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[CHAPTER 1 |

1.1
(a) From Table 1.1...
(1) Sior Ge
(ii) AIP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, or InSb
(b) Crystalline material has the same atomic pattern or order throughout the material, while

polycrystalline material has crystalline subsections that are misaligned with respect to each
other.

(¢) A unit cell is a small portion of a crystal that could be used to reproduce the crystal.
(The preceding is from the first sentence of Subsection 1.2.1.)

(d) Unit cell Atoms/unit cell

simple cubic........ 1
becoiiiiiii. 2
| (o] SO 4
diamond............ 8
(e) 1A=108cm
(f) a (one lattice constant)

(g) 4

(h) As summarized in Table 1.3: ()--crystal plane, { }--equivalent planes, [ ]--crystal
direction, and < >--equivalent directions.

(1) See Subsection 1.3.2.

12

In the Alg 5Gag sAs unit cell, pictured below, fcc sublattice sites containing the Column III
elements are equally occupied by Al and Ga atoms.
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13

(a) Ge crystallizes in the diamond lattice where there are 8 atoms per unit cell (see
Subsection 1.2.3). Thus

DENSITY = 8 . 8 = 4.44 x 1022 atoms/cm3

a3 (5.65 x 10-8)3

14

(a) From Fig. 1.3(c), we conclude nearest-neighbors in the bec lattice lie along the unit cell

body diagonal. Since the body diagonal of a cube is equal to V3 times a cube side length
(the lattice constant a),

Nearest-Neighbory V3
( Distance ) =72

(b) From Fig. 1.3(d), nearest-neighbors in the fcc lattice are concluded to lie along a cube-
face diagonal. The diagonal of a cube face is equal to V2 times a cube side length. Thus

Nearest-Neighbory _ V2
( Distance ) =7

(a) Looking at Fig. 1.4(a) one concludes
L @ @ @
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(b) For Si at room temperature a = 5.43 x 108 cm. From the above figure one concludes
that there are (1/4 x 4 corner atoms) + 1 body atom = 2 atoms per an area of a2 on the
(100) surface. Thus one has

e 2 = 6.78 x 1014 Si atoms/cm?

a? (5.43 x 10-8)2
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(c) For a (110) plane one has the atom placement pictured below

LY ST Y -
® oio o |
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(d) On the (110) plane in the area a x V2a one has (1/4 x 4 corner atoms) + (1/2 x 2 edge
atoms) + 2 body atoms =4 atoms. Thus one has

4 242

- = = 9.59 x 1014 Si atoms/cm?2
V222 (5.43 x 10-8)2

(e) MATLAB program script (paralleling Exercise 1.3)...

%Solution to Problem 1.5 (e)

N=input ('input number of atoms on (100) face of unit cell, N = %);
-a=input ('lattice constant in angstrom, a = '):
surfaceden=N* (1.0el6)/ (a"2) gnumber of atoms/cm™2

(Note: This and all other problem solutions are available on disk.)

1.6
(a) (i) Following the procedure outlined in the text
1,3, 1 ...intercepts (normalized)
1, 1/3,1 ...[1/intercept]s
3,1,3 ...reduction to lowest whole-number set
(313) ...Miller index notation for plane

(ii) As noted in the text near the end of Subsection 1.2.4, the normal to a plane in the
cubic crystal system has the same Miller indices as the plane.

[313] ...Miller index notation for normal to plane
(b) (i) Again following the Miller indexing procedure,

1, 1,12 ...normalized intercepts

1, 1,2 ...[1/intercept]s

1, 1,2 ...lowest whole-number set

(112) ...Miller indices of plane
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(i1) Assume the vector has a length d. Its projections along the x, y, and z axes are then
0, 0, and 4, respectively. Reducing to the lowest possible whole-number set and

enclosing in square brackets, then yields
[001] ...Miller indices of direction vector

L7

For each of the given planes, the Miller indexing procedure must be reversed to determine
the intercepts of the given plane on the coordinate axes. Using part (c) as an example, one

proceeds as follows:

