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About this manual

This manual contains solutions to the problems set at the end of each chapter of
“Quantum Mechanics”. It is divided into sections corresponding to the chapters in
the text and titled accordingly. Bracketed numbers refer to equations in the main text.
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C H A P T E R 1

The Physics and
Mathematics of
Waves

1.1 Use Euler’s formula to find a purely real expression for ii.

Solution
ii =

(
eiπ/2

)i
= e−π/2

1.2 Show that (1.3) can be written as

x(t) = Acos(ωt +φ)

and derive expressions for A and φ in terms of B and C. Assuming the oscillator starts
out at position x(0) = x0 with velocity v(0) = v0, determine A and φ in terms of x0
and v0. Note: We call A the amplitude and φ the phase of the oscillation.

Solution

Replace the constants B and C in x(t) = Bcosωt + C sinωt with two different
constants A and φ which solve B = Acosφ and C = −Asinφ. This results in
x(t) = Acos(ωt + φ). Now x(0) = Acosφ = x0 and ẋ(0) = −ωAsinφ = v0 so A =

(x2
0 + v2

0/ω
2)1/2 and φ = − tan−1(v0/x0ω).

1.3 A spring with stiffness k hangs vertically from point on the ceiling. A mass m is
attached to the lower end of the spring without stretching it, and then is released from
rest. Show that when the gravitational force mg is taken into account, the motion is
still sinusoidal with ω = (k/m)1/2 but with an equilibrium position shifted to a lower
point. Find the new equilibrium position in terms of m, k, and g.

3
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Solution

Let y measure the vertical position of the mass, with y = 0 the unstretched string.
Then mÿ = −ky−mg = −k(y + mg/k). Defining x ≡ y + mg/k, get mẍ = −kx, so once
again ω2 = k/m. The equilibrium point is x = 0 or y = −mg/k.

1.4 Consider a system of a mass and spring, such as in Figure 1.1, but with an
additional force Fdamp = −bv proportional to velocity but acting in the direction
opposite to the motion. Reformulate the equation of motion, and find the solution
for x(0) = x0 and v(0) = v0. Use the ansatz x(t) = exp(iαt) to solve for α. You may
assume that b2/m2 is less than 4k/m.

Solution

The equation of motion is mẍ = −kx− bẋ so −mα2 = −k− ibα. Defining ω2
0 ≡ k/m

and β ≡ b/2m, yields the equation α2−2iβα−ω2
0 =. Solving this,

α =
1
2

[
2iβ±

(
−4β2 + 4ω2

0

)1/2
]

= iβ±ω

where ω2 ≡ ω2
0 − β

2. (Note that β2/ω2
0 = (b2/m2)/(4k/m) < 1 so ω is real.) The

solution becomes x(t) = Ae−βt cos(ωt + φ) where Acosφ = x0 and −A(βcosφ +

ωsinφ) = v0. These can be solved in principle, but the interesting solution is
when β� ω, i.e. “lightly damped” motion. The result in oscillation which slowly
damps.

1.5 Two equal masses m move in one dimension and are each connected to fixed
walls by springs with stiffness k. The masses are also connected to each other by a
third, identical spring, as shown:

3mk k 2m

mk k m k

Write the (differential) equations of motion for the positions x1(t) and x2(t) of the
two masses. Solve those equations with the ansatz x1(t) = A1 exp(iαt) and x2(t) =

A2 exp(iαt); you will discover nontrivial solutions only for two values of ω2. (Those
two values are called eigenfrequencies.) What kind of motion corresponds to each of
these two eigenfrequencies?

Solution

Label the two masses #1 and #2 from left to right. The force on m #1 is −kx1 +

k(x2 − x1) = −2kx1 + kx2, and the force on m #2 is −kx2 − k(x2 − x1) = −2kx2 + kx1,
so, defining ω2

0 ≡ k/m, the equations of motion are

ẍ1 = −2ω2
0x1 +ω2

0x2 and ẍ2 = −2ω2
0x2 +ω2

0x1

Now insert the ansatz solution. After a little rearranging, you find

(2ω2
0−ω

2)A1−ω
2
0A2 = 0 and −ω2

0A1 + (2ω2
0−ω

2)A2 = 0
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These are two homogenous equations for A1 and A2. The only solution is A1 = A2 = 0,
that is no motion, unless the determinant vanishes:

ω4
0 = (ω2−2ω2

0)2 so ω2 = ω2
0 or ω2 = 3ω2

0

For ω2 = ω2
0, find A1 = A2 so the two masses oscillate in phase with the same

amplitude. For ω2 = 3ω2
0, find A1 = −A2 so the two masses oscillate out of phase

with the same amplitude.

