https:/[selldocx.com/products
/solution-manualssingle-variabte-calculussearly-transcendentals-8e-stewart

2 [J] DERIVATIVES

21 Derivatives and Rates of Change

Ay _ [~ /()

1. (a) This is just the slope of the line through two points: mpg = Ay = ~ 3

J@) = 1(3)

(b) This is the limit of the slope of the secant line PQ as @ approaches P: m = lin% 3
r— xr —

2. The curve looks more like a line as the viewing rectangle gets smaller.

2 1 0.5
y=sinx y=sinx y=sinx
-2 2 -1 | 1 —0.5 0.5
-2 -1 —0.5
3. (a) (i) Using Definition 1 with f(2) = 42 — 2* and P(1, 3),
m— Tim flx) = fla) _ lim (dx—a%) =3 _ lim (@ -4z +3) lim (x —1)(z—3)
z—a r—a z—1 z—1 z—1 z—1 z—1 r—1

:111111(3—1):3—1:2

(ii) Using Equation 2 with f(x) = 4z — 22 and P(1,3),
[4(14+h)—(1+h)*] -3

N o ) R (C) W (B D {C N
h—0 h h—0 h h—0 h
zlim4+4h 1—2h—h 3:Iim h +2h:hmh( h+2)zlim(—h+2):2
h—0 h h—0 h h—0 h h—0

(b) An equation of the tangent line is y — f(a) = f'(a)(z —a) = y—f()=f()=x-1) = y—-3=2(x-1),

ory =2x + 1.

() 6 The graph of y = 2z + 1 is tangent to the graph of y = 42 — z? at the
point (1,3). Now zoom in toward the point (1, 3) until the parabola and
the tangent line are indistiguishable.

-1 0 5

4. (a) (i) Using Definition 1 with f(z) = & — 2® and P(1,0),

_ _ 3 - _
z—1 x—1 z—1 T — z—1 T — z—1 r—1

= lim [—z(1 +2)] = —1(2) = -2

r—1
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100 [ CHAPTER2 DERIVATIVES
(ii) Using Equation 2 with f(z) = 2 — 2% and P(1,0),

fla+h) = fla) _ o fO+R) —f(1) _ . [A+R) —(1+h)*] -0

m= %1—>n10 h h—0 - %Ho h
. 14+h—(Q+3h+3R2+h* . —h*—3R*—2h . h(—h®—3h—2)
= lim = lim —F——— = lim —n——=
h—0 h h—0 h h—0 h

= lim(—~h® —3h — 2) = -2
h—0

(b) An equation of the tangent line isy — f(a) = f'(a)(z —a) = y—f(O)=f(1)(z-1) = y—0=-2(z—1),

ory = —2x + 2.
(c) 2 The graph of y = —2x + 2 is tangent to the graph of y = x — % at the
\ } point (1, 0). Now zoom in toward the point (1, 0) until the cubic and the
-2 2 tangent line are indistinguishable.

5. Using (1) with f(z) = 42 — 32% and P(2, —4) [we could also use (2)],

— 4z — 32%) — (-4 9.2
m:limM:hm(m m) ( )Zlim 3z +4x+4
r—a r—a z—2 xr—2 T—2 rx—2

e (B —2)(z—2) .. B B
= lim ~——— == = li; (-3¢ — 2) = —3(2) -2 = -8

Tangentline: y — (—4) = —8(z —2) & y+4=-8r+16 & y=—8xr+12.

6. Using (2) with f(z) = 2® — 3z + 1 and P(2, 3),
flath) —f@ _ fC+N)—f@) _ . Q2+h)°*-32+h)+1-3

m= flng%) h h—0 h h—0 h
. 8+ 12h+6R*+h*—-6—-3h—2 . Oh+6h>+h®  Rh(9+6h+h?)
= lim = lim = lim
h—0 h h—0 h h—0 h

= lim (9 + 6h + h?) =9
h—0

Tangentline: y —3=9(z—2) & y—3=9%2—-18 & y=9z-15

7. Using (1),

\/__\/T:r Ve -D)(z+1) r—1 1 1

= li —lim—— = lim— =
T T o1 TN - DGE 1) el (@Dl enyz+l 2

Tangentline: y —1=1(z—1) & y=1z+1
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE U

2z + 1

8. Using (1) with f(z) = PO and P(1,1),
20 +1 2e+1—(z+2)
metim L@ =IO w2 g z+2 — lim — 21
z—a T —a z—1 x—1 z—1 x—1 z—1 (.1’ — ])(m + 2)
:lim I _1

9. (a) Using (2) withy = f(z) = 3 + 42 — 225,

fla+h)— f(a) ~ Jim 34+4(a+h)* —2(a+h)® — (34 4a® — 24%)

m= illl—r% h h—0 h
— i 3 4(a® + 2ah 4 h?) — 2(a® + 3a*h 4 3ah® + h3) — 3 — 4a® + 24°
- h—0 h
i 3t 4a® + 8ah + 4h® — 2a® — 6a°h — 6ah® — 2h® — 3 — 4a® + 2a°
- h—0 h
. 8ah +4h* — 6a®h — 6ah® —2h® . h(8a + 4h — 6a® — 6ah — 2h?)
= hm = hm
h—0 h h—0 h

= }llir%(Sa + 4h — 6a* — 6ah — 2h?) = 8a — 6a®

(b) At (1,5): m = 8(1) — 6(1)% = 2, so an equation of the tangent line (©) 10

isy—5=2xz-1) & y=2zx+3.

At (2,3): m = 8(2) — 6(2)% = —8, so an equation of the tangent

lineisy—3=-8@xz—-2) & y=-8x+19. —2| \ |4
10. (a) Using (1), -
11 Va—_ e
m:lim\/E \/E:lim—\/@ = lim (\/_7\/5)(\/6+ﬁ):1im R
a—a T —a eme r—a  e—evaz(z—a)(Vat+Vr)  e—e Var(z-a)(Vat V)

= lim ! = ! 1 or —la’ [a > 0]
M marvE)  Yaya) | wr O 2

(b) At (1,1): m = —%, so an equation of the tangent line (c)

sy—1=-1(z-1) & y=-iz+3%

At (4, 3): m = —5, s0 an equation of the tangent line

sy—1=-%@x-4) & y=—-x5z+i

12

101

11. (a) The particle is moving to the right when s is increasing; that is, on the intervals (0, 1) and (4, 6). The particle is moving to

the left when s is decreasing; that is, on the interval (2, 3). The particle is standing still when s is constant; that is, on the

intervals (1, 2) and (3,4).
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102 U CHAPTER2 DERIVATIVES

vA (m/s)
(b) The velocity of the particle is equal to the slope of the tangent line of the I_o
graph. Note that there is no slope at the corner points on the graph. On the il
l 4 o o
interval (0, 1), the slope is 3-0_ 3. On the interval (2, 3), the slope is ol j 7
1-0 T (seconds)
1-3 3—-1 T o—

=1

—— = —2. On the interval (4, 6), the slope is 64 1

3-2

12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.

Runner B starts the race at a slower velocity than runner A, but finishes the race at a faster velocity.

(b) The distance between the runners is the greatest at the time when the largest vertical line segment fits between the two

graphs—this appears to be somewhere between 9 and 10 seconds.

(c) The runners had the same velocity when the slopes of their respective position functions are equal—this also appears to be
at about 9.5 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity

for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease.

13. Let s(t) = 40t — 16¢>.

- 40t — 16t%) — 16 —16t2 - —8(2t> — 5t +2
) = iy {502 gy BRI iy SO G0y RO

i S8E—2)2t—1)

lim — = —8lim(2t — 1) = —8(3) = 24

Thus, the instantaneous velocity when ¢t = 2 is —24 ft/s.

14. (a) Let H(t) = 10t — 1.86¢>.
[10(1 + h) — 1.86(1 + h)*] — (10 — 1.86)

H(1+h)— H(1)

v = fim T = ]
.10+ 10h — 1.86(1 + 2h + h®) — 10 + 1.86
= lim
h—0 h
. 10+ 10h — 1.86 — 3.72h — 1.86h% — 10 + 1.86
= lim
h—0 h
_ 2
— lim 8280 L8R i (6.98 — 1.86h) = 6.28
h—0 h h—0

The velocity of the rock after one second is 6.28 m/s.