(123) ...Miller indices
1,2,3 ...[1/intercept]s
1,172,173 ...intercepts

The plane in question intercepts the x, y, z coordinate axes at a, a/2, and a/3, respectively.
Note that any multiple of the cited intercept set — such as 3a, 2a, a — would also be correct.
All such planes are parallel equivalent planes.

z Z
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1.8

Miller indices may be viewed as specifying the projection (in arbitrary units) of the to-be-
pictured vectors along the coordinate axes. For example, [010] corresponds to a vector
with a unit projection along the y-axis and no projection along the x- or z-axes. In other
words, [010] is coincident with the +y coordinate axis. The other required direction
vectors are deduced in a similar manner and are as pictured below.

/ z
[001]
() i [1(§3]
[101] [1((111] ‘ /
) )
[010] - y
[010] y (®
@
: [110]
) / ®
X [00T] X
©
1.9
As noted in the problem statement, two directions [h1k1/1] and [hokplp] will be mutually
perpendicular if

hihy + kikp+ 11l = 0

(a) Here [h1k1l1] = [100], requiring hy = 0. All directions [0k212] are perpendicular to
[100]. Two specific simple examples are [001] and [011].

(b) Given [h1k1/1] = [111], one requires the Miller indices of the perpendicular direction to
be such that hy + k3 + I = 0. Two specific examples are [011] and [112].
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L10

As shown in the following left-hand figure, when the [011] and [010] directions are
pictured simultaneously, it becomes obvious that the angle between the two directions is
45°. Alternatively, the angle between the two directions can be computed using the cos(6)
relationship in Problem 1.9. Specifically, given [h1k1l1] = [011] and [hokl] = [010],
cos(6) = 1/V2 and 6= 45°. The required positioning of the "grooves" on the wafer's
surface is pictured in the following right-hand figure.

wafer
i\ [011]
 Ja50
[010]
X grooves

1.11

(a) If the Fig. P1.11 unit cell is conceptually copied and the cells stacked like blocks in a
nursery, one concludes the resulting latttice is a [ simple cubic latticc].

(b) There is one atom inside the unit cell and the unit cell volume is @3. Thus

|atoms/unit volume = 1/43).

(c) For a (110) surface plane the atom positioning would be as pictured below.

Fosmmmeas= remessssss N}

i ‘ :

. ® 1 e |

i ] ]

Fommmm—e T - T

[} 1 ]

] &

e ! @ i

) ) 8

L L L]
—12a—

atoms 1 atom 1

unit area (a)(\/’ja) = \V2a?

(d) [111] ... The specified vector has equal projections on the three coordinate axes.
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1.12
Equivalent planes: (a) 6, (b) 12, (¢) 8.
Equivalent directions: (d) 6, (e) 12, (f) 8.

NOTE: The answers may be deduced from geometrical considerations — or — by noting the
total number of possible combinations of the given, and negatives of the given, Miller
indices.

Li3

(a) In the simple cubic lattice the nearest—neighbor distance is a, where a is the side length

of the cube, and the atomic radius r is therefore a/2. Moreover, there is one atom per unit
cell. Thus

Occupied volume = %n r3 = g-n @/2)3 = nddl6
Total cell volume = a3
Occupied volume T

Total volume ~ 6

Ratio =

(b) In the body centered cubic lattice the atom in the center and any one of the cube corner

atoms are nearest neighbors. Thus 1/2 the nearest neighbor distance is r = =3 a/4. Also,
there are two atoms per unit cell.

diagonal = 4r = Y3 a

Occupied volume = 2(3 nrid) = n (N3 a/4)3 = ﬁ Tt a3

Total cell volume = a3

Occupied volume _ V3m
Total volume ~ 8

Ratio =
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(c) For a face centered cubic lattice, the closest atoms lie in a cube face. Also, there are
four atoms per unit cell in the fcc lattice.

face diagonal =4r =v2a; r = V2 a/4

Occupied volume = 4(% nrd) = -13§ t (N2 a/4)3 = % T a3

Total volume = a3

Ratio = ll?

