

 
75. Let event E be the event that an error was signaled incorrectly.   

We want P(at least one signaled incorrectly) = P(E1 ∪ … ∪ E10). To use independence, we need 
intersections, so apply deMorgan’s law: = P(E1 ∪ …∪ E10) = 1 – 1 10 )(P EE ′∩ ∩′

 . P(E′) = 1 – .05 = .95, 
so for 10 independent points, 1 10 )(P EE ′∩ ∩′

 = (.95)…(.95) = (.95)10. Finally, P(E1 ∪ E2  ∪ …∪ E10) =    
1 – (.95)10 = .401.   Similarly, for 25 points, the desired probability is 1 – (P(E′))25 = 1 – (.95)25 = .723. 
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76. Follow the same logic as in Exercise 75: If the probability of an event is p, and there are n independent 
“trials,” the chance this event never occurs is (1 – p)n, while the chance of at least one occurrence is            
1 – (1 – p)n. With p = 1/9,000,000,000 and n = 1,000,000,000, this calculates to 1 – .9048 = .0952.   
 
Note: For extremely small values of p, (1 – p)n ≈ 1 – np. So, the probability of at least one occurrence under 
these assumptions is roughly 1 – (1 – np) = np.  Here, that would equal 1/9. 

 
77. Let p denote the probability that a rivet is defective. 
 

a. .15 = P(seam needs reworking) = 1 – P(seam doesn’t need reworking) = 
1 – P(no rivets are defective) = 1 – P(1st isn’t def ∩ … ∩ 25th isn’t def) = 
1 – (1 – p)…(1 – p) = 1 – (1 – p)25.  
Solve for p: (1 – p)25 = .85 ⇒ 1 – p = (.85)1/25 ⇒ p = 1 – .99352 = .00648.  

 
b. The desired condition is .10 = 1 – (1 – p)25. Again, solve for p: (1 – p)25 = .90 ⇒  

p = 1 – (.90)1/25 = 1 – .99579 = .00421.  
 
 
78. P(at least one opens) = 1 – P(none open) = 1 – (.04)5 = .999999897. 

P(at least one fails to open) = 1 – P(all open) = 1 – (.96)5 = .1846. 
 
 
79. Let A1 = older pump fails, A2 = newer pump fails, and x = P(A1 ∩ A2).  The goal is to find x. From the Venn 

diagram below, P(A1) = .10 + x and P(A2) = .05 + x. Independence implies that x = P(A1 ∩ A2) = P(A1)P(A2) 
= (.10 + x)(.05 + x) .  The resulting quadratic equation, x2 – .85x + .005 = 0, has roots x = .0059 and x = 
.8441.  The latter is impossible, since the probabilities in the Venn diagram would then exceed 1.  
Therefore, x = .0059. 

 
 

.10 .15 x 

A1 A2 
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80. Let Ai denote the event that component #i works (i = 1, 2, 3, 4). Based on the design of the system, the 

event “the system works” is 1 2 3 4) ( )( A A AA ∪ ∪ ∩ . We’ll eventually need 1 2 )(P A A∪ , so work that out 
first: 1 2 1 2 1 2) ( ) ( ) ( ) (.9) (.9) (.9)(.9 .( ) 99A P A P A P A AP A ∪ = + − ∩ = + − = . The third term uses 
independence of events. Also, 3 4( )P A A∩ = (.8)(.8) = .64, again using independence.  

 
Now use the addition rule and independence for the system: 

 
1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

) ( )) ( ) ( ) ) ( ))
( ) ( ) ) ( )

(.99) (.64) (.99)(.6

(( ((

4) .9964
(

A A A P A P A A A A A
P A P A A

P A A P A
A AP P AA A

∪ ∪ ∩ = ∪ + ∩ − ∪ ∩ ∩
= ∪ + ∩ − ∪ × ∩
= + − =

 

(You could also use deMorgan’s law in a couple of places.) 
 
81. Using the hints, let P(Ai) = p, and x = p2. Following the solution provided in the example, 

P(system lifetime exceeds t0) = p2 + p2 – p4 = 2p2 – p4 = 2x – x2.  Now, set this equal to .99:  
2x – x2 = .99 ⇒ x2 – 2x + .99 = 0 ⇒ x = 0.9 or 1.1 ⇒ p = 1.049 or .9487.  Since the value we want is a 
probability and cannot exceed 1, the correct answer is p = .9487. 