®) v(a) = Jim H(a + h}i — H(a) _ Jim [10(a + h) — 1.86(a +hh) ] = (10a — 1.86a%)

_ iy 10a + 100 — 1.86(a® + 2ah + h?) — 10a + 1.86a>

h—0 h
. 10a + 10h — 1.86a% — 3.72ah — 1.86h% — 10a + 1.86a> . 10h — 3.72ah — 1.86Ah>
= lim = lim
h—0 h h—0 h
— Jim P10 =372a — 186h) _ lim (10 — 3.72a — 1.86h) = 10 — 3.72a

h—0 h
The velocity of the rock when ¢t = a is (10 — 3.72a) m/s.
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE T1 103

(c) The rock will hit the surface when H =0 < 10t —1.86t> =0 < t(10—1.86t)=0 <« ¢ =0or1.86t= 10.
The rock hits the surface when ¢ = 10/1.86 ~ 5.4 s.

(d) The velocity of the rock when it hits the surface is U(%) =10 — 3.72(%) =10—20=—-10m/s.

1 1 a® — (a+ h)?
. sla+h)—s(a) . (a+h)?2 a2 . a2(a+h)2 . a®—(a®+2ah+h?)
8. v(a) = lim h = h = h = T haat b
—(2ah+h?) . —h(2a+h) .. —(2a+h) —2a -2

T a0 ha2(a+ h)? s ha?(a+ h)2 [y a2(a+h)? a2 a2 a3 m/s

Sowv(l) = ;3 =-2m/s,v(2) = ;—32 = fz—irn/s, and v(3) = ;—32 = f% m/s.

16. (a) The average velocity between times ¢ and ¢ + h is

s(t+h) —s(t)  3(t+h)®—6(t+h)+23— (5t — 6t +23)

(t+h)—t h
A +th+ih® —6t—6h+23 — 117 + 6t —23
B h
th+$h®> —6h  h(t+3h—6

(i) [4,8]: t = 4, h = 8 — 4 = 4, so the average velocity is 4 + 3 (4) — 6 = 0 ft/s.
(i) [6,8]: t = 6, h = 8 — 6 = 2, so the average velocity is 6 + 3 (2) — 6 = 1 ft/s.
(iii) [8,10]: t = 8, h = 10 — 8 = 2, so the average velocity is 8 + 5(2) — 6 = 3 ft/s.
(iv) [8,12]: t = 8, h = 12 — 8 = 4, so the average velocity is 8 + £ (4) — 6 = 4 ft/s.

(b) v(t) = 11{% S(tLiz_s(t)

=t—6, sov(8) =2 ft/s.

:%iﬂ%(t—k%h—@ (c) ¢

20

075 & 6 8 10 127
17. ¢'(0) is the only negative value. The slope at z = 4 is smaller than the slope at z = 2 and both are smaller than the slope
atz = —2. Thus, ¢'(0) < 0 < ¢g'(4) < ¢'(2) < ¢'(-2).

£(60) — £(20) 700 —300 400

18. (a) On [20, 60]: =—cr—s=> = ——— = == =10

(b) Pick any interval that has the same y-value at its endpoints. [0, 57] is such an interval since f(0) = 600 and f(57) = 600.

(60) — £(40) _ 700 —200 _ 500 _

(c) On [40, 60]: /

=——=2

60 — 40 20 20 ~
f(70) — f(40) _ 900 —200 _ 700

On [40, 70]: (73_4(5 ) _ = :%:235

Since 25 > 23%, the average rate of change on [40, 60] is larger.
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104 U CHAPTER2 DERIVATIVES

f(40) — f(10) _ 200 — 400 _ —200 _ _62

(d) 40-10 30 30 3

This value represents the slope of the line segment from (10, £(10)) to (40, f(40)).

19. (a) The tangent line at 2 = 50 appears to pass through the points (43, 200) and (60, 640), so

640 —200 440 _

! ~ —_— T~ .
1'(50) 60 — 43 17 26

(b) The tangent line at x = 10 is steeper than the tangent line at z = 30, so it is larger in magnitude, but less in numerical
value, that is, f'(10) < f’(30).

(c) The slope of the tangent line at z = 60, f’(60), is greater than the slope of the line through (40, f(40)) and (80, £(80)).

/(80) — 7(40)

So yes, f'(60) > 30 — 10

20. Since g(5) = —3, the point (5, —3) is on the graph of g. Since ¢'(5) = 4, the slope of the tangent line at z = 5 is 4.

Using the point-slope form of a line gives us y — (—3) = 4(z — 5), ory = 4o — 23.

21. For the tangent line y = 4o — 5: when z = 2, y = 4(2) — 5 = 3 and its slope is 4 (the coefficient of x). At the point of

tangency, these values are shared with the curve y = f(z); thatis, f(2) = 3 and f'(2) = 4.
22. Since (4,3) isony = f(x), f(4) = 3. The slope of the tangent line between (0, 2) and (4,3) is 1, so f'(4) = 1.

23. We begin by drawing a curve through the origin with a y y

slope of 3 to satisfy f(0) = 0 and f'(0) = 3. Since Ir

,_.
+

1/ (1) = 0, we will round off our figure so that there is " — —t Kx

a horizontal tangent directly over x = 1. Last, we

make sure that the curve has a slope of —1 as we pass

over x = 2. Two of the many possibilities are shown.

24. The condition g(0) = g(2) = g(4) = 0 means that the graph intersects the z-axis at (0, 0), (2, 0), and (4, 0). The condition
g'(1) = ¢’(3) = 0 means that the graph has horizontal tangents at = 1 and = 3. The conditions ¢'(0) = ¢'(4) = 1 and
¢'(2) = —1 mean that the tangents at (0, 0) and (4, 0) have slope 1, while the tangent at (2, 0) has slope —1. Finally,
the conditions lim,_,5— g(z) = coand lim,_, ,+ g(z) = —c0 J

imply that ¢ = —1 and « = 5 are vertical asymptotes. A sample

graph is shown. Note that the function shown has domain (—1, 5).

That domain could easily be extended by drawing additional graph 1 2\5/1 x

segments in (—oo, —1] and [5, co) that satisfy the vertical line test.

x=-1 x=5
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE U

25. We begin by drawing a curve through (0, 1) with a slope of 1 to satisfy g(0) = 1
and ¢’ (0) = 1. We round off our figure at x = —2 to satisfy g’'(—2) = 0. As

x — —5T, y — o0, so we draw a vertical asymptote at z = —5. Asx — 5,

y — 3, so we draw a dot at (5, 3) [the dot could be open or closed].

x=-5
26. We begin by drawing an odd function (symmetric with respect to the origin) 4
through the origin with slope —2 to satisfy f'(0) = —2. Now draw a curve starting
at z = 1 and increasing without bound as © — 27 since lim f(z) = co. Lastly,
x—27 0
reflect the last curve through the origin (rotate 180°) since f is an odd function.
27. Using (4) with f(2) = 32® —z®and a = 1,
vy JAFR) Q) L [BA+h)—(14+h)P] -2
FO=m = =i h
. (34+6h+3R*)—(1+3h+3n2+h*—2  3h—h®
= lim = lim = lim
h—0 h h—0 h—0
=lim(3—-h*)=3-0=3
h—0
Tangentline: y—2=3(z—-1) & y—-2=32-3 & y=3z-1
28. Using (5) with g(z) = 2* —2and a = 1,
iy 9@ =g (@ -2 (=) et -1 (@ 4+ D 1)
g(l)—iﬂ rz—1 _;erll z—1 _ilinix—l _£LH11 z—1
2 J—
i EEDEFDEZD a2 ) (1) = 2(2) = 4
r—1 x—1 r—1
Tangentline: y — (—1) =4(z—1) & y+1l=4r—-4 < y=4c—-5
29. (a) Using (4) with F(z) = 52/(1 + 2?) and the point (2, 2), we have (b) 4
52+h)
_ 2
F'(2) = lim F(2+h)—F(2) ~ im 1+ (2+4h)
h—0 h h—0 h
5h+10 5h 4 10 — 2(h? + 4h + 5)
— lim h?+4h+5 — lim h? +4h+5 -2
h—0 h h—0 h
—2h? — 3h . h(=2h-13) . —2h-3 -3

= lim — 2" _ = =
WO0 h(h® +4h+5)  ho h(hZ +4h+5)  ho0hZ+4h+5 5

So an equation of the tangent line at (2,2) isy — 2= —2(z —2) or y = -2z + 2.