(d) As emphasized in Fig. 1.4(c), the atom in the upper front corner of the unit cell and the
atom along the cube diagonal 1/4 of the way down the diagonal are nearest neighbors.

Since the diagonal of the cube is equal to V3 times a cube side length, the center-to-center
distance between nearest-neighbor atoms in the diamond lattice is V3 a/4, and the atomic

radius r =3 a/8. Moreover, there are eight atoms per unit cell in the diamond lattice.
Thus

Occupied volume = 83 7r3) = 221 (V3 a/8)? = L a3

Total volume = a3

. \3x
Ratio = 16
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{CHAPTER 2 |

2.1

(a)/(b) The MATLAB program script yielding both the part (a) and part (b) results is listed
below. A combined plot comparing the part (a) result (solid-line) and part (b) result
(dashed-line) is included before the program script. At T =300 K the part (a) relationship

yields | EG(300K) = 1.1245 eV]|.

1.14

1.12

1.1

EG(eV)

1.08

1.06

1.04

1.02

1 1 1 1
0 100 200 300 400 500 600

MATLAB program script...

%EG Computation (EG versus T)
close
clear

%$Parabolic Fit Parameters
EG0=1.170;

a=4.730e-4;

b=636;

$Parabolic computation and plot
T=[{0:5:6001;
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EG=EGO0-a.*(T."2)./(T+b):

EG300=EGO0-a.* (300.72)./(300+b) ;

plot (T,EG); axis([0 600 1.0 1.2]); grid:
xlabel ("T(K) '); ylabel ('EG(eV) ")

hold on

$Linear computation and plot
EGO=1.205:;

a=2.8e-4;

EG=EG0-a.*T;

plot (T,EG, ‘b—");

hold off

%$T=300K result
EG300

2.2

(a) See Fig. 2.4(a).

(b) See Fig. 2.4(b) or the left-hand side of Fig. 2.7(b).
(c) See the left-hand side of Fig. 2.7(c).

(d) See Fig. 2.10(a).

(e) See Fig. 2.10(b).

2.3

(a) See the right-hand side of Fig. 2.7(b).

(b) See the right-hand side of Fig. 2.7(c).

(c) See Fig. 2.13(a).

(d) See Fig. 2.13(b).

(e) See the extreme left-hand side of either Fig. 2.13(a) or Fig. 2.22(b).
(f) See the extreme left-hand side of Fig. 2.13(b).
(g) See the extreme right-hand side of Fig. 2.16.
(h) See the extreme left-hand side of Fig. 2.18.
(1) See the middle of Fig. 2.18.

(§) See the extreme right-hand side of Fig. 2.18.
(k) See Fig. 2.19.

(1) See Fig. 2.19.
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24

(@) The removal of the column IIl Ga atom with three valence electrons leaves five dangling
bonds in the vicinity of the vacancy. The removal of the column V As atom with five
valence electrons leaves three dangling bonds in the vicinity of the vacancy.

(b) When a Si atom with four valence electrons is inserted into the missing Ga site, there is
one extra electron that does not fit snugly into the bonding pattern. Conversely, when a Si
atom is inserted into the missing As site, there are one too few bonds to complete the
bonding scheme.--There is a hole in the bonding scheme.

Answer-(a) Answer-(b)

© ... The extra electron noted in part (b) is readily released yielding an increase in
the electron concentration.

(d ... The missing bond noted in part (b) is readily filled at room temperature
yielding an increase in the hole concentration.

(e
() Ec (i) Ec
Eg
----------------------------- E; ] 7
Ex
EV EV
n-type p-type
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25
As noted in Subsection 2.4.1, g.(E)dE represents the number of conduction band
states/cm3 lying in the energy range between E and E + dE. It follows that the number of

states/cm3 in the conduction band lying between energies E¢ and E¢ + 1T is simply
obtained by integrating gc.(E)dE over the noted range of energies.

