https://selldocx.com/products
/solution-manual-programming-languages-principles-and-practices-3e-louden

Programming Languages - Principles and Practice
3" Edition
by Kenneth C Louden and Kenneth A. Lambert
Cengage 2011

Answers to Selected Exercises

© Copyright Kenneth C. Louden and Kenneth A. Lambert 2011

Chapter 2

2.2 Here are some additional examples of non-regularity:
Generality

1. When passing multidimensional arrays to a function, the size of the first index can be left unspecified,
but all subsequent sizes must be specified:

void f(int x[], int y[][10]) /* legal */
void g(int y[]1[]) /* illegal! */

The reason is that C allows pointer arithmetic on arrays, so that y++ should advance to the next memory
location of y in either £ or g above (that is, ++ doesn't just add one!). In £, the compiler knows to interpret
y++ as y+10*sizeof (int), but in g it would have no idea how much to increment y. Thus, incomplete
array types are incompatible with pointer arithmetic. (So is this really a lack of generality??)

2. The equality test == is not general enough. Indeed, assignment can be applied to everything except
arrays, but equality tests can only be applied to scalar types:

struct { int i; double r;} x,y;

x =y; /* legal */
if(x==y)... /* illegal */

3. Arrays lack generality in C because they must be indexed by integers, and the index must always start
with 0. (In Ada and Pascal, arrays can be indexed by characters, and can have any lower index bound.)

4. The C switch statement restricts the test expressions to integers, and also allows only one
constant value per case. Thus, the switch statement is not sufficiently general.

Uniformity
1. The comma operator has non-uniform semantics in C. In an expression, such as
y = (x++,x+1);

it guarantees left to right evaluation order, while in a call such as

https://selldocx.com/products/solution-manual-programming-languages-principles-and-practices-3e-louden

Lambert and Louden Programming Languages — Principles and Practice 3™ Ed. Answers - 2

y = £(x++,x+1);
the first argument is not guaranteed to be evaluated before the second.

2. The semicolon is not used uniformly as a terminator in C: it must be used to terminate variable and type
definitions:

int x; <-- semicolon required

but it cannot be used to terminate function definitions (because compound statements are not terminated by
a semicolon):

int £(void) { ... }; <-- an error here
Orthogonality

1. Functions can return structures and unions, but not arrays. (Is this orthogonality or generality?). Actually
this is false. While it is true that functions cannot be declared with a fixed-size array return type, using the
array-pointer equivalence of C allows arrays to be returned as pointers. Thus, the following function £ is
illegal in C, but g is fine (nevertheless, there is a problem with g!):

typedef int ArType[1l0];

ArType f(void)
{ int y[10]; return y;}

int * g(void)
{ int y[10]; return y;}

2.4 This is a nonorthogonality, since it is an interaction between assignment and the datatypes of the subjects
of the assignment. It could possibly be viewed as a nonuniformity, although we are really talking about an
interaction within a single construct rather than a comparison of constructs. It definitely cannot be viewed
as a nongenerality, since it makes no sense for assignment to be so general as to apply to all cases
(assignment should only apply when data types are comparable in some sense). C allows the assignment of
areal to an integer (with a silent truncation or round), but this is highly questionable, since information is
lost by this action, and its precise behavior is unclear from the code itself. One could call this a
nonuniformity or nonorthogonality in C as well: assignment does not work the same way, with a special
interaction (truncation) occurring for specific data types.

2.8
Readability. Requiring the declaration of variables forces the programmer to document his/her expectations
regarding variable names, data types, and scope (the region of the program where the variable will be
applicable). Thus, the program becomes much more readable to the programmer and to others.

Writability. Requiring the declaration of variables may actually decrease writability in its most direct
sense, since a programmer cannot simply use variables as needed, but must write declarations in their
appropriate places to avoid error messages. This increased burden on the programmer can increase
programming time. On the other hand, without declarations there can be no local variables, and the use of
local variables can increase writability by allowing the programmer to reuse names without worrying about
non-local references. Forcing the programmer to plan the use of variables may also improve writability over
the long run.

© Copyright Kenneth A. Lambert and Kenneth C. Louden 2011

Lambert and Louden Programming Languages — Principles and Practice 3™ Ed. Answers - 3

Efficiency. As we saw, readability and writability can be viewed as efficiency issues from the point of view
of maintenance and software engineering, so the comments about those issues also apply here in that sense.
The use of declarations may also permit more efficient implementation of the program. Without
declarations, if no assumptions are made about the size of variables, less efficient access mechanisms using
pointers must be used. Also, the programmer can use declarations to specify the exact size of variable
needed (such as short int or long int). Restricting scope by using local variables can also save memory
space by allowing the automatic deallocation of variables. Note, however, that Fortran is a very efficient
language in terms of execution speed, so it is not always true that requiring declarations must improve
execution speed. Also, speed of translation may actually be decreased by the use of declarations, since more
information must be kept in tables to keep track of the declarations. (It is not true, as Fortran and BASIC
attest, that without declarations a translator must be multi-pass.)