1.6 Find the eigenfrequencies for the two-mass, two-spring system shown here:
3mk k 2m

mk k m k

Solution

Label mass 3m #1 and mass 2m #2. Then the equations of motion are

3mẍ1 = −kx1 + k(x2− x1) = −2kx1 + kx2 and 2mẍ2 = −k(x2− x1) = kx1− kx2

Using the standard definitions and ansatz,

(3ω2−2ω2
0)A1 +ω2

0A2 = 0 and ω2
0A1 + (2ω2−ω2

0)A2 = 0

Next, set the determinant equal to zero to find

(3ω2−2ω2
0)(2ω2−ω2

0)−ω4
0 = 6ω4−7ω2

0ω
2 +ω2

0 = (6ω2−ω2
0)(ω2−ω2

0) = 0

so the eigenfrequencies are ω2 = ω2
0, in which case the two masses oscillate with

equal amplitude but out of phase, and ω2 = ω2
0/6, in which case the oscillations are

in phase with A1/A2 = 2/3.

1.7 For the two-mass, three-spring system discussed in Problem 1.5, find expres-
sions for x1(t) and x2(t) subject to the initial conditions x1(0) = A and x2(0) = v1(0) =

v2(0) = 0. Make a plot of x1(t) and x2(t), and also plot the quantities x1(t) + x2(t) and
x1(t)− x2(t). Comment on your observations.

Solution

Now we need to write the the general solution for the motion of the two masses:

x1(t) = aeiω0t + be−iω0t + ce
√

3iω0t + de−
√

3iω0t

x2(t) = aeiω0t + be−iω0t − ce
√

3iω0t −de−
√

3iω0t

Note that we have maintained the amplitude ratios and relative phases between the
different solutions for the particular eigenfrequencies. This is necessary in order
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to make sure that each of the four terms separately solves the coupled differential
equations. Now we can apply the initial conditions:

A = a + b + c + d

0 = a−b +
√

3(c−d)
0 = a + b− c−d

0 = a−b−
√

3(c−d)

Adding first and third gives a+b = A/2 and adding second and fourth gives a−b = 0,
so a = b = A/4. Subtracting third from first gives c + d = A/2 and subtracting fourth
from second gives c−d = 0 so c = d = A/4. Therefore

x1(t) =
A
2

[
cos(ω0t) + cos(

√
3ω0t)

]
x2(t) =

A
2

[
cos(ω0t)− cos(

√
3ω0t)

]
Below left, plots of x1(t) and x2(t). Below right, plots of x1(t)+ x2(t) and x1(t)− x2(t).

2 4 6 8 10 12
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The wiggling motion is a superposition of different eigenfrequencies, but the sum
and difference show the individual isolated eigenfrequencies.

1.8 Repeat Problem 1.7, but this time let the “coupling” spring between the two
masses have a spring constant kc = k/100. Show that the overall motion “oscillates”
between cases were the first mass is in simple harmonic motion by itself, to one
where the second mass is in simple harmonic motion, and then back again. What is
the frequency of these low frequency oscillations between the two masses?

Solution

First, go back to Problem 5. Now, the force on m #1 is −kx1 + kc(x2 − x1) = −(k +

kc)x1 +kx2, and the force on m #2 is −kx2−kc(x2− x1) =−(k+kc)x2 +kx1, so, defining
ω2

0 ≡ k/m and α2 = 2kc/m = 2(kc/k)ω2
0, the equations of motion are

ẍ1 = −(ω2
0 +α2/2)x1 + (α2/2)x2 and ẍ2 = −(ω2

0 +α2/2)x2 + (α2/2)x1

Now insert the ansatz solution. After a little rearranging, you find

(ω2
0 +α2/2−ω2)A1− (α2/2)A2 = 0 and − (α2/2)A1 + (ω2

0 +α2/2−ω2)A2 = 0
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so ω2
0 +α2/2−ω2 = ±α2/2 and the solutions are ω2 = ω2