Ec+ kT « [—% [EHAT
states/cm3 = f g(E)dE = MV 2 f {E_E. dE
E. 2w g,

m2m; AL (i om?
020 (E - EP = | 2|50

3/2
2h3 2ﬁ3 ) ('}’kT)

L T

2.6

(a) The probability of electrons occupying states at a given energy under equilibrium
conditions is given by the Fermi function. Here we are told the energy of interest is
E = Er. Thus

- 1 1
Ep) = =1
REF) | + oEr—EUT 2

(b) The desired probability is again given by the Fermi function. Here we are told Eg = E,
and the energy of interestis E = E + kT. Consequently,

E.+kT) = 1 =1 _ 0.269
f( ,T) 1 + e{(Ec+kT) ~E)kT 1+el

(c) The problem statement indicates fE.+kT) = 1 — f(E¢+kT), or

1 g 1 e (EctkT-Ep)/kT _ 1

Thus we must have

or

Ep= Ec+kT|
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2.7

The distribution of electrons in the conduction band is given by gc(E)AE); the distribution
of holes in the valence band is given by g(E)[1 — f(E)]. Working with the electron
distribution we note,

= 1 = ¢-(E-ERKT
RE) 1 + ¢E-Ep/T ¢ .forall E 2 E_ if the semi-

conductor is nondegenerate

Thus

miN 2mi(E-E.) ¢ ~(E-ER)/kT

8(EE) =
n2H

=X (E_Ec)llz e (E-Ep/kT K= mp Vzignﬁ
L

The extrema points of any function are obtained by taking the derivative of the function and
setting the derivative equal to zero.

Ao (EYEY = — K o-(E-EDRT _ X (p | \\/2 p-(E-EQ/kT
L8 ENE)] B BAE-E)
set
= 0
Clearly
1 — N Epeak-Ec
2V Epeak-Ec <
or
Epeak - Ec = kT/2
and

E?peak =Ec +kT/ 2] ...for electrons in the conduction band

The development leading to the peak energy of Epeak = Ey — kT/2 for holes in the valence
band is completely analogous.
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2.8
The electron population at any energy is given by go(E)(E). Also, since the semiconductor
is nondegenerate

f(E) = 1 = e~ E-EDT  forallE > E,

The electron population at E = E¢ + 5kT normalized to the peak electron population at
E =E. + kT/2 is therefore

_ 8c(EcHSKT)(Ec+5kT)
8 EcHKT/D)f(E+kT/2)

— Y5kT e—Ec+SkT-ERkT - 45 _ 2
= Y175 o BT ERNT Y10 e 3.51 x 10

29
The hole and electron distributions are given respectively by

*

*
(electron dist.) = go(E)E) = ¥ 2™ \;2;%@;645.5@/”
nh

* *
_ (mnV 2mg, e_EG/4kT) VE —E, e~E-EJKT

2

and

*v 2m

*
: P {E, —E e E-ERKT

(hole dist) = gy(E)[1—fE)] = P
2h
* %
- (”‘p 2y e~3EC,/4kT) VEv E e~ (Ev-EJKT
2,3
neh

Note that the approximate (non-degenerate) expressions for the Fermi function established
in Subsection 2.4.2 were employed in writing down the carrier distributions.
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The required MATLAB program script and resultant plots are presented below.
Computations were performed employing Eg = 1.12 eV, kT = 0.0259 eV, mp*/mg = 1.18
and my*/mg = 0.81 from Table 2.1, and & = 6.63 X 10-34 joule-sec and mp =9.11 X
10-31 l‘()g from the table of physical constants (inside back cover).

The plots are clearly consistent with Fig. 2.16 in the text. (Note that the electron
distribution scale is multiplied by 1015 while the hole distribution scale is multiplied by
106.) The distributions peak at kT/2 from the band edges graphically reconfirming the peak
positions noted in Problem 2.7. ‘

MATLAB program script...
$Problem 2.9...Carrier Distributions

%Intialization
close
clear

%Constants

EG=1.12;

kT=0.0259;

m0=9.11e-31;

mnr=1.18;

mpr=0.81;

hbar=6.63e-34/ (2*pi):

cl=1.6e-19; %joules = cl*eV

c2=1.0e-6 $m” 3=c2*cm”™3

%Computation

deltaE=linspace (0, 5*kT) : %deltakE = E-Ec or Ev-E in eV
A=m0*sqrt (2*m0) / (pi~2*hbar"3) ;

