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Chapter 1 Pattern Recognition

1.1 Substituting (1.1) into (1.2) and then differentiating with respect towi we obtain

N∑

n=1

(
M∑

j=0

wjx
j
n − tn

)
xi

n = 0. (1)

Re-arranging terms then gives the required result.

1.4 We are often interested in finding the most probable value forsome quantity. In
the case of probability distributions over discrete variables this poses little problem.
However, for continuous variables there is a subtlety arising from the nature of prob-
ability densities and the way they transform under non-linear changes of variable.

Consider first the way a functionf(x) behaves when we change to a new variabley
where the two variables are related byx = g(y). This defines a new function ofy
given by

f̃(y) = f(g(y)). (2)

Supposef(x) has a mode (i.e. a maximum) atx̂ so thatf ′(x̂) = 0. The correspond-
ing mode off̃(y) will occur for a valuêy obtained by differentiating both sides of
(2) with respect toy

f̃ ′(ŷ) = f ′(g(ŷ))g′(ŷ) = 0. (3)

Assumingg′(ŷ) 6= 0 at the mode, thenf ′(g(ŷ)) = 0. However, we know that
f ′(x̂) = 0, and so we see that the locations of the mode expressed in terms of each
of the variablesx andy are related bŷx = g(ŷ), as one would expect. Thus, finding
a mode with respect to the variablex is completely equivalent to first transforming
to the variabley, then finding a mode with respect toy, and then transforming back
to x.

Now consider the behaviour of a probability densitypx(x) under the change of vari-
ablesx = g(y), where the density with respect to the new variable ispy(y) and is
given by ((1.27)). Let us writeg′(y) = s|g′(y)| wheres ∈ {−1,+1}. Then ((1.27))
can be written

py(y) = px(g(y))sg′(y).

Differentiating both sides with respect toy then gives

p′y(y) = sp′x(g(y)){g′(y)}2 + spx(g(y))g′′(y). (4)

Due to the presence of the second term on the right hand side of(4) the relationship
x̂ = g(ŷ) no longer holds. Thus the value ofx obtained by maximizingpx(x) will
not be the value obtained by transforming topy(y) then maximizing with respect to
y and then transforming back tox. This causes modes of densities to be dependent
on the choice of variables. In the case of linear transformation, the second term
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Figure 1 Example of the transformation of
the mode of a density under a non-
linear change of variables, illus-
trating the different behaviour com-
pared to a simple function. See the
text for details.
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vanishes on the right hand side of (4) vanishes, and so the location of the maximum
transforms according tôx = g(ŷ).

This effect can be illustrated with a simple example, as shown in Figure 1. We
begin by considering a Gaussian distributionpx(x) overx with meanµ = 6 and
standard deviationσ = 1, shown by the red curve in Figure 1. Next we draw a
sample ofN = 50, 000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distributionpx(x).

Now consider a non-linear change of variables fromx to y given by

x = g(y) = ln(y) − ln(1 − y) + 5. (5)

The inverse of this function is given by

y = g−1(x) =
1

1 + exp(−x+ 5)
(6)

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transformpx(x) as a function ofx we obtain the green curvepx(g(y))
shown in Figure 1, and we see that the mode of the densitypx(x) is transformed
via the sigmoid function to the mode of this curve. However, the density overy
transforms instead according to (1.27) and is shown by the magenta curve on the left
side of the diagram. Note that this has its mode shifted relative to the mode of the
green curve.

To confirm this result we take our sample of50, 000 values ofx, evaluate the corre-
sponding values ofy using (6), and then plot a histogram of their values. We see that
this histogram matches the magenta curve in Figure 1 and not the green curve!

1.7 The transformation from Cartesian to polar coordinates is defined by

x = r cos θ (7)

y = r sin θ (8)
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and hence we havex2 + y2 = r2 where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variablesis easily seen to be

∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣

=

∣∣∣∣
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

where again we have used (2.177). Thus the double integral in(1.125) becomes

I2 =

∫ 2π

0

∫ ∞

0

exp

(
− r2

2σ2

)
r dr dθ (9)

= 2π

∫ ∞

0

exp
(
− u

2σ2

) 1

2
du (10)

= π
[
exp

(
− u

2σ2

) (
−2σ2

)]∞
0

(11)

= 2πσ2 (12)

where we have used the change of variablesr2 = u. Thus

I =
(
2πσ2

)1/2
.

Finally, using the transformationy = x−µ, the integral of the Gaussian distribution
becomes

∫ ∞

−∞

N
(
x|µ, σ2

)
dx =

1

(2πσ2)
1/2

∫ ∞

−∞

exp

(
− y2

2σ2

)
dy

=
I

(2πσ2)
1/2

= 1

as required.

1.8 From the definition (1.46) of the univariate Gaussian distribution, we have

E[x] =

∫ ∞

−∞

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}
x dx. (13)

Now change variables usingy = x− µ to give

E[x] =

∫ ∞

−∞

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
y2

}
(y + µ) dy. (14)

We now note that in the factor(y + µ) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show this explicitly, write the integral



10 Solutions 1.9– 1.10

as the sum of two integrals, one from−∞ to 0 and the other from0 to ∞ and then
show that these two integrals cancel). In the second term,µ is a constant and pulls
outside the integral, leaving a normalized Gaussian distribution which integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46) for the normal distribution
into the normalization result (1.48) and re-arrange to obtain

∫ ∞

−∞

exp

{
− 1

2σ2
(x− µ)2

}
dx =

(
2πσ2

)1/2
. (15)

We now differentiate both sides of (15) with respect toσ2 and then re-arrange to
obtain (

1

2πσ2

)1/2 ∫ ∞

−∞

exp

{
− 1

2σ2
(x− µ)2

}
(x− µ)2 dx = σ2 (16)

which directly shows that

E[(x− µ)2] = var[x] = σ2. (17)

Now we expand the square on the left-hand side giving

E[x2] − 2µE[x] + µ2 = σ2.

Making use of (1.49) then gives (1.50) as required.

Finally, (1.51) follows directly from (1.49) and (1.50)

E[x2] − E[x]2 =
(
µ2 + σ2

)
− µ2 = σ2.

1.9 For the univariate case, we simply differentiate (1.46) with respect tox to obtain

d

dx
N
(
x|µ, σ2

)
= −N

(
x|µ, σ2

) x− µ

σ2
.

Setting this to zero we obtainx = µ.

Similarly, for the multivariate case we differentiate (1.52) with respect tox to obtain

∂

∂x
N (x|µ,Σ) = −1

2
N (x|µ,Σ)∇x

{
(x − µ)TΣ−1(x− µ)

}

= −N (x|µ,Σ)Σ−1(x− µ),

where we have used (C.19), (C.20) and the fact thatΣ−1 is symmetric. Setting this
derivative equal to0, and left-multiplying byΣ, leads to the solutionx = µ.

1.10 Sincex andz are independent, their joint distribution factorizesp(x, z) = p(x)p(z),
and so

E[x+ z] =

∫∫
(x+ z)p(x)p(z) dxdz (18)

=

∫
xp(x) dx+

∫
zp(z) dz (19)

= E[x] + E[z]. (20)