0 and ω2 = ω2
0 +α2. It is

easy to see, as in Problem 5, that these two solutions correspond to equal amplitude
oscillations in phase and out of phase, respectively. At this point, the motions of the
two masses work out just as in Problem 7, and we have

x1(t) =
A
2

[
cos(ω0t) + cos(

√
ω2

0 +α2t)
]

x2(t) =
A
2

[
cos(ω0t)− cos(

√
ω2

0 +α2t)
]

When k = kc, α2 = 2ω2
0 and we get the correct solution to Problem 7. Following are

the same plots, but for kc = k/10, that is, α2 = ω2
0/5 (which plot more nicely than

kc = k/100):

50 100 150

-1.0

-0.5

0.5

1.0

50 100 150

-1.0

-0.5

0.5

1.0

The right plot shows that the eigenfrequencies are very close to each other, resulting
in the beat pattern shown in the left plot. With α2 � ω2

0, and the trigonometric
identities

cosu + cosv = 2cos
(u + v

2

)
cos

(u− v
2

)
cosu− cosv = −2sin

(u + v
2

)
sin

(u− v
2

)
it is clear that the plots are the product of a high frequency component

1
2

(
ω0 +

√
ω2

0 +α2
)
≈ ω0

with an envelope with low frequency

1
2

(√
ω2

0 +α2−ω0

)
≈
ω0

2

1 +
α2

2ω2
0

−1

 =
ω0

2
kc

k

That is, for the left plot above, there are ≈ 20 crests within one envelope wave-
length.

1.9 Derive the solution (1.13) to the wave equation (1.12) by going through the
following steps. Consider a change of variables from x and y to ξ = x− vt and η =

x + vt. Then use the chain rule to rewrite the wave equation in terms of ξ and η. You
should find that

∂2y
∂ξ∂η

= 0
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Then argue that this means that y is a function of either ξ or η, but not both at the
same time. In other words, the solution is (1.13). If you are not familiar with the
chain rule for partial differentiation, it means that if w and z are functions of x and y,
then

∂

∂x
f (x,y) =

∂ f
∂w

∂w
∂x

+
∂ f
∂z

∂z
∂x

and similarly for ∂/∂y. You can assume that you get the same result regardless of the
order in which the partial derivatives are taken.

Solution

As directed, apply the chain rule to the wave equation

∂y
∂x

=
∂y
∂ξ

+
∂y
∂η

∂2y
∂x2 =

∂2y
∂ξ2 + 2

∂2y
∂ξ∂η

+
∂2y
∂η2

∂y
∂t

= −v
∂y
∂ξ

+ v
∂y
∂η

∂2y
∂t2 = v2 ∂

2y
∂ξ2 −2v2 ∂2y

∂ξ∂η
+ v2 ∂

2y
∂η2

1
v2
∂2y
∂t2 −

∂2y
∂x2 = −4v2 ∂2y

∂ξ∂η
= 0

leading to the expression we sought. The obvious solution to this differential equation
is the sum of two “constants” in ξ and η, respectively, that is y(ξ,η) = f (ξ) +

g(η).

1.10 Prove the principle of linear superposition for the wave equation (1.12). That
is, show that if y1(x, t) and y2(x, t) are solutions of the wave equation, then y(x, t) =

ay1(x, t) + by2(x, t) is also a solution, where a and b are arbitrary constants.

Solution

All you have to do is plug it in and it falls out easily:

1
v2
∂2y
∂t2 −

∂2y
∂x2 = a

1
v2
∂2y1

∂t2 + b
1
v2
∂2y2

∂t2 −a
∂2y1

∂x2 −b
∂2y2

∂x2

= a
[

1
v2
∂2y1

∂t2 −
∂2y1

∂x2

]
+ b

[
1
v2
∂2y2

∂t2 −
∂2y2

∂x2

]
= 0 + 0 = 0

1.11 A string with linear mass density µ hangs motionless between two fixed points
(x,y) = (±a,0) where y measures the vertical direction. The length of the string is
greater than 2a, so the lowest point is at (x.y) = (0,b). Derive the differential equation
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that describes the shape of the string, and solve it for y(x) in terms of a, b, and the
acceleration g due to gravity. Unlike our derivation of the wave equation, do not make
the “small displacement” assumption. Note that the shape, called a catenary, is not a
parabola.