An=mnr”(3/2)*A; Ap=mpr”"(3/2)*A;
e_dist=c1*c2*An*exp(—EG/(4*kT)).*sqrt(cl*deltaE).*exp(—deltaE/kT):
h_dist=cl*cZ*Ap*exp(—3*EG/(4*kT)).*sqrt(cl*deltaE).*exp(—deltaE/kT);
$Note use of ¢l and ¢2 to make distribution units number/cm”3-eV

%Plots

subplot(2,1,1), plot(e dist,deltaE/kT); grid
xlabel (‘electron distribution (number/cm™3-eV)');
ylabel (' (E-Ec) /kT")

subplot (2,1,2), plot(h dist,-deltaE/kT); grid
axis([0,1.4e7,-5,0])

xlabel (*hole distribution (number/cm”3-eV)?');
ylabel (' (E-Ev) /kT?")
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2.10

(a) Utlizing Eq. (2.6a), the approximate (nondegenerate) expression for the Fermi function
established in Subsection 2.4.2, Eq. (2.13a), and Eq. (2.16a), one obtains

(mav2mg [n28) VE —E¢ e~E-ErkT
2 (m k120w e Er-ESKT

- 2VE-Ec ,_gEynT
ﬁ(kT)3/2

(normalized dist.) = gC(E’zf (E) =

(b) A plot of the normalized electron distribution verus energy for three different
temperatures and the MATLAB program script yielding the plot are given below. From the
plot one observes that the peak energy, which occurs at kT/2, moves to progressively
higher energies with increasing 7. More significantly, the distribution becomes less peaked
in nature and the height of the peak decreases with increasing temperature.
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MATLAB program script...

%Problem 2.10...Normalized Electron Distribution as a function of T

$Intialization
close
clear

%Computation and plot

" k=8.617e-5;

T=[300 600 1200];

kT=k.*T;

E Ec=linspace(0,0.4);
for i=1:3,
dist=2*sqrt(E_EC)/(sqrt(pi)*kT(i)“(3/2)).*exp(—E_Ec/kT(i));
y(i,:)=dist;
end

plot (E Ec,y): grid .

axis([0,0.4,0,201)

xlabel ('E-Ec (eV)'):; vylabel('normalized distribution (1/ev)*);

text (.005,12, "300K", "Color?, 'yellow');

text (.01,7, '600K", 'Color', '‘magenta') ;

text (.015,3, '1200K", 'Color"', ‘cyan?')

20 T T

i
H

-t
(2

[eo]

normalized distribution (1leY)
o

o
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2.11

Substituting the Eq.(2.6b) expression for gy(E) and the Eq (2.7) expression for f{E) into

Eq.(2.8b), one obtains

1- 1 - 1
1+ eE-EKT | 4 o(Ex-EYKT
and
E,
_msamy f VE,-E dE
22 I 1+ (@ -EVAT
Now letting
_Ey-E
T =T
E,-E
M=
Epottom — —o°
yields
_mg2mg (T[T n'2an
1[27i3 0 1 + en'n"
Recognizing
172
Fip(ny) = M—— ...Fermi-Dirac integral of order 1/2
o 1+emm
and defining
* kT 3/2
Ny = 2 m k
2 H?
one obtains

(2.9)

(2.10a)'

(2.10b)’

(2.10c)

(2.11)

(2.12)"

(2.13b)



p =Ny {—ZE— Fip (y) (2.14b)

If the semiconductor is nondegenerate, such that Eg > Ey + 3kT, then 17y <-3. Since
1) 2 0 in the Fermi-Dirac integral, exp(1n-1y) = exp(3) for all 7. Thus one obtains

Fip(my) = | nle(Mvgn = 12@ e(Ev-Ep}/kT
0

Subéﬁtuting this approximate relationship into Eq.(2.14b) finally yields

p = Ny e -EIKT | (2.16b)