Security. Requiring declarations enhances the translator's ability to track the use of variables and report
errors. A clear example of this appears in the difference between ANSI C and old-style Unix C. Early C did
not require that parameters to functions be declared with function prototypes. (While not exactly variable
declarations, parameter declarations are closely related and can be viewed as essentially the same concept.)
This meant that a C compiler could not guarantee that a function was called with the appropriate number or
types of parameters. Such errors only appeared as crashes or garbage values during program execution. The
use of parameter declarations in ANSI C greatly improved the security of the C language.

Expressiveness. Expressiveness may be reduced by requiring the declaration of variables, since they cannot
then be used in arbitrary ways. Scheme, for example, while requiring declarations, does not require that data
types be given, so that a single variable can be used to store data of any data type. This increases
expressiveness at the cost of efficiency and security.

2.9 A language with dynamic typing generally does not require the programmer to specify the type of a
variable, because only values are typed. This reduces finger typing for the programmer, and also provides
flexibility on how variables may be used in programs. On the other hand, the absence of compile-time
type checking requires the programmer to test all possible runtime uses of a variable to ensure that no type
errors are present. Also, run-time type checking generally slows the execution of a program. Some
languages with static type checking (C++ and Java, for example) force the programmer to specify the types
of variables and functions in their source code. Other statically typed languages, such as Haskell, do not,
however. Their advantage is that all type errors are normally caught before execution, and execution is not
slowed down by run-time type checking.

2.10. C has the same problems with semicolons as C++ — indeed, C++ inherited them from C. Thus, in C, we
must always write a semicolon after a struct declaration:

struct X { int a; double b; } ; /* semicolon required here */

but never after a function declaration:

int £(int x) { return x + 1; } /* no semicolon */

The reason is C's original definition allowed variables to be declared in the same declaration as types
(something we would be very unlikely to do nowadays):

struct X { int a; double b; } x;
/* x is a variable of type struct X */

In addition to this nonuniformity of semicolon usage, C (and C++) have at least one additional such
nonuniformity: semicolons are used as separators inside a for-loop specifier, rather than as terminators:

for (i = 0; i < n; i++ /* no semicolon here! */)

© Copyright Kenneth A. Lambert and Kenneth C. Louden 2011

Lambert and Louden Programming Languages — Principles and Practice 3™ Ed. Answers - 4

2.14. Readability: Ada's comment notation is difficult to confuse with other constructs, and the comment
indicators are always present on each comment line. By contrast, a C comment may have widely
separated comment symbols, so it may not be easy to determine what is a comment and what is not
(especially noticeable if a comment extends over more than one video screen). Embedded C comments
may also be confusing, since / and * are arithmetic operators:

2 3 /* this is a comment */
3 / * this is an error */

Nested comments can also present readability problems in C:

/* A comment
/* a nested comment

but only one comment closer #*/
Thus Ada comments may be judged more readable than C's.

Writability: Ada's comments require extra characters for each new line of comments. This makes it
more difficult to write an Ada comment, if only from a count of the number of extra characters required.
C's comments, on the other hand, can be written more easily with a single opening and closing character
sequence.

Reliability: A more readable comment convention is likely to be more reliable, since the reader can
more easily determine errors, so Ada is likely to be more reliable in its comment convention. The main
feature of Ada comments that perhaps increases their reliability is their locality of reference: all
comments are clearly indicated locally, without the need for a proper matching symbol farther on. The
nested comment issue in C, mentioned above, is also a source of errors, since more than one comment
closer will result in compiler errors that are difficult to track down. Thus, C's comment convention is less
reliable than Ada's.

C++ Comment Convention: C++ cannot use the Ada convention of a double-dash, since it is already in
use as a decrement operator, and a translator would have no way of guessing which use was meant.