Solution
Define angles as in Fig.1.2, but for a down-hanging string in the region x > 0. The
tension arises now from gravity, so is not a set parameter, and T1 need not be the same
as T2. (Think of a point mass, suspended from two wires, each attached at different
vertical positions on walls.) Horizontal and vertical equilibrium for a short section of
string give

T1 cosθ1 = T2 cosθ2 and T1 sinθ1 = T2 sinθ2 + (µ∆s)g

where ∆s = (∆x2 +∆y2)1/2 is the length of the short section of string. Now as ∆x→ 0,
the first equation implies that the tension is a constant, so we take T1 = T2 = T .
Since

sinθ = cosθ tanθ = (1 + tan2 θ)−1/2 tanθ and tanθ =
dy
dx
≡ y′

the second equation becomes

T
d
dx

 y′(
1 + y′2

)1/2

 = µg
(
1 + y′2

)1/2

Taking the derivative, multiplying by (1 + y′2)3/2, and defining k ≡ T/µg, we
have

y′′
(
1 + y′2

)
− y′2y′′ = y′′ =

1
k

(
1 + y′2

)2

The catenary y = k cosh[(x − A)/k] + B solves this equation. (Note that for the
derivative of coshu is sinhu and vice versa, and that 1 + sinh2 u = cosh2 u). Since our
case is symmetric, A = 0. Also, B = b− k, and the length of the string is determined
by a, which in turn determines the tension T .

1.12 Show that the standing wave solutions (1.19) are linear combinations of the
traveling wave solutions cos[kx±ωt] and sin[kx±ωt].

Solution
Just use the simple expressions for sines and cosines of sums or differences:

cos(kx±ωt) = cos(kx)cos(ωt)∓ sin(kx) sin(ωt)
sin(kx±ωt) = sin(kx)cos(ωt)± cos(kx) sin(ωt)

so Acos(kx)cos(ωt) =
A
2

[cos(kx +ωt) + cos(kx−ωt)]

and Asin(kx)cos(ωt) =
A
2

[sin(kx +ωt) + sin(kx−ωt)]
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1.13 A function f (x) is periodic, such that f (x+2) = f (x). For −1< x< 0 f (x) =−1,
and for 0< x< 1 f (x) = +1. Find the first five terms of the Fourier expansion for f (x),
and make a plot of the approximations based on the first term, and the sums up to the
third and fifth terms, along with a plot of f (x) itself.

This is an odd function, with period 2, so there are only sine terms:

bn = 2
∫ 1

0
sin(nπx)dx = −

2
nπ

cos(nπx)|10 =
2

nπ
[1− cosnπ]

All the even n terms vanish, so the Fourier series is

f (x) =
4
π

sin(πx) +
4

3π
sin(3πx) +

4
5π

sin(5πx) + · · ·

Plotting the sum up to the first, second, and third terms, gives

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

1.14 The G-string on a standard guitar vibrates at 196 Hz. On one particular guitar,
this string is 60 cm long and has a mass of 3.1 grams per meter. Calculate the tension
on the string, both in Newtons and pounds.

Solution

The wavelength of the fundamental is twice the string length, so the wave speed
on the string is 1.2 m×196 sec−1 = 235 m/sec =

√
T/µ. With µ = 3.1×10−3 kg/m,

we determine T = 3.1×10−3×2352 = 171 N = 38.6 lbweight.

1.15 Consider a string with an initial shape similar to that shown in Figure 1.7, but
instead plucked at a position x = a/2 instead of x = 0. Find the motion of the string in
this case. You might find a program like MATHEMATICA particularly useful to carry
out the calculation of the Fourier components, as well as to produce an animation of
the string’s motion.

Solution
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For Figure 1.7, that is Worked Example 1.3, the shape function f (x) = y(x, t = 0) at
zero time was an odd function of x, so contained only sine terms, and this guaranteed
that y(0, t) = 0. We don’t have that condition here, however, so we need to improvise.
It is easiest to translate to x′ ≡ x + a and then make an odd function for −R/2 ≤ x′ ≤
+R/2, with R = 4a. You can then carry out the calculation of the coefficients bn in
(1.25b), and translate back to x = x′−a. One finds

bn =
8

3π2n2

[
4sin

(
3πn

4

)
−3sin(πn)

]
The following use n = 1,2, . . .41, and are for t = 0 (left) and t = 0,R/16c,R/8c,3R/8c,R/2c:

-1.0 -0.5 0.5 1.0
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0.5
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The MATHEMATICA notebook used for this calculation is available upon re-
quest.