 
 
82. A = {(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)} ⇒ P(A) = 6

36
1
6= ; B = {(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)} ⇒   P(B) = 6

1 ; 

and C = {(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)} ⇒ P(C) = 6
1 .    

A∩B = {(3,4)} ⇒ P(A∩B) = 36
1  = P(A)P(B); A∩C = {(3,4)} ⇒ P(A∩C) = 36

1 = P(A)P(C); and B∩C = 

{(3,4)} ⇒ P(B∩C) = 36
1 = P(B)P(C). Therefore, these three events are pairwise independent. 

However, A∩B∩C = {(3,4)} ⇒ P(A∩B∩C) = 36
1 , while P(A)P(B)P(C) =   =

1 1 1 1
6 6 6 216⋅ ⋅ = , so P(A∩B∩C) ≠ 

P(A)P(B)P(C) and these three events are not mutually independent. 
 
 
83. We’ll need to know P(both detect the defect) = 1 – P(at least one doesn’t) = 1 – .2 = .8. 
 

a. P(1st detects ∩ 2nd doesn’t) = P(1st detects) – P(1st does ∩ 2nd does) = .9 – .8 = .1. 
Similarly, P(1st doesn’t ∩ 2nd does) = .1, so P(exactly one does)= .1 + .1= .2. 
 

b. P(neither detects a defect) = 1 – [P(both do) + P(exactly 1 does)] = 1 – [.8+.2] = 0. That is, under this 
model there is a 0% probability neither inspector detects a defect. As a result, P(all 3 escape) = 
(0)(0)(0) = 0. 
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84. We’ll make repeated use of the independence of the Ais and their complements. 
a. 1 2 3 1 2 3) ( ) ( ) ( )( A A P A P AA P AP ∩ ∩ = = (.95)(.98)(.80) = .7448. 

 
b. This is the complement of part a, so the answer is 1 – .7448 = .2552. 
 
c. 1 2 3 1 2 3) ( ) ( ) (( )A A P A P A P AP A ′ ′ ′ ′ ′∩ ∩ =′ = (.05)(.02)(.20) = .0002. 

 
d. 1 2 3 1 2 3) ( ) ( ( )( )A A P A P A PA AP ′ ′∩ ∩ =  = (.05)(.98)(.80) = .0392. 

 
e. 1 2 3 1 2 3 1 2 3] ] ])([ [ [A A AP A A AA A A′ ′∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩′ = (.05)(.98)(.80) + (.95)(.02)(.80) + (.95)(.98)(.20) 

= .07302. 
 
f. This is just a little joke — we’ve all had the experience of electronics dying right after the warranty 

expires!  
 
85.  

a. Let D1 = detection on 1st fixation, D2 = detection on 2nd fixation. 
P(detection in at most 2 fixations) = P(D1) + 1 2( )P D D′∩ ; since the fixations are independent,  

P(D1) + 1 2( )P D D′∩ = P(D1) + 1( )P D′ P(D2) = p + (1 – p)p = p(2 – p). 
 

b. Define D1, D2, … , Dn as in a.  Then P(at most n fixations) = 
P(D1) + 1 2( )P D D′∩ + 1 2 3( )D DP D′∩ ∩′ + … + 1 2 1( )n nP D D DD −′ ′∩ ∩ ∩ ∩′

 =  
p + (1 – p)p + (1 – p)2p + … + (1 – p)n–1p = p[1 + (1 – p) + (1 – p)2 + … + (1 – p)n–1] = 

1 (1 ) 1 (1 )
1 (1 )

·
n

npp p
p

− −
= − −

− −
. 

Alternatively, P(at most n fixations) = 1 – P(at least n+1 fixations are required) = 
1 – P(no detection in 1st n fixations) = 1 – 1 2 )( nD DP D ′ ′∩ ∩ ∩′

 = 1 – (1 – p)n. 
 

c. P(no detection in 3 fixations) = (1 – p)3. 
 

d. P(passes inspection) = P({not flawed} ∪ {flawed and passes}) 
= P(not flawed) + P(flawed and passes) 
= .9 + P(flawed) P(passes | flawed) = .9 + (.1)(1 – p)3. 