105
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106 O CHAPTER2 DERIVATIVES
30. (a) Using (4) with G(z) = 42 — 23, we have

G(a+h) — G(a) [4(a+ h)? — (a+ h)®] — (4a® — a®)

N 1 o
CO=mT T I
~ lim 4a® + 8ah + 4h* — (a® + 3a*h + 3ah® + h?) — 4a® + a®
T h—0 h
. 8ah+4h* —3a®h —3ah® —h®* . h(8a +4h — 3a® — 3ah — h?)
= lim = lim
h—0 h h—0 h

= }lLir%(8a—|—4h—3a2 — 3ah — h?) = 8a — 3a®

At the point (2,8), G'(2) = 16 — 12 = 4, and an equation of the (b) 12

tangent line is y — 8 = 4(z — 2), or y = 4. At the point (3, 9),
G'(3) = 24 — 27 = —3, and an equation of the tangent line is
y—9=-3(x—3),ory=—-3x+18.

—2| \ )7

31. Use (4) with f(z) = 32% — 4 + 1.

fla+h) = f(a) [3(a +h)? — 4(a+ h) +1] — (3a® — 4a + 1)]

oy .
o= =i z
. 3a>+6ah+3h% —4da—4h+1—-3a®>+4a—1 . 6ah +3h% —4h
= Jimy D B R
h h—4
— im MO0 =)y 60+ 30— 4) = 60— 4
h—0 h h—0

32. Use (4) with f(t) = 2t> +¢.

_ 3 (9.3
) — i LD = @) [t ) (k)] = (20° +0)
h—0 h h—0 h
. 2a®4+6a*h+6ah®>+2R3+a+h—2a® —a . 6a’h +6ah®>+ 20>+ h
= hm = hm
h—0 h h—0 h
2 2
_ i 1607+ 6ah + 207 +1) lim (6a® + 6ah + 2h* + 1) = 6a” + 1

h—0 h

33. Use (4) with f(¢t) = (2¢+1)/(t + 3).

2a+h)+1 2a+1

i Jath) —fl@) . (ath)+3  a+3
h—0 h _h—>0 h

~ lim (2a+2h+1)(a+3) — (2a+1)(a + h + 3)
T h—0 h(a+h+3)(a+3)

f'(a) =

— Jim (2a® + 6a + 2ah + 6h + a + 3) — (2a® + 2ah + 6a + a + h + 3)
T RS0 h(a+h+3)(a+3)

5h 5 R

L .
b h(@a+h+3)@t3) hoo(atht3)@t3) (a+3)?
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34. Use (4) with f(z) = 272 = 1/2°.

1 1 a® — (a+ h)?
Wy — g L@ FR) = fl@) (et h)? e a?(ath)?
L
~ im a’®—(a®+2ah+h?) . —2ah—h® ‘m h(—2a — h)
T RS0 ha?(a + h)? = ha?(a + h)? ~ a0 ha?(a + h)2

—2a—h —2a —2

) a?2(a+h)?  a2(a®)  dad

35. Use (4) with f(z) = /1 — 2z.
flat+h)—fla) _

V1-2(a+h)—+v1-2a

f'(a) = lim

h—0 h h—0 h

i V1-2(a+h)—vVI—-2a +/1-2(a+h)++v1-2a
= lim .

h—0 h \/1—2(a+h)+\/1—2a

(1—2(a+h))2—(v1—2a)2:hm (1—2a—2h) — (1 - 2a)
h Oh<\/1f2(a+h)+\/172a)

= lim

h=0 (¢1f2 + h) +\/1f2a)

= lim —2h = lim —2
hﬂoh(\/1—2(a+h)+\/1—2a) =0 \/T—2(a+h)++/T-2a
2 2 -1

TV T-2a+v1-2a 2v1i-2a Ji-2a

36. Use (4) with f(z) = 4 .
1—x
4 4
. fla+h)— V1—(a+h) - Vi-a
Ty —
7o) = i R0 = z
Vi—-a—+v1—a—h
. l1—a—h+1—-a Vi—a—+v1—a—nh
=4 lim h e R ey Y
411m\/1 —Vl-a—-h Yl-—a++Vl-a—h — 4lim (V1I—=a)® = (vV1—a—h)?
h—0 hy/1—a—h+1—a \/1—a—|—\/l—a— h—>0h\/1—a—h\/1—a(\/1—a+\/1—a—h)
4 lim (1—a)—(1—a—h) At h

h=0 hy/1—a—h+v1—a(/T—a++1—a—h) 4f1tli%h\/1—a—hx/l—a(\/l—a-i-\/l—a—h)

=4 lim ! =4. !
hHO\/l—a—h\/l—a(\/l—a—l—\/l—a—h) O Vi—avi—a(WI—a++V1—a)
4 2 2

T l-0eVioa (U-a'(l-a 2 (1-ap?

3. By (4), Jim LTL—?’ — '(9), where f(z) = /7 and a = 9.
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38.

39.

40.

41.

42.

43.

45.

46.

. U = =

Ll CHAPTER2 DERIVATIVES
23th _ g
By (4), }lLir% — = f'(3), where f(z) = 2° and @ = 3.
25 — 64
By Equation 5, lim2 5 = f'(2), where f(z) = 2% and a = 2.
r— €T —
1
By Equation 5, li ;_4—)“(4) heref()—l and _1
Y ey 1 W V=3 “=7
4

cos(m+ h)+1

By (4), lim -

= f'(r), where f(z) = coszanda = 7.

Or: By (4), lim C()S(th)ﬂ = f'(0), where f(z) = cos(m + z) and a = 0.

. 9_ l
By Equation 5, egin/a Slen_izz = f’(%),Where f(0) =sinfand a = %

fi LA+ =@ _ [80(4 + h) — 6(4 + h)*] — [80(4) — 6(4)?]

v(4) = fl(4) s h h—0 h
. (3204 80h — 96 — 48h — 6h2) — (320 — 96) . 32h — 6h?
= lim = lim ——
h—0 h h—0 h
— Jim PB2=6R) _ lim (32 — 6h) = 32 ms

h—0 h

The speed when ¢ = 4 is 32| = 32 m/s.

45 45
PP TR G exe=) I G s)

h—0 h h—0 h

45-9(5+h) .. —9h

T T R AR AS6R(BER) —p s

B e T 75

The speed when ¢t = 4is |—2| = 2 m/s.

The sketch shows the graph for a room temperature of 72° and a refrigerator
temperature of 38°. The initial rate of change is greater in magnitude than the

rate of change after an hour.

The slope of the tangent (that is, the rate of change of temperature with respect

75 — 168

55— 0~ —0.7 °F /min.

to time) at t = 1 h seems to be about

= lim

h—0

72

38

Temperature
(in °F)

T(F)

2001

100

i é Time
(in hours)

30 60 90 120 150 180
(mif
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SECTION 2.1  DERIVATIVES AND RATES OF CHANGE L1 109

47. () (i) [1.0,2.0]: 0(2; - 10(1) _ 0.018 - 0.033 _ _5.015 g%
(i (15, 2.0 C=C(L5) _ 00180024 _ 0006 _ 0, g/dL

2—-15 0.5 0.5 h

C(2.5) — C(2)  0.012—0.018  —0.006 g/dL
2.0,2.5]: = = = _0.012 ==
(iif) [2.0,2.5): —=2— 05 05 0.012 =1

(iv) [2.0, 3.0]: 0(3?)) — 20(2) . .007 I 0.018 _ 011 &L

(b) We estimate the instantaneous rate of change at ¢ = 2 by averaging the average rates of change for [1.5,2.0] and [2.0, 2.5]:

—0.012 +2(_0'012) = —0.012 % After 2 hours, the BAC is decreasing at a rate of 0.012 (g/dL) /h.
48. (2) (i) [2006,2008]: (2385; = ;\g (026006) _ 16,680 ; 12,440 _ 42240 — 2120 locations /year
(ii) [2008, 2010]: N(2010) = N (2008) _ 16858 — 16,680 _ 178 _ 89 locations /year.

2010 — 2008 2 2
The rate of growth decreased over the period from 2006 to 2010.

N(2012) — N(2010) _ 18,066 — 16,858 _ 1208

(b) [2010,2012]: 5019 — 2010 : 5 = 604 locations/year.

Using that value and the value from part (a)(ii), we have 89—’_72604 = %3 = 346.5 locations /year.
(c) The tangent segment has endpoints (2008, 16,250) and (2012, 17,500). N

An estimate of the instantaneous rate of growth in 2010 is 15,000 1

17,500 — 16,250 1250
2012 — 2008 4

10,000 +

= 312.5 locations/year.