2.1

(@) - electron distribution = go(E)AE) = (Nc/kT) e E-ERIT

where use has been made of the fact that the semiconductor is nondegenerate (Ep<Ec—3kT).
Thus

E

Exponential decrease with
increasing £

SLE(E)

(b) Following the procedure outlined in Subsection 2.5.1 of the text, if

8c(E) = Nc/kT E>E.
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then

Etop N Etop d
- E(E)E = Y€ £

E; E.
Let
This yields

n o= NC __‘ﬁ__
, o 1+ e

The integral here can be performed in closed-form.
n = Nc[n-In(1+e™ )]; = Nc[ne + In(1+e )]

The relationship analogous to Eqs.(2.14a) is therefore

n = Nc [ne+ In(1+e )]

If the semiconductor is nondegenerate, 1c <-3. Thus

Infe T (1+eM)] = -1 + In(1+e )

In(1+e""k)
-Ne + el since exp(ne) << 1 and In(1+x) = x if x << 1.

n

We therefore conclude

n = Ngel = Nc e Ee kT

The above holds for a nondegenerate semiconductor and is the desired relationship
analogous to Eq.(2.16a). Actually, the relationship has turned out to be identical to

Eq.(2.16a).



2.13
(a) Rewriting Eqgs.(2.13), one obtains

P72

Nc = No ﬁ%
m5\3/2

Ny = No my,

where

N = 2 {M 3/2
272

Using the numbers cited in the problem statement, the k-value given on the inside back
cover, and remembering to convert from eV to joules, one calculates

No — 2|2 0109 x 1031)8.617 x 10°5)(300)(1.602 x 1019 |
(6.625 x 10-34)?

= 2.510 x 1025/m3 = 2.510 x 1019/cm3

and therefore
Nc,v = (2510 x 1019/cm3) (m*/mg)3/2
(b) Semiconductor Nc (cm-3) Ny (cm3)
Si 3.22 x 1019 1.83 x 1019
Ge 1.02 x 1019 5.42 x 1018
GaAs 4.26 x 1017 9.41 x 1018
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2.14
(a) Referring to Fig. 2.20, one concludes:
(i) ni(S1) = ni(Ge, 300K) at T = 430K.
(i1) ni(GaAs) = ni(Ge, 300K) at T = 600K.
(b) With the differences in the effective masses neglected,

A _ e “EGal2kT = eEGB-EGA)2kT _ el/0.0518 = 2.42 X 108
B p-EGB/2kT

2.15

The MATLAB program script implementing the requested ni(Ge) vs. T computation is
reproduced below along with sample numerical results. As must be the case since the same
computational equation was used in both cases, the numerical results are found to be
consistent with the values displayed in Fig. 2.20.

MATLAB program script...
%Problem 2.15...ni versus T for Ge

%$Initialization

close; clear

%Computation

k=8.617e-5;

T=[225:25:475];
ni=(1.76el16) .*(T."1.5) .*exp (-0.392:/(k.*T));
%Display result on screen

j=length(T):

fprintf (*\n\nT (K) ni(Ge)\n');

for ii=1:7,

fprintf ('%$-10.£%-10.3e\n', T(ii),ni(ii)});
end

T(K) ni(Ge)

225  9.841e+10
250  8.705e+11
275 5.251e+12
300  2.375e+13
325 8.597e+13
350  2.61le+14
375 6.888e+14
400 1.620e+15
425 3.463e+15
450  6.838e+15
475 1.263e+16
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2.16

(@) AsT—>0, n—>0 and p— 0. (See the discussion in Subsection 2.5.7.)
(b) Since N >> n;, one would have

ni2/Np ..if a donor

n=Np and p
p = Np and n = ni?2/Np ..if an acceptor
We are told # =N and p = nj2/N. Clearly the impurity is a donor .

(c)Here we are given the minority carrier concentration, n = 105/cm3. As long as the Si is
nondegenerate, one can always write

np = n2
Thus

= 1015/cm3

1010y2
p = niYn =(—~?)—

10

‘Note: From previous problems we recognize that the above carrier concentrations do
indeed correspond to a nondegenerate semiconductor.