1.16 Find the Fourier transform of the (normalized) Gaussian function

f (x) =
1

σ
√

2π
exp(−x2/2σ2)

(You will need to “complete the square” of the exponent in the integrand to carry
out the integration.) Using σ as a measure of the “width” ∆x of f (x), propose an
analogous quantity to express with width ∆k of the Fourier transform, and evaluate
∆x∆k.

Solution
We work directly from (1.31b), so

a(k) =
1
√

2π

∫ ∞

−∞

[
1

σ
√

2π
e−x2/2σ2

]
e−ikxdx =

1
2πσ

∫ ∞

−∞

[
e−(x2+2ikxσ2)/2σ2

]
dx

=
1

2πσ

∫ ∞

−∞

[
e−(x2+2ikxσ2−k2σ4+k2σ4)/2σ2

]
dx =

1
2πσ

e−k2σ2/2
∫ ∞

−∞

e−(x+ikσ)2/2σ2
dx

=
1

2πσ
e−k2σ2/2σ

√
2π =

1
√

2π
e−k2σ2/2

If the width of f (x) is σ, then clearly the width of a(k) is 1/σ, so the product is
unity.
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1.17 The “width” of a localized function can have a precise definition, based in fact
on the concept of standard deviation. For some normalized distribution f (z), we can
define the width ∆z by

〈z〉 =
∫ ∞

−∞

z f (z)dz 〈z2〉 =

∫ ∞

−∞

z2 f (z)dz and (∆z)2 = 〈z2〉− 〈z〉2 (1.1)

Use this definition to find the width ∆k of the distribution function a(k) in Figure 1.8.
Are you surprised?

Solution
For Figure 1.8, that is Worked Example 1.4, a(k) = sin(kα)/kα

√
2π. Therefore, 〈k〉 ∝∫

sin(kα)dk = 0 but 〈k2〉 ∝
∫

k sin(kα)dk→∞. Yes, this is surprising. The plot of a(k)
in Fig. 1.8 does appear to have a finite width.

1.18 Consider a triangular function f (x) that forms a straight line from the point at
x = 0 to the x-axis at both x = ±α and is zero otherwise, that is

0 x

f(x)

-α α
Find the Fourier transform. Then find the width of both f (x) and of its Fourier
transform, using the definition (1.38) based on standard deviation.

Solution
The (normalized) function f (x) is even with f (x) = (α− x)/α2 for 0 < x < α and
f (x) = 0 for x > α. Clearly, 〈x〉 = 0. Therefore

(∆x)2 = 2
∫ α

0
x2 1
α2 (α− x)dx =

2
α2

[
α3

3
α−

α4

4

]
=
α2

6
and ∆x =

α
√

6

Since e−ikx = coskx− isinkx and f (x) is even, we calculate the Fourier transform
as

a(k) = 2
1
√

2π

∫ α

0

1
α2 (α− x)cos(kx)dx =

√
2
π

1− cos(αk)
α2k2 =

√
2
π

2
α2k2 sin2

(
αk
2

)
This is also an even function, so 〈k〉 = 0, and

(∆k)2 =

∫ ∞

−∞

k2a(k)dk ∝
∫ ∞

−∞

sin2
(
αk
2

)
dk→∞

Once again, as in Prob. 17, the “width” of the distribution is technically infinite.
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There are mathematics theorems that discuss the properties of such functions, mostly
having to do with cases where f (x) has sharp corners.

A better problem would be to offer something with rounded edges so that the
Fourier transform has a finite width. I worked it through with (the area-normalized
function)

f (x) =
15
16

1
α5 (x−α)2(x +α)2 =

15
16

1
α5 (x2−α2)2

I find ∆x = α/
√

7 and for the Fourier transform

a(k) = −
15

((
α2k2−3

)
sin(αk) + 3αk cos(αk)

)
√

2πα5k5

After area-normalizing the Fourier Transform, find ∆a = 2/α, so ∆x∆a = 2/
√

7 =

0.756.

1.19 Evaluate the integral ∫ ∞

−∞

δ(ax)dx

where a is a positive constant.

Solution
Simply make the substitution w = ax so that dx = dw/a and∫ ∞

−∞

δ(ax)dx =
1
a

∫ ∞

−∞

δ(w)dw =
1
a

1.20 The “step function” H(x) is defined so that H(x) = 0 for x < 0, and H(x) = 1
for x > 0. Show that dH/dx has the correct properties to claim that dH/dx = δ(x).