 

e. Borrowing from d, P(flawed | passed) = 
3

3

(flawed passed) .1(1 )
(passed) .9 .1(1 )

P p
P p

∩ −
=

+ −
. For p = .5,  

P(flawed | passed) = 
3

3

.1(1 .5) .0137
.9 .1(1 .5)

−
=

+ −
. 
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86.  

a. P(A) = 2,000
10,000

= .2. Using the law of total probability, ( ) ( ) ( | ) ( ) ( | )P B P A P B A P A P B A′ ′= +  = 

1,999 2,000(.2) (.8)
9,999 9,999

+ = .2 exactly. That is, P(B) = P(A) = .2. Finally, use the multiplication rule: 

1,999) ( ) ( | ) (.2)
9,999

( B P A P B AP A∩ = × = = .039984. Events A and B are not independent, since P(B) = 

.2 while 1,999| ) .19992
9 999

(
,

P B A = = , and these are not equal. 

 
b. If A and B were independent, we’d have ) ( ) ( ) (.2)(.2) .0( 4B P A P BP A∩ = × = = . This is very close to 

the answer .039984 from part a. This suggests that, for most practical purposes, we could treat events 
A and B in this example as if they were independent. 

 
c. Repeating the steps in part a, you again get P(A) = P(B) = .2. However, using the multiplication rule, 

2 1) ( ) ( | )
10

(
9

B P A P B AP A∩ = × = × =.0222. This is very different from the value of .04 that we’d get 

if A and B were independent!  
 

The critical difference is that the population size in parts a-b is huge, and so the probability a second 
board is green almost equals .2 (i.e., 1,999/9,999 = .19992 ≈ .2). But in part c, the conditional 
probability of a green board shifts a lot: 2/10 = .2, but 1/9 = .1111. 
 

87.  
a. Use the information provided and the addition rule:  

P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) ⇒ P(A1 ∩ A2) = P(A1) + P(A2) – P(A1 ∪ A2) = .55 + .65 – .80 
= .40. 
 

b. By definition, 2 3
2 3

3

( ) .40( |
( ) .70

) P A AA
P A

P A ∩
== = .5714. If a person likes vehicle #3, there’s a 57.14% 

chance s/he will also like vehicle #2. 
 

c. No. From b, 2 3( )|P A A = .5714 ≠ P(A2) = .65. Therefore, A2 and A3 are not independent. Alternatively, 
P(A2 ∩ A3) = .40 ≠ P(A2)P(A3) = (.65)(.70) = .455. 
 

d. The goal is to find 2 3 1| )( AP A A′∪ , i.e. 2 3 1

1

([ ] )
( )
A AP A

P A
′∪ ∩

′
. The denominator is simply 1 – .55 = .45. 

There are several ways to calculate the numerator; the simplest approach using the information 
provided is to draw a Venn diagram and observe that 2 3 1 1 2 3 1) (([ (] ) )A A P A A PA A AP ′∪ ∩ = ∪ ∪ − = 

.88 – .55 = .33. Hence, 2 3 1| )( AP A A′∪  = .33
.45

= .7333. 
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88. Let D = patient has disease, so P(D) = .05. Let ++ denote the event that the patient gets two independent, 

positive tests. Given the sensitivity and specificity of the test, P(++ | D) = (.98)(.98) = .9604, while           
P(++ | D′) = (1 – .99)(1 – .99) = .0001. (That is, there’s a 1-in-10,000 chance of a healthy person being mis-
diagnosed with the disease twice.) Apply Bayes’ Theorem: 
 

( ) ( | ) (.05)(.9604)( | )
( ) ( | ) ( ) ( | ) (.05)(.9604) (.95)(.0001)

P D P DP D
P D P D P D P D

++
++ = =

′ ′++ + ++ +
 = .9980 

 
 

89. The question asks for P(exactly one tag lost | at most one tag lost) = 1 2 1 2 1 2((( ) ))) | (C C CC CP C′ ′∩ ∪ ∩ ∩ ′ . 
Since the first event is contained in (a subset of) the second event, this equals 

1 2 1 2

1 2

(( )
)(

( )
( )

)C C
C

P C
P

C
C

′∩ ∪ ∩
′∩

′
= 1 2 1 2 1 2 1 2

1 2 1 2

( ( (
1

) ( ) ) ( ) ) ( )
) ( )( 1 ) (

P P CC C P C C P C P CP C
P C P CC P C

′
=

− −
′ ′ ′∩ + ∩ +

∩
by independence = 

2 21
(1 ) (1 ) 2 (1 ) 2

1 1
π π π π π π π

π π π
=

−
−

=
−
+ −

+
− . 
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Supplementary Exercises 
 
90.  

a. 
10
3

 
 
 

= 120. 

 
b. There are 9 other senators from whom to choose the other two subcommittee members, so the answer 

is 1 × 
9
2
 
 
 

= 36. 

 
c. There are 120 possible subcommittees. Among those, the number which would include none of the 5 

most senior senators (i.e., all 3 members are chosen from the 5 most junior senators) is 
5
3
 
 
 

 = 10. 

