
Radiation Sources 

� Problem 1.1.  Radiation Energy Spectra: Line vs. Continuous

Line (or discrete energy): a, c, d, e, f, and i.
Continuous energy: b, g, and h.

� Problem 1.2.  Conversion electron energies compared. 

Since the electrons in outer shells are bound less tightly than those in closer shells, conversion electrons from outer shells will
have greater emerging energies.  Thus, the M shell electron will emerge with greater energy than a K or L shell electron.  

� Problem 1.3.  Nuclear decay and predicted energies.  

We write the conservation of energy and momentum equations and solve them for the energy of the alpha particle.  Momentum is
given the symbol "p",  and energy is "E".  For the subscripts, "al" stands for alpha, while "b" denotes the daughter nucleus.  

pal � pb � 0
pal2

2mal
� Eal

pb2

2mb
� Eb Eal � Eb � Q and Q � 5.5 MeV

Solving our system of equations for Eal, Eb, pal, pb, we get the solutions shown below.  Note that we have two possible sets of
solutions (this does not effect the final result).

Eb � 5.5 1 �
mal

mal � mb
Eal �

5.5mal

mal � mb

pal � �
3.31662 mal mb

mal � mb

pb � �
3.31662 mal mb

mal � mb

We are interested in finding the energy of the alpha particle in this problem, and since we know the mass of the alpha particle and
the daughter nucleus, the result is easily found.  By substituting our known values of mal � 4 and mb � 206 into our derived
Ealequation we get:

Eal � 5.395 MeV

Note : We can obtain solutions for all the variables by substitutingmb � 206 andmal � 4 into the derived equations above :

Eal � 5.395 MeV Eb � 0.105 MeV pal � �6.570 amu�MeV pb � �6.570 amu�MeV

� Problem 1.4.  Calculation of Wavelength from Energy. 

Since an x-ray must essentially be created by the de-excitation of a single electron, the maximum energy of an x-ray emitted in a
tube operating at a potential of 195 kV must be 195 keV.  Therefore, we can use the equation E=h�, which is also E=hc/Λ, or
Λ=hc/E.  Plugging in our maximum energy value into this equation gives the minimum x-ray wavelength.  

Λ �
h�c

E
where we substitute h� 6.626�10�34 J �s, c � 299 792 458m � s and E � 195 keV
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Λ �
1.01869 J–m

KeV
� 0.0636 Angstroms

� Problem 1.5.  235 UFission Energy Release. 

Using the reaction 235 U    � 117 Sn� 118 Sn, and mass values, we calculate the mass defect of: 

M �235U� � �M �117Sn� �M �118Sn�� � �M   

and an expected energy release of �Mc2. 

Q � �235.0439 � �116.9029 � 117.9016��AMU� 931.5 MeV
AMU

� 223 MeV

This is one of the most exothermic reactions available to us.  This is one reason why, of course, nuclear power from uranium
fission is so attractive.  

� Problem 1.6.  Specific Activity of Tritium.  

Here, we use the text equation Specific Activity = (ln(2)*Av)/ �T1�2*M), where Av is Avogadro's number, T1�2  is the half-life of
the isotope, and M is the molecular weight of the sample.  

Specific Activity �
ln�2��Avogadro ' sConstant

T1�2 M
We substitute T1�2 � 12.26 years and M= 3 grams

mole
to get the specific activity in disintegrations/(gram–year).

Specific Activity �
1.13492�1022

gram –year

The same result expressed in terms of kCi/g is shown below

Specific Activity �
9.73 kCi

gram

� Problem 1.7.  Accelerated particle energy.  

The energy of a particle with charge q falling through a potential �V is q�V.  Since �V= 3 MV is our maximum potential
difference, the maximum energy of an alpha particle here is q*(3 MV), where q is the charge of the alpha particle (+2).  The
maximum alpha particle energy expressed in MeV is thus:

Energy � 3Mega Volts � 2 Electron Charges � 6. MeV
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� Problem 1.8.  Photofission of deuterium.  1
2 D � Γ � 0

1 n � 1
1 p + Q (-2.226 MeV)

The reaction of interest is  1
2 D � 0

0 Γ � 0
1 n � 1

1 p+ Q (-2.226 MeV).  Thus, the Γ must bring an energy of at least 2.226 MeV
in order for this endothermic reaction to proceed.  Interestingly, the opposite reaction will be exothermic, and one can expect to
find 2.226 MeV gamma rays in the environment from stray neutrons being absorbed by hydrogen nuclei.  