Solution

Since H(x) is a constant everywhere except at x = 0, dH/dx = 0 everywhere except
at x = 0, just as for δ(x). Then, for some constant a > 0,∫ a

−a

dH
dx

dx = H(a)−H(−a) = 1−0 = 1

so the integral also has the properties of δ(x). That’s all we need to show dH/dx =

δ(x).





C H A P T E R 2

Maxwell’s equation and
Electromagnetic
Waves

2.1 Consider a vector field V(r) = 4xx0 +5yy0 +6zz0 and a closed, cubical S surface
with side length L and one corner at the origin, lying in the first octant. Evaluate the
integral

∮
S V ·dA by first carrying out the dot product and integral on each of the six

faces of the cube, and adding them up. Check your answer by using the divergence
theorem, which you are likely able to do in your head.

Solution
Make a table to explicitly evaluate the surface integral:

Surface
∫

V ·dA
xy @ z = 0 0
xy @ z = L 6L ·L2

yz @ x = 0 0
yz @ x = L 4L ·L2

zx @ y = 0 0
zx @ y = L 5L ·L2

Sum 15L3

On the other hand,
∫
∇ ·Vdτ = 15

∫
dτ = 15L3.

2.2 Show that the integral form of Coulomb’s law can be derived from Gauss’s
law. First, argue why rotational symmetry implies that the electric field from a point
charge q has to be isotropic in all directions, and can only depend on the distance

15
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r from the charge. Next, use this to choose an appropriate “Gaussian surface” S so
that the integral in Equation (2.4a) is simple to evaluate. Finally, use Equation (2.5)
to show that the force F on another charge q′ is

F =
1

4πε0

qq′

r2

Solution
It is obvious that the field can only depend on r because there is no preferred
direction. Similarly, it can only be radially outward (or inward), so choose a Gaussian
surface that is a sphere of radius r centered at the origin. The magnitude E of the
electric field is given by (2.4a) as

E ·4πr2 =
q
ε0

so E =
1

4πε0

q
r2

and the force on a charge q′ is just q′E.

2.3 A “parallel plate capacitor” is made from two plane conducting sheets, each
with area A, separated by a distance d. The plates carry equal but opposite charges
±Q, uniformly distributed over their surface, and this creates a potential difference V
between them. Infer the (constant) electric field between the plates, and use Gauss’s
law to show that Q = CV , where C depends only A and d (and ε0).

Solution

The surface charge density is σ = Q/A, so a “pillbox” Gaussian surface with one flat
surface inside the metal plate (where the field is zero) and the other flat surface in the
gap, gives E = σ/ε0. The potential difference for this (constant) electric field is just
V = Ed = σd/ε0 = Qd/ε0A so that C = Q/V = ε0A/d.

2.4 Use the concept of a parallel plate capacitor to find the energy density in an
electric field. Charge is added in small increments dQ′ to an initially uncharged
capacitor giving a potential difference V ′. Each increment changes the stored energy
by V′dQ′ = (Q′/C)dQ′ where C is the capacitance. (See Problem 2.3.) Integrate to
find the total energy when charge Q is stored in the capacitor. Divide by the volume
of the capacitor to find the electric field energy density

uE =
1
2
ε0E2

where E is the electric field inside the capacitor.

Solution
Just do as the problem statement tells you to do:

ue =
1

Ad
U =

1
Ad

∫ Q

0

1
C

Q′dQ′ =
1

Ad
Q2

2C
=

1
Ad

(ε0EA)2

2ε0A/d
=

1
2
ε0E2
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2.5 Calculate the magnetic field at a distance r from an infinitely long straight wire
which carries a current I. First, using Gauss’s law for magnetism, explain why the
field must be tangential to a circle of radius r, centered on the wire and lying in a
plan perpendicular to the wire. Then use Ampére’s law to show that the magnitude
of the magnetic field is

B =
µ0I
2πr

Solution
The problem has cylindrical symmetry, but there is a handedness set by the direction
of the current. By Gauss’ Law for magnetism, there can be no radial component, as a
cylindrical Gaussian surface can pass no no flux. With a circular loop at radius r, the
line integral of Ampere’s Law (2.4d) is just B · 2πr for an azimuthal field B, hence
B = µ0I/2πr.

