https://selldocx.com/products/solution-manual-quantum-mechanics-with-basic-field-theory-1e-desai

This is page iii
Printer: Opaque this

Contents

0.1 Solutions Ch. 1

1.

(i) The orthonormality of the states is demonstrated as follows

$$<\alpha_1 |\alpha_1\rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1; <\alpha_1 |\alpha_2\rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0.$$
 Similarly one can show $<\alpha_2 |\alpha_1\rangle = 0$ and $<\alpha_2 |\alpha_2\rangle = 1$

(ii) The column matrix can be written as

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(iii) The outer products $|\alpha_i\rangle\langle\alpha_j|$ give the following matrices

$$\begin{split} \left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| &= \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix}; \left|\alpha_{1}\right\rangle\left\langle\alpha_{2}\right| = \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1\\0 & 0 \end{bmatrix}; \\ \left|\alpha_{2}\right\rangle\left\langle\alpha_{1}\right| &= \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0\\1 & 0 \end{bmatrix}; \left|\alpha_{2}\right\rangle\left\langle\alpha_{2}\right| = \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0\\0 & 1 \end{bmatrix} \end{split}$$

(iv) The $|\alpha_i\rangle' s$ satisfy completeness relation from the following relation

$$A |\alpha_1\rangle = + |\alpha_1\rangle$$
 and $A |\alpha_2\rangle = - |\alpha_2\rangle$

Constructing the matrix elements from the above relation and using orthonormality we find

$$\{A\} = \begin{bmatrix} \langle \alpha_1 | A | \alpha_1 \rangle & \langle \alpha_1 | A | \alpha_2 \rangle \\ \langle \alpha_2 | A | \alpha_1 \rangle & \langle \alpha_2 | A | \alpha_2 \rangle \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

2.Start with the relation

$$AA^{-1} = 1$$

Take the derivative with respect to λ

$$\frac{d}{d\lambda}(AA^{-1})=0$$
, therefore

 $A\frac{dA^{-1}}{d\lambda} + \frac{dA}{d\lambda}A^{-1} = 0$, multiplying on the left by A^{-1} and then moving

the second term to the left gives
$$\frac{dA^{-1}}{d\lambda} = -A^{-1}\frac{dA}{d\lambda}A^{-1}$$

3.

For an operator A,

$$AA^{-1} = 1$$
, therefore $(AA^{-1})^{\dagger} = 1$ or $(A^{-1})^{\dagger} = (A^{\dagger})^{-1}$

$$U = \frac{1 + iK}{1 - iK} = (1 + iK)(1 - iK)^{-1} = (1 - iK)^{-1}(1 + iK)$$

the last step follows from the fact that K's commute among themselves Therefore,

$$U^{\dagger}=(\mathbf{1}-iK)^{\dagger}\left((\mathbf{1}+iK)^{-1}\right)^{\dagger}=(\mathbf{1}-iK)\left(\mathbf{1}+iK\right)^{-1}$$
 since K is Hermitian, and

and
$$UU^{\dagger} = (\mathbf{1} + iK) \left[(\mathbf{1} - iK)^{-1} (\mathbf{1} - iK) \right] (\mathbf{1} + iK)^{-1} = (\mathbf{1} + iK) (\mathbf{1} + iK)^{-1} = 1$$

One can write
$$e^{iC} = \frac{e^{iC/2}}{e^{-iC/2}} = \frac{1+i\tan C/2}{1-i\tan C/2}$$
 and identify

One can also show that

 $K = \tan C/2$

$$U = e^{iC} = \cos C + i \sin C$$

If U = A + iB then identifying $A = \cos C$, $B = \sin C$ we note that A and B commute.

4.

Let U be a unitary operator diagonalizing A, so that

$$A_D = UAU^{\dagger}$$

is a diagonal matrix. Then

$$Tr(A) = Tr(A_D)$$

$$\det(A) = \det(A_D)$$

Similarly by expanding
$$e^A$$
 in powers of A we get $\det(e^A) = \det(e^{A_D}) = e^{(A_D)_{11}} \cdot e^{(A_D)_{22}} \cdot e^{(A_D)_{33}} \cdot \dots = e^{Tr(A_D)} = e^{Tr(A)}$

$$Tr[|\alpha\rangle\langle\beta|] = \sum_{n} \langle n |\alpha\rangle\langle\beta| n \rangle = \sum_{n} \langle\beta| n \rangle \langle n |\alpha\rangle = \langle\beta| \alpha\rangle$$

$$A = \left|\alpha\right\rangle\left\langle\alpha\right| + \lambda\left|\beta\right\rangle\left\langle\alpha\right| + \lambda^*\left|\alpha\right\rangle\left\langle\beta\right| + \mu\left|\beta\right\rangle\left\langle\beta\right|$$

In the matrix form it can be written (take $|\alpha\rangle = |1\rangle$, $|\beta\rangle = |2\rangle$ to implement matrix notation)

$$\{A\} = \begin{bmatrix} 1 & \lambda^* \\ \lambda & \mu \end{bmatrix}$$

Let a be the eigenvalues, then

$$(1-a)(\mu-a) - |\lambda|^2 = 0$$

$$(1-a)(\mu-a) - |\lambda|^2 = 0$$
The solutions are
$$a = \frac{(1+\mu) \pm \sqrt{(1-\mu)^2 + 4|\lambda|^2}}{2}$$
(i) $\lambda = 1, \mu = +1$

(i)
$$\lambda = 1, \, \mu = +1$$

$$a = \frac{2 \pm \sqrt{4 \left|\lambda\right|^2}}{2} = 1 \pm \left|\lambda\right|^2$$

$$\lambda = 1, \, \mu = -1$$
$$a = \pm \sqrt{1 + \left|\lambda\right|^2}$$

(ii)
$$\lambda = i, \ \mu = +1$$

 $a = 2.0$

$$\begin{array}{l} \lambda=i,\,\mu=-1\\ a=\pm\sqrt{2} \end{array}$$