5,000 +

02008 ' 2008 2012
84,077 — 66,533 17,544

49. () [1990,2005]: — -t =

= 1169.6 thousands of barrels per day per year. This means that oil
consumption rose by an average of 1169.6 thousands of barrels per day each year from 1990 to 2005.

76,784 — 70,099 6685

(b) [1995,2000]: —oee——ere= = —— = 1337
84,077 — 76,784 7293
[2000, 2005]: —sre— b= =~ = 1458.6

An estimate of the instantaneous rate of change in 2000 is % (1337 + 1458.6) = 1397.8 thousands of barrels

per day per year.
‘ V(1) —V(4)  94-53 —436 _ RNA copies/mL
80. (a) () [4 11): ———m— = - = = ~ 623 Ty
.. vy -vE) 94-18 86 RNA copies/mL
(i) [8,11]: 11-8 = 3 =—3 ~ 2.87 day
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110 0 CHAPTER2 DERIVATIVES

(iii) [11, 15]:

V(15) —V(11)  52-94  —4.2

15—-11

V(22) - V(11)  3.6-94 —58 _

4 4

(iv) [11,22]: 59 11

11 11

1.05

0.53

~ —

RNA copies/mL
day

RNA copies/mL
day

(b) An estimate of V/(11) is the average of the answers from part (2)(ii) and (iii).

RNA copies/mL

/ ~ 17 _ —_1
V/(11) &~ 1 [~2.87 4 (~1.05)] = —1.96 Ty

V’(11) measures the instantaneous rate of change of patient 303’s viral load 11 days after ABT-538 treatment began.

AC  C(105) — C(100)  6601.25 — 6500

5. (@) (i) = $20.25/unit.

Az~ 105—100 5
.. AC _ C(101) — C(100) _ 6520.05 — 6500 .
(i) A 101 =100 = 1 = $20.05/unit.

b) C(100 + h) — C(100) _ [5000 + 10(100 + h) 4 0.05(100 + h)*] — 6500  20h 4 0.05h>
h B h - h
=20+ 0.05h, h #0
C(100 + h) — C(100)
h

(

So the instantaneous rate of change is ,llin%) = }Lin%) (20 + 0.05R) = $20/unit.

t+h\? t\?
52. AV =V (t+h) —V(t) =100,000 (1 — —— ] —100,000(1— —
60 60
= 100,000 1—ﬂ+(“h)2 — 1—i+ £ = 100,000 —i+ﬂ+ U
I 30 3600 30 3600/ | T 30 3600 ' 3600
250

100,000

h(=120+2t + h) = =—h (=120 + 2t + h
3600 1 (T120+2t+h) = —=h (=120 + 2t + h)

Dividing AV by h and then letting h — 0, we see that the instantaneous rate of change is % (t — 60) gal/min.

t | Flow rate (gal/min) | Water remaining V' (¢) (gal)
0 —3333.3 100,000
10 27777 69,444 .4
20 —22222 44,4444
30 —1666.6 25,000
40 —1111.1 11,111.1
50 — 555.5 2,777.7
60 0 0

The magnitude of the flow rate is greatest at the beginning and gradually decreases to 0.

53. (a) f'(z) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are

dollars per ounce.

(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce. So the cost

of producing the 800th (or 801st) ounce is about $17.

(c) In the short term, the values of f'(z) will decrease because more efficient use is made of start-up costs as x increases. But

eventually f’(z) might increase due to large-scale operations.
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55.

56.

57.

58.

59.

60.

SECTION 2.1  DERIVATIVES AND RATES OF CHANGE O 111

(a) f'(5) is the rate of growth of the bacteria population when ¢ = 5 hours. Its units are bacteria per hour.

(b) With unlimited space and nutrients, f’ should increase as ¢ increases; so f'(5) < f’(10). If the supply of nutrients is

limited, the growth rate slows down at some point in time, and the opposite may be true.

(a) H'(58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is

58 °F. The units are dollars/ °F.

(b) If the outside temperature increases, the building should require less heating, so we would expect H' (58) to be negative.

(a) f'(8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound.
The units for f'(8) are pounds/(dollars/pound).

(b) f'(8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally
less willing to buy a product when its price increases.

(a) S'(T) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg/L)/°C.

(b) For T = 16°C, it appears that the tangent line to the curve goes through the points (0, 14) and (32, 6). So

—14 . .
6 -3 —0.25 (mg/L)/°C. This means that as the temperature increases past 16°C, the oxygen

! =~ —_——_— =
5(16)”32—0_ 32

solubility is decreasing at a rate of 0.25 (mg/L)/°C.

(a) S'(T) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units
are (cm/s)/°C.

(b) For T = 15°C, it appears the tangent line to the curve goes through the points (10, 25) and (20, 32). So

S'(15) ~ 2(2) — fg = 0.7 (em/s)/°C. This tells us that at 7" = 15°C, the maximum sustainable speed of Coho salmon is
changing at a rate of 0.7 (cm/s)/°C. In a similar fashion for 7' = 25°C, we can use the points (20, 35) and (25, 25) to

25 —35
25 —-20

obtain S’(25) ~ = —2(cm/s)/°C. As it gets warmer than 20°C, the maximum sustainable speed decreases
rapidly.

Since f(x) = zsin(1/x) when x # 0 and f(0) = 0, we have

}llinb fO0+h) = 10 = }llir% W = %irr}) sin(1/h). This limit does not exist since sin(1/h) takes the

f1(0) =
values —1 and 1 on any interval containing 0. (Compare with Example 1.5.4.)
Since f(x) = z?sin(1/z) when = # 0 and f(0) = 0, we have

— lim FO+h) — f(0) — lim h2 sin(lh/h) -0

= lim hsin(1/h). Since —1 < sinl < 1, we have
h—0 h—0 h—0 h

f'(0)

—1|h| < |h\sin% <|h] = =< hsin% < |h|. Because %imo(— |h]) = 0 and }lliné|h| = 0, we know that

—0

lim (h sin %) = 0 by the Squeeze Theorem. Thus, f'(0) = 0.
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61. (a) The slope at the origin appears to be 1.

-2
(b) The slope at the origin still appears to be 1.
—0.4
(c) Yes, the slope at the origin now appears to be 0.
—0.008

2.2 The Derivative as a Function

0.005

—0.005

2

0.4

0.008

1. It appears that f is an odd function, so f’ will be an even function—that
is, f'(—a) = f'(a).
(@ f(-3) = —-0.2
(b) f'(=2) =0
(e f(1)~1

© f(-)~1
® f'(2)=0

(d) f'(0) ~ 2
(@ f'(3) ~ —0.2
2. Your answers may vary depending on your estimates.

(a) Note: By estimating the slopes of tangent lines on the

graph of f, it appears that f'(0) ~ 6.

®) /(1) =0

(©) f'(2)~—-15

) f'(5)~—0.3

@ f'(3)~—-1.3
(g f'(6)~0

(e) f'(4) = —0.8
(h) f'(7) ~ 0.2

3. (a) = 11, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph II follow the same pattern.

(b) = 1V, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly

become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.

(c)' =1, since the slopes of the tangents to graph (c) are negative for x < 0 and positive for z > 0, as are the function values of

graph 1.
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(d)’ = 111, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then

positive, then 0, then negative again, and the function values in graph III follow the same pattern.

Hints for Exercises 4 —11: First plot z-intercepts on the graph of f” for any horizontal tangents on the graph of f. Look for any corners on the graph
of f—there will be a discontinuity on the graph of f’. On any interval where f has a tangent with positive (or negative) slope, the graph of £/ will be

positive (or negative). If the graph of the function is linear, the graph of f’ will be a horizontal line.

4, J 5. y 6. J
" o R
0 i X
/ 0 X i
0 X
y y y
f ,
f ST
, 0 X
/ 0 X
0 X
7 y 8. y 9 y
0 X 0 X
0 X
y
]
r R r
f! -5 0 X
0 x g T_c
\(i X

10. y 1.

y
’ ’ / ° ’
' y
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12.

13.

14.

15.

16.

17.

The slopes of the tangent lines on the graph of y = P(t) are always
positive, so the y-values of y = P(t) are always positive. These values start
out relatively small and keep increasing, reaching a maximum at about

t = 6. Then the y-values of y = P'(t) decrease and get close to zero. The

graph of P’ tells us that the yeast culture grows most rapidly after 6 hours

and then the growth rate declines.

(a) C'(t) is the instantaneous rate of change of percentage
of full capacity with respect to elapsed time in hours.