2.15 The principle of locality implies that sufficient language constructs should be available to allow
variables to be declared close to their use, and also to allow the restriction of access to variables in areas of
the program where they are not supposed to be used. There are several constructs in C that promote the
principle of locality. First, C allows blocks containing declarations (surrounded by curly brackets {...}) to
occur anywhere a statement might occur, thus allowing local declarations a great deal of freedom. For
example, if a temporary variable is only needed for a few lines of code, then we can write in C:

{ int temp = x;

X =y
y temp;

}

and temp is restricted to the region within the curly brackets. Ada, C++, and Java all permit this as well;
additionally C++, Java, and (recently) C also allow declarations to occur anywhere in a block (Ada does
not). C also allows local variables to be declared static, which allows static allocation while preserving
restriction of scope. The static attribute can also be applied to external variables, where it restricts access
to the compilation unit (other separately compiled code files cannot access it). This also promotes the
principle of locality. On the other hand, C only allows global function declarations -- no local functions are
allowed. Thus, a function used in only one small part of a program must still be declared globally. This

© Copyright Kenneth A. Lambert and Kenneth C. Louden 2011

Lambert and Louden Programming Languages — Principles and Practice 3™ Ed. Answers - 5

compromises the principle of locality. C also lacks a module mechanism to clearly distinguish what should
and should not be visible among separately compiled files. C++ and Java offer the class, which allows a
much finer control over access. Ada has the package construct, which allows significant control over
access as well (though not as fine as C++ and Java).

2.21. An obvious advantage of arbitrary-precision integers is that it frees the behavior of integers from any
dependence on the (implementation-dependent) representation of the integers, including elimination of
the need for considering overflow in the language definition. The disadvantage is that the size of
memory needed for an integer is not static (fixed prior to execution), and therefore memory for an
integer must be dynamically allocated. This has serious consequences for a language like C. For
example, in the following code,

struct X { int i; char c; } x;

100;

x.1i =
x.c = 'C';
x.i = 100000000000000000;

the allocation of new storage for x on the second assignment to x.i means x.b must also be reallocated
and copied, unless indirection is used. Indeed, a reasonable approach would be to make integer variables
into pointers and automatically allocate and deallocate them on assignment. This means that the runtime
system must become "fully dynamic" (with a garbage collector), substantially complicating the
implementation of the language. The arithmetic operators, such as addition and multiplication, also
become much less efficient, since a software algorithm must be used in place of hardware operations.

In principle, a real number with arbitrary precision can be represented in the same way as an
arbitrary-precision integer, with the addition of a distinguished position (the position of the decimal
point). For example, 33.256 could be represented as (33256,2), the 2 expressing the fact that the decimal
point is after the second digit. (Note that this is like scientific notation, with the 2 representing a power
of 10: 33.256 = .33256 * 10°.) The same comments hold for such reals as for arbitrary-precision integers.
However, there is a further complication: while integer operations a/ways result in a finite number of
digits, real operations can result in infinitely many digits (consider the result of 1.0/3.0 or sqrt(2.0)).
How many digits should these results get? Any answer is going to have to be arbitrary. For this reason,
even systems with arbitrary-precision integers often place restrictions on the precision of real numbers.
(Scheme calls any number with a decimal point inexact, and any time an integer—which is exact—is
converted to a real, it becomes inexact, and some of its digits may be lost.)

2.22 We answer parts (a) and (b) together in the following.

1. Design, don't hack. Basically this means: have some design goals and a plan for achieving them. A set
of clear goals was in fact a great strength of the C++ design effort; whether Stroustrup ever had an
extensive plan for achieving them is less clear, especially since one of the goals was to allow the
language to expand based on practical experience. However, the C++ design effort can be said to have
substantially met this criterion.

2. Study other designs. Clearly, this means: know what other languages have done well and badly, and
choose the appropriate mix of features from them. Definitely this criterion was met, as Stroustrup knew
fairly early what features of Simula and C he wanted in the core of C++. Later, he also borrowed
carefully from ML, CLU, Ada, and even Algol68.

3. Design top-down. Quote from FOLDOC (http://foldoc.doc.ic.ac.uk/foldoc/): "The software design
technique which aims to describe functionality at a very high level, then partition it repeatedly into
more detailed levels one level at a time until the detail is sufficient to allow coding." For the design of a
programming language, this means: start with the most general goals and criteria, then collect a general
set of features that will meet these goals, finally refine the feature descriptions into an actual language.

© Copyright Kenneth A. Lambert and Kenneth C. Louden 2011

Lambert and Louden Programming Languages — Principles and Practice 3™ Ed. Answers - 6

The C++ design effort met this criterion probably the least of all, since it was mostly designed from the
bottom up, adding one feature at a time beginning with C as the basic language.

4. Know the application area. Stroustrup clearly based his design effort on his own and others' practical
experience, and he knew extremely well the particular simulation applications that he wanted C++ to
solve. So the C++ design effort met this criterion very well.

5. Iterate. This means: don't try to make all the design decisions at once, but build up carefully from a
core, expanding the target goals as subgoals are met. Clearly the C++ design effort met this goal, as
Stroustrup made no attempt to add everything at once, but waited to see how one major feature would
work out before adding another.

© Copyright Kenneth A. Lambert and Kenneth C. Louden 2011

