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Substituting (1.1) into (1.2) and then differentiatinglmiespect tav; we obtain

N /M
Z ( w;rd — tn> zt = 0. (1)
j=0

n=1
Re-arranging terms then gives the required result.

We are often interested in finding the most probable valueséone quantity. In
the case of probability distributions over discrete vagalthis poses little problem.
However, for continuous variables there is a subtlety mgifiom the nature of prob-
ability densities and the way they transform under nondirehanges of variable.

Consider first the way a functiofi ) behaves when we change to a new variable
where the two variables are related by= g(y). This defines a new function of
given by

Fy) = fla(y)). )

Supposef () has a mode (i.e. a maximum)zaso thatf’(z) = 0. The correspond-

ing mode of}(y) will occur for a valuey obtained by differentiating both sides of
(2) with respect tg

f'@) = f9®)g'(y) = 0. ®)
Assumingg’(y) # 0 at the mode, therf’(¢(y)) = 0. However, we know that
/() = 0, and so we see that the locations of the mode expressed i téreach
of the variables: andy are related by = g(), as one would expect. Thus, finding
a mode with respect to the variabids completely equivalent to first transforming
to the variabley, then finding a mode with respectgoand then transforming back
tozx.

Now consider the behaviour of a probability dengityz) under the change of vari-
ablesz = g(y), where the density with respect to the new variablg,ig/) and is
given by ((1.27)). Let us write’(y) = s|¢’(y)| wheres € {—1,+1}. Then ((1.27))
can be written

py(y) = p(9(y))sg'(y).
Differentiating both sides with respectgahen gives

Py (y) = spl.(9W){g' W)} + sp=(9(v)g" (v). (4)

Due to the presence of the second term on the right hand sid¢ tife relationship

Z = g¢(y) no longer holds. Thus the value ofobtained by maximizing, (z) will

not be the value obtained by transformingtdy) then maximizing with respect to

y and then transforming back to This causes modes of densities to be dependent
on the choice of variables. In the case of linear transfaonathe second term
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Example of the transformation of

the mode of a density under a non- 1
linear change of variables, illus- —— py(y) 9 (@)
trating the different behaviour com-  —=F — — — — .
pared to a simple function. See the |
text for details. y |
0.5 '
P ()
0

10

vanishes on the right hand side of (4) vanishes, and so tlagidocof the maximum
transforms according @ = g(y).

This effect can be illustrated with a simple example, as showFigure 1.  We
begin by considering a Gaussian distributipy{«) over z with meany = 6 and
standard deviatioa = 1, shown by the red curve in Figure 1. Next we draw a
sample of N = 50,000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distribytidn).

Now consider a non-linear change of variables froto y given by
z=yg(y) =In(y) —In(1 —y) +5. ®)
The inverse of this function is given by

1

1+ exp(—z + 5) ©

y=g ()

which is alogistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transfornp,.(z) as a function ofc we obtain the green curye.(g(y))
shown in Figure 1, and we see that the mode of the depsity) is transformed
via the sigmoid function to the mode of this curve. Howevke tensity ovey
transforms instead according to (1.27) and is shown by thgemta curve on the left
side of the diagram. Note that this has its mode shiftediveléa the mode of the
green curve.

To confirm this result we take our samplei®f, 000 values ofz, evaluate the corre-
sponding values af using (6), and then plot a histogram of their values. We sage th
this histogram matches the magenta curve in Figure 1 andhagjreen curve!

1.7 The transformation from Cartesian to polar coordinategfsdd by

= rcosf (7)
= rsinf (8)
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and hence we have® + y? = r? where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variableasily seen to be

or Ox
(z,y) - or 06
8<Ta 9) 8y 83/
ar 00
| cos@® —rsinf |
o sinf rcos6

where again we have used (2.177). Thus the double integfhali25) becomes

I’ = /02”/0006){1) <%>rdrd9 9
= 27 /000 exp (7%,2> %du (10)
=7 [exp (f%) (—202)}20 (11)
— 2702 (12)

where we have used the change of variabtes u. Thus

I = (27702)1/2.

Finally, using the transformatiopn= = — , the integral of the Gaussian distribution
becomes

e} 1 oo y2
2 —
/_ N (z|p,0%) dz = (27702)1/2/_ exp <_F> dy

1

(27702)1/2
as required.

From the definition (1.46) of the univariate Gaussian distibn, we have

oo 1/2
Elz] = /_OO <277102> exp {—%(m — M)Q} zdz. (13)

Now change variables using= = — u to give

oo 1/2
E[z] :/_ <27T10.2> exp{—%yz} (y + p) dy. (14)

o0

We now note that in the factdy + ) the first term iny corresponds to an odd
integrand and so this integral must vanish (to show thisieitly| write the integral
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1.9

1.10

as the sum of two integrals, one froavo to 0 and the other frond to co and then
show that these two integrals cancel). In the second terima constant and pulls
outside the integral, leaving a normalized Gaussian Higion which integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46)He normal distribution
into the normalization result (1.48) and re-arrange toiobta

e 1 1/2
/_Oo exp {T‘Q(m - ,u)Q} dz = (27702) . (15)
We now differentiate both sides of (15) with respecitoand then re-arrange to
obtain
1 12 > 1 2 2 2
(27702) /_meXP{—@(x—u) }(fv—u) =o' (16)
which directly shows that

E[(x — p)?] = var[z] = 0. (17)
Now we expand the square on the left-hand side giving

E[2?] — 2uE[z] + p* = 0.
Making use of (1.49) then gives (1.50) as required.
Finally, (1.51) follows directly from (1.49) and (1.50)

El2®] — Elz]* = (0> 4+ 0%) — p* = 0.

For the univariate case, we simply differentiate (1.46hwéspect ta: to obtain

d 2\ _ L —H
EN(.ILM,U)— N (z|p, 0?) :

0.2
Setting this to zero we obtain= .
Similarly, for the multivariate case we differentiate (2)5vith respect tox to obtain

TNl D) = N el )V {x— ) TS (x o))

= —Nxp,Z)= (x—p),

where we have used (C.19), (C.20) and the fact ®iat is symmetric. Setting this
derivative equal t®, and left-multiplying by, leads to the solutior = u.

Sincez andz are independent, their joint distribution factoriz€s, z) = p(z)p(2),
and so

Elz+ 2] = //(ac + 2)p(x)p(z) dz dz (18)

- / ap(z) da + / zp(z) dz (19)
= Elz]+E[}]. (20)