(b) The graph of C’ (%) tells us that the rate of change of
percentage of full capacity is decreasing and
approaching 0.

(a) F'(v) is the instantaneous rate of change of fuel
economy with respect to speed.

(b) Graphs will vary depending on estimates of I, but

will change from positive to negative at about v = 50.

(c) To save on gas, drive at the speed where F'is a

maximum and F” is 0, which is about 50 mi/ h.
It appears that there are horizontal tangents on the graph of M for ¢ = 1963
and ¢ = 1971. Thus, there are zeros for those values of ¢ on the graph of

M’ . The derivative is negative for the years 1963 to 1971.

1001

50T

y
401
20\\\\\\\\\\\5“
0 2 4 &6 0 121

1\

0l 10 20 30 40 SN v

t
—0.03

1950 1960 1970 1980 1990 2000

The graph of the derivative

(a) By zooming in, we estimate that f'(0) =0, f'(3) =1, f'(1) =2,
and f'(2) =4

(b) By symmetry, f'(—z) = —f(x). So f'(=3) = =1, f'(-1) = -2,
and f'(—2) = —4.

(c) Tt appears that f'(z) is twice the value of z, so we guess that f'(z) = 2.

X looks like the graph of the

cosine function.
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_ —
) f'(x) = %%w — lim W

2 2 2
+2hx +h7) — 2
= lim (= r )2 = lim 2ha + B” _ im h2e + 1) = lim (2x + h) = 22
h—0 h h—0 h h—0 h h—0

18. (a) By zooming in, we estimate that f'(0) = 0, f'(3) ~ 0.75, (b) By symmetry, f'(—z) = f'(z). So f'(—3%) ~ 0.75,

F1(1) =3, f/(2) = 12,and f'(3) ~ 27. F(=1) =3, f'(—2) =~ 12,and f'(—3) =~ 27.
©) Y (d) Since f'(0) = 0, it appears that f’ may have the
N form f'(x) = ax®. Using f'(1) = 3, we have a = 3,
so f'(x) = 32°.
B X
vy o fl@+h)—f@) . (+h)P—2® (2®+32°h + 3zh® + hP) — 2®
Of@=m = =T i h
2 2 3 2 2
i SR STRT AR RGBT ASSR AR (502 4 30k + h2) = 322
h—0 h h—0 h h—0
19. f(2) = lim flx+h) = f(x) — lim [B(x + h) — 8] — (3z — 8) ~ fim 3r+3h—8—3z+38
' h=50 h h—0 h h—0 h
=lim —=1m3=3
h—0 —0
Domain of f = domain of f' = R.
2. f'(2) = lim flz+h)— f(z) ~ Jim [m(z+ h)+ b — (mz+0b) ~ lim mx +mh+b—mx—b
) h=0 h R0 h h—0 h

. mh .
=lim — =limm=m
h—0 h h—0

Domain of f = domain of f' = R.

. (o) = jim LEED =IO _ [2:5(t + h)* + 6(t + h)] — (258 + 6t)

2.5(t + 2th + h®) + 6t + 6h — 2.5¢> — 6t - 2.5t + 5th + 2.5h* + 6h — 2.5¢°

- }ILIL% h flLLo h
2
— lip Sth+ 2507 +6h _ . h(5t+25h+6) _ . (5t + 2.5h + 6)
h—0 h h—0 h h—0
=5t+6

Domain of f = domain of f' = R.
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flx+h)— f(x) [4+8(z +h) —5(x+h)*] — (4+ 8z — 5a°)

2= T = h
. 4+8x4+8h—5(x?+2xh+h?) —4—8x+52> . 8h—5z% —10xh — 5h? 4 522

= lim = lim

h—0 h h—0 h

J— J— 2 — —

_ iy Sh—10zh = 5h7 hmw: lim (8 — 10z — 5h)

h—0 h h—0 h h—0
=8 — 10z

Domain of f = domain of f' = R.

2. f(x) = tim LETER —S@ (@t h)' =2+ )] - (@F - 207

h—0 h h—0 h
. 24 2zh + h? — 22% — 62%h — 6zh? — 2h% — 22 4+ 223
= lim
h—0 h
. 2zh+h* —62*h —6xh®> —2R% . h(2z 4+ h — 62% — 6zh — 2h?)
= lim = lim
h—0 h h—0 h
= %irr%)(2x +h — 62 — 6zh — 2Rh?) = 2z — 62>
Domain of f = domain of f’ = R.
11 VEi— Vit h
v o gt+R) —glt) . VEIFh VE .. NIERVE . (VE=VE+h VE+VE+R
2. ¢(t)=lim =—Fr—2 = ljm ~—~————¥~ = |jm ————¥ = lim .
h—0 h h—0 h h—0 h h—0 \ ha/t+hvt Vi+Vi+h
= lim t—(t+h) = lim —h = lim —1
h=0 hA/t + hvE(VE+VE+R) =0 h/E+ RVE(VE+VETR) =0T+ hVE(VE+VETR)
-1 -1 1

TVIVE(VERVE) C tvE) 2

Domain of g = domain of g’ = (0, c0).

25 ,(x)_hmg(a:—l—h)—g(x) lim\/9—(m+h)—\/9—x \/9—(x+h)+\/9—x
=35 h nmo I N T I ET:
— lim O—(z+h)]—(9—2x) — lim —h
hHOh[JQ—(x—l—h)—l—VQ—x} hﬂoh[\/Q—(x—l—h)—l—\/Q—x}
—1 -1

= lim =
h=0./9—(z+h)+/9—2 29—z

Domain of g = (—o00, 9], domain of ¢’ = (—00,9).
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(z+h)? -1 _m2—1
f(erh)ff(x):lim 20x+h)—3 2z-3

% fiw)= flbli% h h—0 h
[(z+h)? —1](2z — 3) — [2(z + h) — 3](z* — 1)
— lim [2(z + h) — 3](2z — 3)
h—0 h
— im (2% +2zh + h* — 1)(22 — 3) — (22 + 2h — 3)(2® — 1)
T h—0 hi2(z + h) — 3](2x — 3)
— lim (22% + 4a?h 4 22h* — 2x — 32® — 6xzh — 3R% + 3) — (22 4 22°h — 32 — 22 — 2h + 3)
T hs0 h(2z + 2h — 3)(2z — 3)
 lim 4z>h 4 2zh® — 6zh — 3h* — 22°h + 2h - h(2z* 4 2zh — 63 — 3h + 2)
T Ao h(2z + 2h — 3)(2z — 3) " h—0  h(2z+2h —3)(2z — 3)

lm2x2+2xh—6x—3h+2_2x2—6x+2
>0 (2x+2h—3)(2r—3) = (2z —3)2

Domain of f = domain of f* = (—c0,3) U (2,00).

1-2(t+h) 12
G(t—l—h)—G(t):lim 34+ (t+h) 3+t
h h—0 h
[1—2(t+h)]B+t) -3+ +h)](1—2)
B+({E+h)]B+1)

2. G'(t) = lim

= b, h
g 3t 6t =27 —6h—2ht — (3—6t+t— 24"+ h—2ht) _ . —6h — h
) R[B+ (t+h)(3B+1)  hs0h(3+t+h)(3+1)

—Th -7 -7

T TG S BTG Bro?

Domain of G = domain of G' = (—o0, —3) U (—3, o0).

oy S ) = f@) (@) —at [ W) = 2+ 0P e
8. f(w) = Jim h = h = h(z + h)*/% + 23/2]
~ i (x4 h)® —a? ~ im 2® +32°h + 3zh® + h® —2® im h (32® —|—3xh—|—h2)
" h—0 h[(x 4+ h)3/2 + 23/2] T h—0 h[(z 4 h)3/2 + 23/2) "~ h—0 h[(z + h)3/2 + 23/2]

322 4 3zh + h? 32 1/2
= lim = = 31‘ /
h—0 (x + h)3/2 + 23/2  223/2 2

Domain of f = domain of f’ = [0, c0). Strictly speaking, the domain of f’ is (0, co) because the limit that defines f(0) does
not exist (as a two-sided limit). But the right-hand derivative (in the sense of Exercise 62) does exist at 0, so in that sense one

could regard the domain of f’ to be [0, 00).