Hence, the number of subcommittees with at least one senior senator is 120 – 10 = 110, and the chance 
of this randomly occurring is 110/120 = .9167. 
 

d. The number of subcommittees that can form from the 8 “other” senators is 
8
3
 
 
 

 = 56, so the 

probability of this event is 56/120 = .4667. 
 

 
91.  

a. P(line 1) = 500
1500

= .333;   

P(crack) = ( ) ( ) ( ).50 500 .44 400 .40 600 666
1500 1500

+ +
= = .444. 

 
b. This is one of the percentages provided: P(blemish | line 1) = .15. 
 

c. P(surface defect) = ( ) ( ) ( ).10 500 .08 400 .15 600 172
1500 1500

+ +
= ; 

P(line 1 ∩ surface defect) = ( ).10 500 50
1500 1500

= ; 

so, P(line 1 | surface defect) = 50 /1500
172 /

5
1 00 25

0
17

= = .291. 

 
92.  

a. He will have one type of form left if either 4 withdrawals or 4 course substitutions remain. This means 
the first six were either 2 withdrawals and 4 subs or 6 withdrawals and 0 subs; the desired probability 

is 
6 4 6
2 4 6

1

4
0

0
6

     
+     

     
 
 
 

 = 16
210

=.0762. 
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b. He can start with the withdrawal forms or the course substitution forms, allowing two sequences: W-C-

W-C or C-W-C-W. The number of ways the first sequence could arise is (6)(4)(5)(3) = 360, and the 
number of ways the second sequence could arise is (4)(6)(3)(5) = 360, for a total of 720 such 
possibilities. The total number of ways he could select four forms one at a time is P4,10 = (10)(9)(8)(7) 
= 5040. So, the probability of a perfectly alternating sequence is 720/5040 = .143. 

 
93. Apply the addition rule: P(A∪B) = P(A) + P(B) – P(A ∩ B) ⇒ .626 = P(A) + P(B) – .144. Apply 

independence: P(A ∩ B) = P(A)P(B) = .144.  
So, P(A) + P(B) = .770 and P(A)P(B) = .144.    
Let x = P(A) and y = P(B). Using the first equation, y = .77 – x, and substituting this into the second 
equation yields x(.77 –  x) = .144 or x2 – .77x + .144 = 0.  Use the quadratic formula to solve:   

x =
2.77 ( .77) (4)(1)(.144) .77 .13

2(1) 2
± − − ±

=  = .32 or .45. Since x = P(A) is assumed to be the larger 

probability, x = P(A) = .45 and y = P(B) = .32. 
 

 
94. The probability of a bit reversal is .2, so the probability of maintaining a bit is .8. 

a. Using independence, P(all three relays correctly send 1) = (.8)(.8)(.8) = .512. 
 
b. In the accompanying tree diagram, each .2 indicates a bit reversal (and each .8 its opposite). There are 

several paths that maintain the original bit: no reversals or exactly two reversals (e.g., 1 → 1 → 0 → 1, 
which has reversals at relays 2 and 3). The total probability of these options is .512 + (.8)(.2)(.2) + 
(.2)(.8)(.2) + (.2)(.2)(.8) = .512 + 3(.032) = .608. 

 
 

c. Using the answer from b, P(1 sent | 1 received) = 1 received)(1 sent
(1 received)

P
P

∩ = 

(1 received | 1 sent)
(1 received | 1 sent)

(1 sent)
(1 sent) (0 se (1 received n | 0 sen )t) t

P
PP P

P
P+

= (.7)(.608) .4256
(.7)(.608) (.3)(.392) .5432

=
+

= 

.7835. 
In the denominator, P(1 received | 0 sent) = 1 – P(0 received | 0 sent) = 1 – .608, since the answer from 
b also applies to a 0 being relayed as a 0. 
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95.  
a. There are 5! = 120 possible orderings, so P(BCDEF) = 1

120 = .0833. 
 
b. The number of orderings in which F is third equals 4×3×1*×2×1 = 24 (*because F must be here),  so 

P(F is third) = 24
120 = .2.  Or more simply, since the five friends are ordered completely at random, there 

is a ⅕ chance F is specifically in position three. 
 

c. Similarly, P(F last) = 4 3 2 1 1
120

× × × × = .2. 