2.6 A long cylindrical coil of wire is called a solenoid and can be used to store a
magnetic field. If the coil is infinitely long, there is a uniform magnetic field in the
axial direction inside the coil, and no field outside the coil. Use an “Amperian Loop”
that is a rectangle enclosing some length of the coil, with one leg inside and one leg
outside, to show that the magnetic field is

B = µ0In

where I is the current in the wire and there are n turns per unit length in the coil.

Solution
The current enclosed in the rectangular loop is nI` where ` is the length of the loop.
There is no field outside the solenoid, and the field inside is parallel to the axis, so
the line integral just gives B`, hence B = µ0nI.

2.7 Find the vector potential A(r) which gives the magnetic field for the long
straight wire in Problem 2.5. It is easiest to let the wire lie along the z-axis and
express your result in terms of r = (x2 + y2)1/2, and to carry out the calculation in
cylindrical polar coordinates (r, θ,z).

Solution
B = Bθ̂=∇×A =−(∂Az/∂r)θ̂, so ∂Az/∂r =−µ0I/2πr and A =−(µ0I/2π) logr ẑ.

2.8 Follow this guide to convince yourself that the second term on the right in (2.4d)
is needed for the whole equation to make sense. First, imagine a long straight current-
carrying wire, with associated magnetic field given in Problem 2.5. Now “cut” the
wire, and insert a very thin capacitor, with plates perpendicular to the direction of
the wire. Current continues to flow through the wire while the capacitor charges up,
but no current flows between the capacitor plates, so it would seem there should be
no magnetic field there. But that doesn’t make sense: how could the magnetic field
just stop at the capacitor? Intuitively, you expect it to be continuous right through it.
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Finally, show that the second term, called a displacement current, in fact gives you
the same B inside the capacitor.

Solution The capacitor plates are circular with area A = πr2. The electric field flux
through this area is Aσ/ε0 = Q/ε0, since σ = Q/A. The left side of (2.4d) must equal
µ0I, where I = dQ/dt, so

µ0I = K
d
dt

[
Q
ε0

]
= K

I
ε0

which implies that K = ε0µ0, establishing (2.4d).

2.9 A “ 1/r2” vector field, such as the electric field from a point charge or the
gravitational field from a point mass, takes the form

V(r) =
k
r2 r0 =

k
r3 r

Show by an explicit calculation in Cartesian coordinate coordinates, that ∇ ·V = 0
everywhere, except at the origin. Then, using a spherical surface about the origin,
show that

∮
V · dA = 4πk. Hence argue that the charge density for a point charge q

located at the origin is qδ3(r) = qδ(x)δ(y)δ(z), where δ(x) is a Dirac δ(x) function as
defined in Chapter 1.

Solution
The calculation is straightforward, although a bit tedious:

∇ · k
r3 r = k

[
∂

∂x
x

(x2 + y2 + z2)3/2 +
∂

∂y
y

(x2 + y2 + z2)3/2 +
∂

∂z
z

(x2 + y2 + z2)3/2

]
=

1
r3 −

3x2

r5 +
1
r3 −

3y2

r5 +
1
r3 −

3z2

r5 =
3r2−3(x2 + yz + z2)

r5 = 0

for r , 0. For a sphere of radius r about the origin,
∮

V · dA = (k/r2) · 4πr2 = 4πk.
So, by Gauss’ Theorem for this spherical volume,

∫
∇ ·V = 4πk, but since∇ ·V = 0

everywhere except the origin, consider a small cube around the origin, and it is clear
that∇ ·V satisfies the properties of the 3D δ-function, i.e.∇ ·V = 4πkδ(x)δ(y)δ(z) =

4πkδ(3)(r). For Coulomb’s Law, V = E and k = q/4πε0, so Gauss’ Law takes the form
∇ ·E = qδ(3)(r)/ε0. Comparing to (2.19a), this implies ρ(r) = qδ(3)(r) for a point
charge q.

2.10 A “ 1/r” vector field, such as the magnetic field from an infinitely long current
carrying wire, takes the form

V(r) =
k
r
φ0 =

k
rz

[
−yx0 + xy0

]
Show by an explicit calculation in Cartesian coordinate coordinates, that ∇×V = 0
everywhere, except at the origin. Then, using a circular curve about the z-axis, show
that

∮
V ·dl = 2πk. Hence argue that the current density for an infinitely long current

carrying wire of zero thickness located along the z-axis is Iδ(x)δ(y).