- 44 44 42%h + 622K + 4xh® + BY) — 2t
. @) =l LEFR @ g ot (@b G el W) e

h—0 h h—0 h h—0 h
3 212 3 4
= i 2R OTR A AR TRy (408 4 60%h + A2 4 BP) = 40P
h—0 h h—0

Domain of f = domain of f' = R.
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30. (a) y y y

r by =J—(x — 6) =6 —
- y=N—(x—6)=V6—x
y =i y=v= ] —
1 ' l\

(b) Note that the third graph in part (a) has small negative values for its slope, f; butasz — 6, f' — —oo.

See the graph in part (d).

© f(x) = i LEXN I @

= fim, h

V6—(z+h)—v6—2 |\/6—(z+h)+V6—= =
V6—(x+h)+v6—x -1

N (e G 0) R Rt ., —h

hﬂoh[¢6_<m+h)+¢6_x] h=0h(vV6—z—h+6—x)

= lim 1 = 1

S h=0\6—z—h+v6—z 26—z

Domain of f = (—o0, 6], domain of f' = (—o0, 6).

. z+h)— f(z . x+h)r+2x+h)] — (2t + 22
1@ £ fim SEER Iy (@41 200410 = 0+ 20
— lim 2t +423h + 622h2 + 4ah® + bt + 22+ 2h — 2t — 2z
_hHO h
42°h + 62°h® + 4zh® + h* +2h lim h(42® + 62%h + 4xh® + h® + 2)
h _h—>0 h

= lim
h—0

= ;Lir%(4x3 +62%h 4 dah® + b3 +2) = 423 4+ 2

(b) Notice that f'(z) = 0 when f has a horizontal tangent, f'(z) is
positive when the tangents have positive slope, and f'(z) is 1%

negative when the tangents have negative slope. 72 5

-2

(z+h)?4+1 2241

. z[(x+h)+1) = (z+h)(2?+1) . (234 2na”® +xh? 4+ 1) — (23 + x4+ ha® +h)
= hm = hm

h—0 h(z + h)x h—0 h(z + h)x
~ im hx2+xh27h_hm h(z® +zh —1) ~ im 2’ +azh—1 2°-1 or 1_i
~h=0 h(z+h)x k-0 h(z+h)x k>0 (z+h)z 22 x2
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(b) Notice that f'(z) = 0 when f has a horizontal tangent, f'(z) is 4

positive when the tangents have positive slope, and f'(z) is ‘ I \/

negative when the tangents have negative slope. Both functions 6| | 6

are discontinuous at x = 0.

33. (a) U'(t) is the rate at which the unemployment rate is changing with respect to time. Its units are percent unemployed

per year.

(b) To find U’ (t), we use lim Ult+h) U@ Ult+h) — U

lim A R W for small values of h.

U(2004) — U(2003) 55— 6.0
2004 — 2003 1

For 2003: U’(2003) ~ -0.5

19

For 2004: We estimate U’ (2004) by using h = —1 and h = 1, and then average the two results to obtain a final estimate.

U(2003) — U(2004) 6.0 —55

h=-1 = VRO~ == —1 ~ — -

—0.5;

U(2005) — U(2004) 5.1—55
2005 — 2004 - 1 -

h=1 = U'(2004) ~ —0.4.

So we estimate that U’(2004) &~ £[—0.5 + (—0.4)] = —0.45. Other values for U’(t) are calculated in a similar fashion.

t 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
U'(t) | -0.50 —-0.45 —0.45 —0.25 060 235 190 —0.20 -—0.75 —0.80

34. (a) N'(t) is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is

changing with respect to time. Its units are thousands of surgeries per year.

(b) To find N'(t), we use }lbir% N+ h})L - N (@) ~ N+ h})L - N () for small values of h.

N(2002) — N(2000) 4897 — 5500

For 2000: N’ (2000) ~ -
or (2000) 2002 — 2000 2

= —-301.5

For 2002: We estimate N'(2002) by using h = —2 and h = 2, and then average the two results to obtain a final estimate.

N(2000) — N(2002) 5500 — 4897

= - ! ~ —301.
h=-2 = N'(2002) 50002002 — 301.5
B , _ N(2004) — N(2002) 7470 — 4897
h=2 = N(2002) x —Zi—rn =" = 5 = 1286.5
So we estimate that N’ (2002) ~ $[—301.5 + 1286.5] = 492.5.
t 2000 2002 2004 2006 2008 2010 2012

N'(t) | —=301.5 4925 1060.25 856.75 605.75 534.5 737
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35.

36.

37.

38.

39.

40.

41.

42.

U CHAPTER2 DERIVATIVES
y
(c) (d) We could get more accurate values
15,000 + y
for N'(t) by obtaining data for
1200 4
10,000 + more values of ¢.
800+
5,000 1
4004 y=N(
0 + + + + + + 0 + + + + + +
2000 2004 2008 2012 ! / 2004 2008 2012 1
—4001
As in Exercise 33, we use one-sided difference quotients for the J

first and last values, and average two difference quotients for all 27

other values.

t |14 21 28 35 42 49 1
H(t) |41 54 64 72 78 83

! 13 23 18 14 11
H (t) 7 14 14 14 14

|

|

|

|
o

y
As in Exercise 33, we use one-sided difference quotients for the 0 %
15 20 25 30 X
first and last values, and average two difference quotients for all Ll
other values. The units for W’ (z) are grams per degree (g/°C). 2l
x 155  17.7  20.0 224 244 6l y=We
W (z) 37.2 31.0 19.8 9.7 —9.8 ol
W'(z) | —2.82 —3.87 —453 —6.73 —9.75
—104

(a) dP/dt is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to

time ¢, measured in percentage points per year.
(b) 2 years after January 1, 2000 (January 1, 2002), the percentage of electrical power produced by solar panels was increasing

at a rate of 3.5 percentage points per year.

dN/dp is the rate at which the number of people who travel by car to another state for a vacation changes with respect to the

price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect dN/dp to be

negative.
f is not differentiable at x = —4, because the graph has a corner there, and at = 0, because there is a discontinuity there.
f is not differentiable at x = —1, because there is a discontinuity there, and at x = 2, because the graph has a corner there.

f is not differentiable at x = 1, because f is not defined there, and at x = 5, because the graph has a vertical tangent there.

f is not differentiable at * = —2 and = = 3, because the graph has corners there, and at x = 1, because there is a discontinuity

there.
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As we zoom in toward (—1, 0), the curve appears more and more like a straight g 2

line, so f(x) =  + /]z] is differentiable at = —1. But no matter how much

we zoom in toward the origin, the curve doesn’t straighten out—we can’t _2 :

eliminate the sharp point (a cusp). So f is not differentiable at x = 0. C )
-1

As we zoom in toward (0, 1), the curve appears more and more like a straight p 3 \

line, so g(z) = (2% — 1)?/3 is differentiable at 2 = 0. But no matter how much

we zoom in toward (1, 0) or (—1,0), the curve doesn’t straighten out—we can’t

eliminate the sharp point (a cusp). So g is not differentiable at x = +-1. - L ) ’

~1
Call the curve with the positive y-intercept g and the other curve h. Notice that g has a maximum (horizontal tangent) at
x = 0, but h # 0, so h cannot be the derivative of g. Also notice that where g is positive, h is increasing. Thus, h = f and
g = f'. Now f’(—1) is negative since f' is below the z-axis there and f"’(1) is positive since f is concave upward at z = 1.

Therefore, f''(1) is greater than f'(—1).

Call the curve with the smallest positive x-intercept g and the other curve h. Notice that where g is positive in the first
quadrant, h is increasing. Thus, h = f and g = f’. Now f’(—1) is positive since f’ is above the z-axis there and f''(1)

appears to be zero since f has an inflection point at z = 1. Therefore, f'(1) is greater than f”(—1).

a= f,b= f',c= f". We can sece this because where a has a horizontal tangent, b = 0, and where b has a horizontal tangent,
¢ = 0. We can immediately see that c can be neither f nor f’, since at the points where c has a horizontal tangent, neither a

nor b is equal to 0.

Where d has horizontal tangents, only c is 0, so d’ = c. ¢ has negative tangents for < 0 and b is the only graph that is
negative for x < 0, so ¢’ = b. b has positive tangents on R (except at z = 0), and the only graph that is positive on the same

domain is a, so b’ = a. We conclude thatd = f,c= f',b= f"”,and a = f"".