 

d. P(F hasn’t heard after 10 times) = P(not on #1 ∩ not on #2 ∩ … ∩  not on #10) = 
104 4

5 5
4
5

 × × =  
 

 = 

.1074. 
 
 

96. Palmberg equation: ( / *)( )
1 ( / *)d

c cc
c c

P
β

β=
+

 

a. ( * / *) 1 1( *) .5
1 ( * / *) 1 1 1 1d

c cc
c c

P
β β

β β= = = =
+ + +

. 

 
b. The probability of detecting a crack that is twice the size of the “50-50” size c* equals 

(2 * / *) 2(2 *)
1 (2 * / *) 1 2dP c cc

c c

β β

β β= =
+ +

. When β = 4, 
4

4

2 16(2 *)
1 2 17dP c = =
+

= .9412. 

 
c. Using the answers from a and b, P(exactly one of two detected) = P(first is, second isn’t) + P(first 

isn’t, second is) = (.5)(1 – .9412) + (1 – .5)(.9412) = .5. 
 

d. If c = c*, then Pd(c) = .5 irrespective of β. If c < c*, then c/c* < 1 and Pd(c) → 0
0 1+

= 0 as β → ∞. 

Finally, if c > c* then c/c* > 1 and, from calculus,  Pd(c) → 1 as β → ∞. 
 
97. When three experiments are performed, there are 3 different ways in which detection can occur on exactly 

2 of the experiments: (i) #1 and #2 and not #3; (ii) #1 and not #2 and #3; and (iii) not #1 and #2 and #3.  If 
the impurity is present, the probability of exactly 2 detections in three (independent) experiments is 
(.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384.  If the impurity is absent, the analogous probability is 
3(.1)(.1)(.9) = .027.  Thus, applying Bayes’ theorem, P(impurity is present | detected in exactly 2 out of 3) 

= (detected in exactly 2 present)
(detected in exactly 2)

P
P

∩ = (.384)(.4)
(.384)(.4) (.027)(.6)+

= .905. 
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98. Our goal is to find P(A ∪ B ∪ C ∪ D ∪ E). We’ll need all of the following probabilities: 

P(A) = P(Allison gets her calculator back) = 1/5. This is intuitively obvious; you can also see it by writing 
out the 5! = 120 orderings in which the friends could get calculators (ABCDE, ABCED, …, EDCBA) and 
observe that 24 of the 120 have A in the first position. So, P(A) = 24/120 = 1/5. By the same reasoning, 
P(B) = P(C) = P(D) = P(E) = 1/5. 
P(A ∩ B) = P(Allison and Beth get their calculators back) = 1/20. This can be computed by considering all 
120 orderings and noticing that six — those of the form ABxyz — have A and B in the correct positions. 
Or, you can use the multiplication rule: P(A ∩ B) = P(A)P(B | A) = (1/5)(1/4) = 1/20.  All other pairwise 
intersection probabilities are also 1/20. 
P(A ∩ B ∩ C) = P(Allison and Beth and Carol get their calculators back) = 1/60, since this can only occur 
if two ways — ABCDE and ABCED — and 2/120 = 1/60. So, all three-wise intersections have probability 
1/60. 
P(A ∩ B ∩ C ∩ D) = 1/120, since this can only occur if all 5 girls get their own calculators back. In fact, all 
four-wise intersections have probability 1/120, as does P(A ∩ B ∩ C ∩ D ∩ E) — they’re the same event. 
 
Finally, put all the parts together, using a general inclusion-exclusion rule for unions: 

) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )
1 1 1 1 1 1 1 1 1 765 10 10

(

5 1 .633
5 20 60 120 2 6120 120 24 1 02

B C D E P A P B P C P D P E
P A B P A C P D E
P A B C P C D E
P A B C D P B C D E
P A B C D E

P A∪ ∪ ∪ ∪ = + + + +
− ∩ − ∩ − − ∩
+ ∩ ∩ + + ∩ ∩
− ∩ ∩ ∩ − − ∩ ∩ ∩
+ ∩ ∩ ∩ ∩

= ⋅ − ⋅ + ⋅ − ⋅ + = − + − + = =







  

 

The final answer has the form 1 1 1 1 1 1 1 1
2 6 24 1! 2! 3! 4! 5!