� Problem 1.9.  Neutron energy from D-T reaction by 150 keV deuterons. 

We write down the conservation of energy and momentum equations, and solve them for the desired energies by eliminating the
momenta.  In this solution, "a" represents the alpha particle, "n" represents the neutron, and "d" represents the deuteron (and, as
before, "p" represents momentum, "E" represents energy, and "Q" represents the Q-value of the reaction).  

pa � pn � pd
pa2

2ma
� Ea

pn2

2mn
� En

pd2

2md
� Ed Ea � En � Ed � Q

Next we want to solve the above equations for the unknown energies by eliminating the momenta.  (Note : Using  computer
software such as Mathematica is helpful for painlessly solving these equations).

 We  evaluate the solution by plugging in the values for particle masses (we use approximate values of "ma," "mn,"and "md" in
AMU, which is okay because we are interested in obtaining an energy value at the end).  We define all energies in units of MeV,
namely the Q-value, and the given energy of the deuteron (both energy values are in MeV).   So we substitute ma = 4, mn = 1, md

= 2, Q = 17.6, Ed  = 0.15 into our momenta independent equations.  This yields two possible sets of solutions for the energies (in
MeV). One corresponds to the neutron moving in the forward direction, which is of interest.

En � 13.340 MeV Ea � 4.410 MeV
En � 14.988 MeV Ea � 2.762 MeV

Next we solve for the momenta by eliminating the energies. When we substitute ma = 4, mn = 1, md  = 2, Q = 17.6, Ed  = 0.15 into
these equations we get the following results.

pn �
pd

5
�
1

5
2 3 pd2 � 352 pa �

1

10
8 pd �2 2 3 pd2 � 352

We do know the initial momentum of the deuteron, however, since we know its energy. We can further evaluate our solutions for
pn and pa by substituting:

pd � 2 � 2 � 0.15

The particle momenta ( in units of amu�MeV ) for each set of solutions is thus:

pn � �5.165 pa � 5.940
pn � 5.475 pa � �4.700

The largest neutron momentum occurs in the forward (+) direction, so the highest neutron energy of 14.98 MeV corresponds
to this direction.  
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Radiation Interaction Problems

� Problem 2.1 Stopping time in silicon and hydrogen.

Here, we apply Equation 2.3 from the text.  

Tstop �

1.2 range mass
energy

107

Now we evaluate our equation for an alpha particle  stopped in silicon.  We obtained the value for "range" from Figure 2.8
(converting from mass thickness to distance in meters by dividing by the density of Si � 2330 mg�cm3).  The value for "mass" is
approximated  as  4  AMU  for  the  alpha  particle,  and  the  value  for  "energy"  is  5  MeV.   We  substitute
range � 22 x 10�6, mass � 4 and energy� 5 into Equation 2.3 to get the approximate alpha stopping time (in seconds) in silicon.

Tstop � 2.361�10�12 seconds

Now we do the same for the same alpha particle stopped in hydrogen gas.  Again, we obtain the value for "range" (in meters)
from Figure 2.8 in the same manner as before (density of H �  .08988 mg�cm3),  and, of course, the values for "mass" and
"energy" are the same as before (nothing about the alpha particle has changed).  We substitute range = 0.1, mass = 4 and energy
=5 into Equation 2.3 to get the approximate alpha stopping time (in seconds) in hydrogen gas.

Tstop � 1.073�10�8 seconds

The results from this problem tell us that the stopping times for alphas range from about picoseconds in solids to nanoseconds in
a gas.  

� Problem 2.2. Partial energy lost in silicon for 5 MeV protons.

�Clever technique:  A 5 MeV proton has a range of 210 microns in silicon according to Figure 2-7.  So, after passing through
100 microns, the proton has enough energy left to go another 110 microns.  It takes about 3.1 MeV, according to the same figure,
to go this 110 microns, so this must be the remaining energy.  Thus the proton must have lost 1.9 MeV in the first 100 microns.  

� Problem 2.3.  Energy loss of 1 MeV alpha in 5 microns Au. 

From Figure 2.10, we find that �1
Ρ

dE
dx� 380 MeV�cm2

g .  Therefore, dE
dx� 380 MeV�cm2

g * Ρ (ignoring the negative sign will not

affect the result of this problem).  

Energy loss �
Ρ �dE �dx� �x

Ρ

We substitute dE �dx � 380 MeV cm2 Ρ

gram
, Ρ � 19.32 grams

cm3 and �x � 5 microns to get the energy loss of the 1 MeV Α-particle in 5 Μm Au

(in non-SI units).
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