(d) Given Eg—Ej = 0259V and T = 300K,

n=n e(Er—EDKT _ (1010) e0.259/0.0259 _— 2 20 x 1014/¢m3

p = nie(Ei—EF)/kT - (1010) e—0.259/0.0259 _ 4.54 x105/cm3

(e) Employing the np product relationship,
np = n?2 = niz
n =V2n; = 1.414 X 1013/cm3
Next employing the charge neutrality relationship,
p—n+Np—Npg =n2—n+Np =0
Np = nf2 = 2 = 0.707 X 1013/cm3



2.17
(2) At room temperature in Si, nj=1019cm3. Thus here Np >>Na, Np >> n; and

n = Np = 1015/cm3

p = ni?¥/Np = 105/cm3

(b) Since Npo >>Np and Np >> nj,

p = Na = 1016/cm3

n = n2/Nao = 10%/cm3

(c) Here we must retain both Np and Np, but Np - NA >> n;j.

n = Np-Na = 1015/cm3

p = n#/(Np - Np) = 105cm3

(d) We deduce from Fig. 2.20 that, at 450K, nj(Si) = 5 x 1013/cm3. Clearly, #; is
comparable to Np and we must use Eq.(2.29a).

12
n = %ll {(I‘;D)ZM} = 1.21 x 1014/cm3

2 1342
ni _ Gx107°) 2.07 x 1013/cm3

T 121x10M4

p

(e) We conclude from Fig. 2.20 that, at 650K, nj = 1016/cm3. Here n; >> Np. Thus

1016/cm3

I
U

n = nj

It
U

p 1016/cm3

nj




2.18
(1) As established in the text [Eq.(2.36)],

Ei = £ o 2 kT InGmyima®)

Taking mp*/mn* to be temperature independent and employing the values listed in
Table 2.1, one concludes

E; displacement
part T(K) kT (eV) from midgap (eV)
(a-c) 300 0.0259 -0.0073

d 450 0.0388 —-0.0109
(e) 650 - 0.0560 -0.0158

Altemnatively, the mp*/mg and‘ mp*/myg versus T fit-relationships cited in Exercise 2.4 may
be used to compute the mp*/mp* ratio. One finds

E; displacement
part TK) mp*mg* kT (eV from midgap (eV)
(a-c) 300 0.680 0.0259 —0.0075

(d) 450 0.703 0.0388 -0.0103
(e) 650 0.719 0.0560 -0.0139

(i1) Ef - E; is computed using the appropriate version of Eq.(2.37) or (2.38).
«a) Eg - Ei = kT In(Np/n;) = 0.02591n(1015/1010) = 0.298 eV

(b) Ej - Eg = kT In(Na/n)) = 0.0259 In(1016/ 1010) = 0.358 eV
(¢) Eg - Ej = kT In[(Np-Np)/n;] = 0.0259 In(1015/1010) = 0.298 eV
(d) Er- Ei = kT In(n/nj) = 0.0388 In(1.21 x 1014/5 x 1013) =0.034 eV
(€) Eg-Ei = kT'In(n/n)) = O (n=np)
(iii)
0.57 E
0.298 F
—————————————— E1 ¢ ome en s e '—'--—'————‘El
0.36
0.55 0.551 » Ep
Ey ) Ey
(a) and (¢) (b)

2-17



E¢
0.55 0.034
______ %_______- ZF 1.015
0.53 1 0.49
EV
(d : (e)
2.19

(a) A sample MATLAB program that computes n, p, and Eg—E; given T, Np, and Ny is
listed below. The program incorporates the nj(T) computation given in the solution to

Exercise 2.4a.
MATLAB program script...