1 + − = − + − +−  . Generalizing to n friends, the 

probability at least one will get her own calculator back is 11 1 1 1 1( 1)
1! 2! 3! 4! !

n

n
−− + − + + − . 

 
When n is large, we can relate this to the power series for ex evaluated at x = –1: 

0

2 3

1

1

1! 2! 3!
1 1 1 1 1 11
1! 2! 3! 1! 2! 3!

1 1 11
1! 2!

1
!

1

3!

x

k

kx x x

e

e
k

x

e

∞

=

−

−

+ + + ⇒

 + − + = − − + − ⇒  

− =

= =

− +

+

= −

−

∑ 

 



  

So, for large n, P(at least one friend gets her own calculator back) ≈ 1 – e–1 = .632. Contrary to intuition, 
the chance of this event does not converge to 1 (because “someone is bound to get hers back”) or to 0 
(because “there are just too many possible arrangements”). Rather, in a large group, there’s about a 63.2% 
chance someone will get her own item back (a match), and about a 36.8% chance that nobody will get her 
own item back (no match).  
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99. Refer to the tree diagram below. 

 
a. P(pass inspection) = P(pass initially ∪ passes after recrimping) =  

P(pass initially) + P(fails initially ∩ goes to recrimping ∩ is corrected after recrimping) = 
.95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram) = .974. 

 

b. P(needed no recrimping | passed inspection) = (passed initially)
(passed inspection)
P

P
= .95 .9754

.974
= . 

 
 
100.  

a. First, the probabilities of the Ai are P(A1) = P(JJ) = (.6)2 = .36; P(A2) = P(MM) = (.4)2 = .16; and              
P(A3) = P(JM or MJ) = (.6)(.4) + (.4)(.6) = .48.    
Second, P(Jay wins | A1) = 1, since Jay is two points ahead and, thus has won; P(Jay wins | A2) = 0, 
since Maurice is two points ahead and, thus, Jay has lost; and P(Jay wins | A3) = p, since at that 
moment the score has returned to deuce and the game has effectively started over. Apply the law of 
total probability: 
  P(Jay wins) = P(A1)P(Jay wins | A1) + P(A2)P(Jay wins | A2) + P(A3)P(Jay wins | A3) 
                  p = (.36)(1) + (.16)(0) + (.48)(p) 

Therefore, p = .36 + .48p; solving for p gives p = .36
1 .48−

 = .6923. 

 

b. Apply Bayes’ rule: P(JJ | Jay wins) = ( ) (Jay wins | )
(Jay wins)

(.36)(1)
.6923

P JJ P JJ
P

=  = .52. 

 
 
101. Let A = 1st functions, B = 2nd functions, so P(B) = .9, P(A ∪ B) = .96, P(A ∩ B)=.75.  Use the addition rule: 

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) ⇒ .96 = P(A) + .9 – .75 ⇒ P(A) = .81. 

Therefore, P(B | A) = ( ) .75
( ) .81

P B A
P A
∩

= = .926. 
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102.  

a. P(F) = 919/2026 = .4536.  P(C) = 308/2026 = .1520. 
 

b. P(F ∩ C) = 110/2026 = .0543.  Since P(F) × P(C) = .4536 × .1520 = .0690 ≠ .0543, we find that 
events F and C are not independent. 
 

c. P(F | C) = P(F ∩ C)/P(C) = 110/308 = .3571. 
 

d. P(C | F) = P(C ∩ F)/P(F) = 110/919 = .1197. 
 

e. Divide each of the two rows, Male and Female, by its row total. 
 
 Blue Brown Green Hazel 
Male .3342 .3180 .1789 .1689 
Female .3906 .3156 .1197 .1741 
 
According to the data, brown and hazel eyes have similar likelihoods for males and females. However, 
females are much more likely to have blue eyes than males (39% versus 33%) and, conversely, males 
have a much greater propensity for green eyes than do females (18% versus 12%). 