We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent,
neither ¢ nor b is equal to 0. Next, we note that ¢ = 0 at the point where b has a horizontal tangent, so b must be the graph of

the velocity function, and hence, b’ = a. We conclude that c is the graph of the position function.

a must be the jerk since none of the graphs are 0 at its high and low points. a is 0 where b has a maximum, so b’ = a. bis 0

where ¢ has a maximum, so ¢’ = b. We conclude that d is the position function, c is the velocity, b is the acceleration, and a is

the jerk.
_ 2 _ (2,2
() = Tim flath)—fl=) _ lim B+h)+2(x+h)+1] - Bz +2z+1)
h—0 h h—0 h
. (32 +6zh+3h2+2x +2h+1)— (322 +2x+1) . 6zh+3h%+2h
= lim = lim ——
h—0 h h—0 h
= }Lir% w = ,llin%(&r +3h+2)=6z+2 [continued]
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! —f 2] — 2 2) — 2

) tim L@ R = F @) (6 2 (G0 42) (624 6h42) — (6 +2)
h—0 h h—0 h h—0 h
=lim — = lim 6 =
h

We see from the graph that our answers are reasonable because the graph of

f is that of a linear function and the graph of f” is that of a constant

function.

—4 C ] 4
—1
_ 3 3
2 (o) i LEEN = I@) (@ 1) =3 4 b))~ (" = 3a)
hs0 h—0 h
. (2® +32%h 4 3zh® + h® — 3z — 3h) — (2® — 3x) . 32%h +3zh®> + h® —3h
= lim = lim
h—0 h h—0 h
2 2 _
i BT BT AR Z8) (302 4 Swh 4 B2 — 3) = 32% — 3
h—0 h h—0
’ o 2 - 2 2 2 _ _ 2 _
F(2) = lim f'(x+h)— f(z) ~ lim [3(z + h)* —3] — (3z° — 3) 1 (3z° 4+ 6zh + 3h* — 3) — (3z* — 3)
h—0 h h—0 h h—0 h
2
i $2PEBITgy ROZ SR (604 38) = 62
h—0 h h—0 h h—0
3 We see from the graph that our answers are reasonable because the graph of
[ '.'f nf / f ] f is that of an even function (f is an odd function) and the graph of f” is
-3 k 3 that of an odd function. Furthermore, f' = 0 when f has a horizontal
/ tangent and f” = 0 when f’ has a horizontal tangent.
-3
oy e S@th) = f@) o [2@ 4 h)? = (w4 h)] - (227 — %)
53. fi(z) =1 = lim
—0 h h—0 h
a2 32
= lim h(dz + 2h - 327 = 3zh = h') = lim (4 + 2h — 32® — 3zh — h?) = 4z — 32?
h—0 h h—0
' —f 4(z + h) — 3(x + h)*] — (4o — 32° — 6z —
) i L@ ED =S ) [ 3R] - e b= 6o = 3h)
h—0 h h—0 h h—0 h
:%im(4f6x73h) =4—6z
1 "
" T f(l’-l—h)—f(l‘)_ : [4—6($+h)}—(4—61‘)_ : 76h_ H _6) = —
(@) = i, z = h =Am T =i (6 =6
" 1
Wy et ) = @) —6—(=6) 0
=i z MR Sy =0
3
( g N\
f \f The graphs are consistent with the geometric interpretations of the
—4 4 6
\ derivatives because f' has zeros where f has a local minimum and a local
I ‘\‘ maximum, f”' has a zero where f’ has a local maximum, and f'” is a
\ I .
C uE| > constant function equal to the slope of f”'.
-7
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54. (a) Since we estimate the velocity to be a maximum v
50+

att = 10, the acceleration is 0 at t = 10.

25T

0__ 1(\/ t

0 10 20 ¢

(b) Drawing a tangent line at ¢ = 10 on the graph of a, a appears to decrease by 10 ft/s* over a period of 20 s.

Soatt = 10's, the jerk is approximately —10/20 = —0.5 (ft/s?)/s or ft/s.

55. (a) Note that we have factored x — a as the difference of two cubes in the third step.

fla) = tim {OI@ _ 2P o
T—a Tr—a Tz—a Tr—a T—a (1-1/3 — a1/3)(x2/3 + x1/3a1/3 + a2/3)
1 1
= lim = or 1a=2/3

o—a x2/3 + £1/3q1/3 1 ¢2/3 302/3

3
(b) f(0) = lim FO+1) = F(0) = lim Vh-0 = lim i This function increases without bound, so the limit does not
h—0 h h—0  h h—0 h2/3

exist, and therefore f/(0) does not exist.

. . 1 . . . .
(©) hn}) |f'(z)] = hrr%) 5,25 = and f is continuous at z = 0 (root function), so f has a vertical tangent at x = 0.
r— T

xr—

_ 2/3 _
56. (a) ¢'(0) = lirnO g(mﬂ)jiig(o) = lim =0 lim ! which does not exist.

z—0 xT z—0 1/3°
_ 2/3 _ 2/3 1/3 _ 1/3y(,.1/3 1/3
(b) gla) = tim LB =9 _ @m0y, (@ —a )@ tal)
T—a Tr—a r—a Tr—a r—a (xl/?’ — a1/3)(1‘2/3 —+ 1‘1/30,1/3 + a2/3)
21/3 +a1/3 2q1/3 9
= lim — = = or 247173
o—a 1273 + 21/3g1/3 + q2/3  3g2/3  3ql/3 3
(c) g(z) = 2*/ is continuous at 2 = 0 and (d) - o4 ~
2
. ) . _ .
ilil% lg'(z)| = ili% PV W oo. This shows that
g has a vertical tangent line at = 0.
-02™ 0 0.2
z—6 ifx—6>6 z—6 ifx>6
57. f(z) = |z — 6] = : = .
—(x—6) ifz—6<0 6—z ifz<6
So the right-hand limit is lim f@=FO) oy 2620 g 226 g g 1, and the left-hand limit
z—6+ z—6 z—6+ T —6 z—6T T —6  z—6+

is lim () — /(6) = lim w = lim 6z = lim (—1) = —1. Since these limits are not equal,

z—6— z—6 z—6- X —6 z—6— T —0 26—
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f/(6) — lim f(l‘) — f(6)

lim pow— does not exist and f is not differentiable at 6. y y=fx)
1__ o
0 f la for £/ is ['(2) 1 if £>6 .
owever, a formula for [ is f'(x) = :
-1 ifz<6 0 g X
-1
r—6

Another way of writing the formula is f'(z) = Tk

58. f(x) = [z] is not continuous at any integer n, so f is not differentiable
at n by the contrapositive of Theorem 4. If a is not an integer, then f

is constant on an open interval containing a, so f(a) = 0. Thus,

f(z) = 0, z not an integer.

z? if >0

59. (a) f(z) =z|z| = { (b) Since f(z) = 2 for x > 0, we have f'(x) = 2z forz > 0.

—z? ifx <0
y [See Exercise 17(d).] Similarly, since f(z) = —2? for z < 0,
we have f'(z) = —2z for z < 0. Atz = 0, we have
0 oy — 1o L) = FO) ] _
: FO=fm= = =iy =imkl=0
So f is differentiable at 0. Thus, f is differentiable for all .

2¢ if x>0
(c) From part (b), we have f'(z) = { N } =2|z|.

-2z ifx<0
x if x>0
60. (a) |z| = ] Y
—x if <0
(@) » 2¢ if x>0 )
SO z)=x+ |x| = . 1
g 0 ifz<O
Graph the line y = 2z for x > 0 and graph y = 0 (the x-axis) for x < 0. 1
0 1 X

(b) g is not differentiable at x = 0 because the graph has a corner there, but

is differentiable at all other values; that is, g is differentiable on (—oo, 0) U (0, co).
© o) 20 if x>0 ') 2 ifx>0
C xTr) = = x) =

g 0 ifxz<0 g 0 ifz<O

Another way of writing the formula is ¢'(z) = 1 + sgn z for x # 0.

61. (a) If f is even, then
oy i TR = f(mr) Sl )] — f(=)
Fee = g — g
i L@ @ @ @) e ay =y
h—0 h h—0 —h
_ flet+Ar) = flz) _ 4

Therefore, f’ is odd.