%Calculation of n,p and EF-Ei (nondegenerate, fully ionized)

%$Initialization
clear; close

%Specification of basic parameters

=input ('Please input the temperature, T, in Kelvin...T='}:
NA=input ('Please input NA(cm-3)...NA=');

ND=input ('Please input ND(cm-3)...ND=");

k=8.617e-5;

Nnet=ND-NA;

%ni computation (from Exercise 2.4a solution)
%Constants and T-range
A=2.510el9;
Eex=0.0074; %Value was adjust to match S&G ni (300K) value

°

%Band Gap vs. T
EG0=1.17;

a=4.730e-4;

b=636;
EG=EGO0-a.*(T."2)./(T+b);

Q

o

$Effective mass ratio (mnr=mn*/m0, mpr=mp*/m0)
mnr=1.028 + (6.11le-4).*T — (3.0%e-7).*T."2;
mpr=0.610 + (7.83e-4) .*T - (4.46e-7).*T."2;

%Actual ni calculation

ni=A.* ((T./300).7(1.5)) .* ((mnr.*mpr) .”~ (0.75)) . *exp (- (EG-Eex) ./ (2

LKkO*TY )



%Computation of n, p, and EF-Ei
if Nnet==0,
n=ni;
p=ni;
EFi=0;
elseif Nnet>0,
n=Nnet/2+sqrt ((Nnet/2) ~2+ni*2);
p=ni~2/n;
EFi=k*T*log(n/ni);
else
p=—Nnet/2+sqrt ( (Nnet/2)~2+ni~2);
n=ni"2/p:
EFi=-k*T*log(p/ni);
end
$Printout of results

format compact:
n

p
EFi

(b) Results obtained employing the part (a) program are tabulated below. The Problem
2.17/2.18 part (d) and (e) results are slightly different because of inaccuracies in reading
the elevated temperature values of #; from Fig. 2.20.

Part| T (K) | Na(cm3)| Np(cm3)| 5 (cm™3) n (cm3) p (cm3) | EF-Ej(eV)
@ | 300 0 | 1015 | 1.00x1010 | 1.00x1015 | 1.00x105 0.298
(b) | 300 1016 0 1.00X1010 | 1.00x104 | 1.00x1016 | —0.357
(©) | 300 | 9x1015 1016 | 1.00x1010 | 1.00x1015 | 1.00x105 0.298
(d) | 450 0 1014 | 471x1013 | 1.19x1014 | 1.87x1013 | 0.0359
) | 650 0 1014 | 1.146x1016| 1.151x1016| 1.141x1016 | 2.44x10-4
2.20

There is more than one way to work this problem, with alternative approaches likely to
yield slightly different answers. The most straightforward approach is recorded here.

At the onset of degeneracy
Eg = Ec.—3kT
Eg = Ey +3kT

and the maximum nondegenerate carrier concentrations are therefore

...n-type semiconductor

...p-type semiconductor

2-19



n = Nc e ~EJT - NG o-3

p = Ny e Ev—ER)kT _ Ny e

However
n = Np ...n-type Siatroom T

Na ..p-type Si at room T

S
in

Thus

Npimax = Nc €3 =322 x 1019) e-3 = 1.60 x 1018/cm3

Il

Ny e-3 =(1.83 x 1019) ¢-3

9.11 x 1017/cm3

NAimax

Nc and Ny were computed using the expression Nc,v = (2.51 x 1019/cm3)(mn,p*/n'lo)y2
and the effective mass values in Table 2.1. The cited computational relationship is given in
the text below Eq.(2.14b). Also see Problem 2.13.

2.21

~The MATLAB program listed below computes Er — Ej vs. Na or Np up to the
nondegenerate limit (N5 or Np = 1018/cm3) and yields results very similar to Fig. 2.21.

MATLAB program script...

%EF-Ei1 versus NA or ND (nondegenerate, fully ionized, 300K)
clear; close

$Specification of basic parameters
kT=0.0259;

ni=1.0el0;

NB=logspace (13,18); $NB=ND or NA

%Computation of EF-Ei versus doping
EFiD=kT.*1log (NB. /ni) ;
EFiA=-EFiD;

$Plot out Fermi level positioning

semilogx (NB, EFiD, NB, EFiA);

axis([1.0el3,1.0el18,-0.56 0.56]);

grid; xlabel('ND or NA'); ylabel ('EF-Ei');

text (1.0e14,0.30, 'Donor'); text(1.0e14,—0.30,‘Acceptog');
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