 
103. A tree diagram can help here. 

a. P(E1 ∩ L) = P(E1)P(L | E1) = (.40)(.02) = .008. 
 

b. The law of total probability gives P(L) = ∑ P(Ei)P(L | Ei) =  (.40)(.02) + (.50)(.01) + (.10)(.05) = .018. 
 

c. 1 1| ) 1 ( )( |L P LP E E′ ′=′ − = 1 )(1
( )

P E
P L

L′
′
∩

− = 1 1) |(
1 ( )

( )1 P L EP E
P L

′
−

−
= (.40)(.98)1

1 .018
−

−
= .601. 

 
 
104. Let B denote the event that a component needs rework.   By the law of total probability, 

P(B) = ∑ P(Ai)P(B | Ai) = (.50)(.05) + (.30)(.08) + (.20)(.10) = .069. 

Thus, P(A1 | B) = (.50)(.05)
.069  

= .362, P(A2 | B) = (.30)(.08)
.069

= .348, and P(A3 | B) = .290.  

 
 
105. This is the famous “Birthday Problem” in probability. 

a. There are 36510 possible lists of birthdays, e.g. (Dec 10, Sep 27, Apr 1, …). Among those, the number 
with zero matching birthdays is P10,365 (sampling ten birthdays without replacement from 365 days. So, 

P(all different) = 10
10,365

10

(365)(364) (356)
365 (365)
P

=
 = .883. P(at least two the same) = 1 – .883 = .117. 
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b. The general formula is P(at least two the same) = 1 – ,365

365
k

k

P
. By trial and error, this probability equals 

.476 for k = 22 and equals .507 for k = 23. Therefore, the smallest k for which k people have at least a 
50-50 chance of a birthday match is 23. 

 
c. There are 1000 possible 3-digit sequences to end a SS number (000 through 999). Using the idea from 

a, P(at least two have the same SS ending) = 1 – 10,1000
101000

P
= 1 – .956 = .044. 

Assuming birthdays and SS endings are independent, P(at least one “coincidence”) = P(birthday 
coincidence ∪ SS coincidence) = .117 + .044 – (.117)(.044) = .156.  
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106. See the accompanying tree diagram. 

 

a. P(G | R1 < R2 < R3) = .15 .67
.15 .075

=
+

while P(B | R1 < R2 < R3) = .33, so classify the specimen as 

granite. Equivalently, P(G | R1 < R2 < R3) = .67 > ½ so granite is more likely.  
 

b. P(G | R1 < R3 < R2) = .0625 .2941
.2125

=  < ½, so classify the specimen as basalt. 

P(G | R3 < R1 < R2) = .0375 .0667
.5625

= < ½, so classify the specimen as basalt. 

 
c. P(erroneous classification) = P(B classified as G) + P(G classified as B) = 

P(B)P(classified as G | B) + P(G)P(classified as B | G) = 
(.75)P(R1 < R2 < R3 | B) + (.25)P(R1 < R3 < R2 or R3 < R1 < R2 | G) = 
 (.75)(.10) + (.25)(.25 + .15) = .175. 
 

d. For what values of p will P(G | R1 < R2 < R3), P(G | R1 < R3 < R2), and P(G | R3 < R1 < R2) all exceed 
½? Replacing .25 and .75 with p and 1 – p in the tree diagram, 

P(G | R1 < R2 < R3) = .6 .6 .5
.6 .1(1 ) .1 .5

p p
p p p

= >
+ − +

 iff 1
7

p > ; 

P(G | R1 < R3 < R2) = .25 .5
.25 .2(1 )

p
p p

>
+ −

 iff 4
9

p > ; 

P(G | R3 < R1 < R2) = .15 .5
.15 .7(1 )

p
p p

>
+ −

 iff 14
17

p >  (most restrictive). Therefore, one would always 

classify a rock as granite iff 14
17

p > . 
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107. P(detection by the end of the nth glimpse) = 1 – P(not detected in first n glimpses) = 

1 – 1 2 )( nG GP G ′ ′∩ ∩ ∩′
 = 1 – 1 2) ( )( ( ) nP GP G P G′ ′ ′

 = 1 – (1 – p1)(1 – p2) … (1 – pn) = 1 – )1(
1 i

n

i
p−Π

=
. 

 
108.  

a. P(walks on 4th pitch) = P(first 4 pitches are balls) = (.5)4 = .0625. 
 
b. P(walks on 6th pitch) = P(2 of the first 5 are strikes ∩ #6 is a ball) =  

P(2 of the first 5 are strikes)P(#6 is a ball) = 
5
2
 
 
 

(.5)2(.5)3 (.5) = .15625. 

c. Following the pattern from b, P(walks on 5th pitch) = 
4
1
 
 
 

(.5)1(.5)3(.5) = .125. Therefore,  P(batter 

walks) = P(walks on 4th) + P(walks on 5th) + P(walks on 6th) =    
.0625 + .125 + .15625 = .34375. 

d. P(first batter scores while no one is out) = P(first four batters all walk) = (.34375)4 = .014. 
 
109.  

a. P(all in correct room) = 1 1
4! 24
= = .0417. 

 
b. The 9 outcomes which yield completely incorrect assignments are: 2143, 2341, 2413, 3142, 3412, 

3421, 4123, 4321, and 4312, so P(all incorrect) = 9
24

= .375. 

 
110.  

a. P(all full) = P(A ∩ B ∩ C) = (.9)(.7)(.8) = .504. 
P(at least one isn’t full) = 1 –  P(all full) = 1 – .504 = .496. 
 

b. P(only NY is full) = P(A ∩ B′ ∩ C′) = P(A)P(B′)P(C′) = (.9)(1–.7)(1–.8) = .054. 
Similarly, P(only Atlanta is full) = .014 and P(only LA is full) = .024. 
So, P(exactly one full) = .054 + .014 + .024 = .092. 
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111. Note: s = 0 means that the very first candidate interviewed is hired.  Each entry below is the candidate hired 

for the given policy and outcome. 
 

Outcome s = 0 s = 1 s = 2 s = 3 Outcome s = 0 s = 1 s = 2 s = 3 
1234 1 4 4 4 3124 3 1 4 4 
1243 1 3 3 3 3142 3 1 4 2 
1324 1 4 4 4 3214 3 2 1 4 
1342 1 2 2 2 3241 3 2 1 1 
1423 1 3 3 3 3412 3 1 1 2 
1432 1 2 2 2 3421 3 2 2 1 
2134 2 1 4 4 4123 4 1 3 3 
2143 2 1 3 3 4132 4 1 2 2 
2314 2 1 1 4 4213 4 2 1 3 
2341 2 1 1 1 4231 4 2 1 1 
2413 2 1 1 3 4312 4 3 1 2 
2431 2 1 1 1 4321 4 3 2 1 

 
From the table, we derive the following probability distribution based on s: 

s 0 1 2 3 
P(hire #1) 

24
6  

24
11  

24
10  

24
6  

Therefore s = 1 is the best policy. 
 
 
112. P(at least one occurs) = 1 – P(none occur) = 1 – (1 – p1)(1 – p2)(1 – p3)(1 – p4). 

P(at least two occur) = 1 – P(none or exactly one occur) =  
1 – [(1 – p1)(1 – p2)(1 – p3)(1 – p4) + p1(1 – p2)(1 – p3)(1 – p4) + (1 – p1) p2(1 – p3)(1 – p4) +    
(1 – p1)(1 – p2)p3(1 – p4) + (1 – p1)(1 – p2)(1 – p3)p4]. 

 

113. P(A1) = P(draw slip 1 or 4) = ½; P(A2) = P(draw slip 2 or 4) = ½; 
P(A3) = P(draw slip 3 or 4) = ½; P(A1 ∩ A2) = P(draw slip 4) = ¼; 
P(A2 ∩ A3) = P(draw slip 4) = ¼;  P(A1 ∩ A3) = P(draw slip 4) = ¼. 
Hence P(A1 ∩ A2) = P(A1)P(A2) = ¼; P(A2 ∩ A3) = P(A2)P(A3) = ¼; and 
P(A1 ∩ A3) = P(A1)P(A3) = ¼. Thus, there exists pairwise independence. However, 
P(A1 ∩ A2 ∩ A3) = P(draw slip 4) = ¼ ≠ ⅛ = P(A1)P(A2)P(A3), so the events are not mutually independent. 

 

114. P(A1| A2 ∩ A3) = 1 2 3 1 2 3

2 3 2 3

( ) ( ) ( ) ( )
( ) ( ) ( )

P A A A P A P A P A
P A A P A P A
∩ ∩

=
∩

= P(A1). 

 