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



SECTION2.2 THE DERIVATIVE ASAFUNCTION O 125

(b) If f is odd, then

h—0 h - }ILIEH) h
= i L@ HI@ oy J@Z W @) e ny =y
h—0 h h—0 —h
_ o flet+Az) — f(z)
o Alalc—>0 Az F(z)
Therefore, f’ is even.
62. (a) f_(4)= lim M = lim M (b) y
h—0— h h—0— h
T > =5 ¥
h—0— h
and 0 4 X
_
, fA+h)—f4) .. 5—(44h)
+(4) = lim, h = b, h
T e Sl P S

h—0+ h(l — h) - h—0+ 1—-h

0 if <0
© fz)=4 5-z ifo<z<4
1/(6—x) if z>4

1 .
At4wehave lim f(z) = lim (5—«)=1and lim f(z)= lim —— =1,s0 lim f(z) =1= f(4) and f is
z—4— z—4— z—4t z—4+ O — T z—4

continuous at 4. Since f(5) is not defined, f is discontinuous at 5. These expressions show that f is continuous on the

intervals (—o0, 0), (0,4), (4,5) and (5, c0). Since lim+ f(z) = lim+(5 —z)=5#0= lim f(z), lin% f(z) does
z—0 z—0 x—0— T—
not exist, so f is discontinuous (and therefore not differentiable) at 0.
(d) From (a), f is not differentiable at 4 since f (4) # f (4), and from (c), f is not differentiable at 0 or 5.

63. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the

graph in (a) would not have corners and the graph in (b) would be continuous.

(@) (b) Y y = ds/dt
0 3 8 10 15 19 1
t
64. (a) T
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(b) The initial temperature of the water is close to room temperature because of the water that was in the pipes. When the
water from the hot water tank starts coming out, d7'/dt is large and positive as 7" increases to the temperature of the water
in the tank. In the next phase, dT'/dt = 0 as the water comes out at a constant, high temperature. After some time, d7°/dt
becomes small and negative as the contents of the hot water tank are exhausted. Finally, when the hot water has run out,

dT'/dt is once again 0 as the water maintains its (cold) temperature.

© '

y=dT/dt

65. In the right triangle in the diagram, let Ay be the side opposite angle ¢ and Ax
the side adjacent to angle ¢. Then the slope of the tangent line £

ism = Ay/Az = tan ¢. Note that 0 < ¢ < . We know (see Exercise 17)

that the derivative of f(x) = 2 is f/(x) = 2z. So the slope of the tangent to

the curve at the point (1, 1) is 2. Thus, ¢ is the angle between 0 and 5 whose

tangent is 2; that is, ¢ = tan~' 2 ~ 63°.

2.3 Differentiation Formulas

1. f(z) = 2%° is a constant function, so its derivative is 0, that is, f'(z) = 0.

2. f(x) = ©* is a constant function, so its derivative is 0, that is, f'(z) = 0.

3 f(x) =520+23 = f(z)=52(1)+0=52

4. g(x)=22°-3z+12 = g'(z)=1(22)—3(1)+0=2z-3

5. f(t) =2t — 31> —4t = f'(t) =2(3t?) — 3(2t) —4(1) = 6t*> — 6t — 4

6. f(t)=1.4t5— 252 +6.7 = f(t) =1.4(5t*) —2.5(2t) +0=7t* — 5t

7. g(x) =2%(1 —22) =2* — 22 = ¢'(x) = 22 — 2(32?) = 22 — 622

8. Hu)=Bu—1(u+2) =3’ +5u—2 = H'(u)=302u)+51)—-0=6u+5
0. 9() =27 = g =2(-5T) =3

10. B(y) =cy™® = B'(y) =c(-6y~ ") = —6ey "

M. Fr)===5"2 = F'(r)=5(-3"*)=-15r"*= -1

_ ,.5/3 2/3 /_5,2/3 _2,-1/3
12, y =23 — 223 = y—gx/—gx /
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1
Sp)=yp—-p=p""-p = S =ip?-1or —=-1
0 = v v = 4 N
2 4
y=r2+x) =223+ = y'zQ(%rfz/s)—&—%xl/S:%r*Z/S—i—%xl/S or —=+ -z
3vax2 3

R(a) =(Ba+1)*=9*>+6a+1 = R'(a)=9(2a)+6(1)+0=18a+6

S(R) =4rR*> = S'(R)=4m(2R) =87R

y = il o ek SV SRV SN E VLR
Vz
2
v =322 4 4(3)a V2 +3(-3)a =5V + N % [note that 2%/% = 22/ . 21/2 = xx/ﬂ
z 2zVrm

30 4 3 3P 4dr-3
20V 2oVr 22V 22V

The last expression can be written as

T+ x x T _ _ _ _ _ — _ _
18.y:\/;2 :w_\/z_+ﬁle/2 240172 2 g2 4 gl oy = 3752 4 (1272) = 375/ _ g2
19.G@)= (1+q ")’ =142 +q7 = G@)=0+2(-1¢7)+(-2¢"°") = —2¢ > —2¢"°
20. G(t) = /5t + g =Bt 4Tt = G(t) =5 (%t—l/Z) FVT(-1t72) = 2—‘/\2 - g
Mae (LY _L_ 2 1o oiap g

w=(3-7) @ mEti=t - +t =
2 3 1 2 3 1
o3 _o(_3\4—5/2 _ (_qy-2__~2 , 5 L _ 2 _ 1
u =2t 2(=3)t + (=Dt = t3+t5/2 2 t3+t2\/f 12
2. D(t) 1+ 1667 1+ 16t s
' T T T 64 o a
D)=L (=3t 4+ 1(-1t72) = -2¢+7* - 1472 or _3 1
64 4 64 4 6414 412
23. Product Rule: f(z) = (1 + 22%)(z — 2?) =
f(2) = (1+22%)(1 — 22) + (z — 2?)(4z) = 1 — 2z + 22 — 42° + 4% — 42® = 1 — 22 + 62° — 82>
Multiplying first: f(z) = (1 + 22%)(z — 2®) = 2 —2® + 22> —22* = f'(z) = 1 — 22 4 62° — 82 (equivalent).
4 .3 4 £ 3 1/2
24. Quotient Rule: F'(z) = ik VA _ v oor =

2 72

x?(4a® — 1527 + émfl/Q) — (z* = 52® + 2% (2x) _ 4z® — 15x* + %m3/2 —22° + 102 — 223/2

F ('T) = (1,2)2 7

22° — bat — 223/2
= 1 2 :21‘—5—%1‘75/2
T

' — 52+ Jr

Simplifying first: F'(x) = 5
x

? —br4+2%? = Fl(zx)=2z-5- %x75/2 (equivalent).

For this problem, simplifying first seems to be the better method.
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25. f(z) = (52> — 2)(z® +32) =

f'(z) = (522 — 2)(32® + 3) + (2 + 32)(10z) = 152* + 92% — 6 + 10z* 4 302% = 252" + 3922 — 6

2. B(u) = (u®+1)(2u® —du—1) =

B'(u) = (u® +1)(4u — 4) + (2u® — 4u — 1)(3u?)
= du* — 4u® 4+ 4u — 4+ 6u* — 120® — 3u? = 10u* — 16u® — 3u? + 4u —4

27. F(y) = <y—12 - %)(y +58) = (2 -3y Hy+5°) =

F'(y) = (y=2 =3y~ ") (1 + 15y°) + (y + 5y°) (—2y > + 12y °)
=(y 24+ 15 -3y~ * —45y72) + (—2y "2 + 12y~* — 10 + 60y ~?)
=5+ 14y~ 249y~ or 5+14/y% +9/y*

28. J(v) = (v* —20) (vt +072) &

J'(v) = (v® = 20)(—4v™° = 2073 + (v + 072 (30 - 2)
= 42— 20+ 80 442 4+30 2 -2 43— 2w =140 24+ 60"

142 ® o, (3—4x)(2)—(1+2x)(—4) 6—-8x+4+8z 10
B9@) =3 — 9@= (3 —dz)? T T B-4)2 | (3_4n)?
_6t+1 or o, (6t—1)(6) — (6t +1)(6) 36t—6-36t—6 12
W) =g—7 7 M= (6t — 1) ST t—12 (612
224+1
Noy= P =
;@ —1D)2r) - (@2 4+1)32?)  z[(@®-1)(2) - (@ +1)(B3x)]  2(22® —2-32° —3z)  a(—2® -3z —2)
B (23 —1)? B (z3 —1)? B (z3 —1)? (@12
o 1 R (t° +2t2 —1)(0) —1(3t* +4t) 3> +4t
SRR E R Yo v= (5 + 262 — 1)2 B CE S EEE
43t
By= e hys
, (P —4t+3)(32 +3)— (P +3t)(2t — 4)
v= (12 — 4t + 3)2
33— 126 — 120+ 97 +9— (2 — 4P+ 6t7 —12t) ' —8t° +6t°+ 9
B (t2 — 4t + 3)2 (2 —4t+3)2

_ (u+2)?  w+4du+4 &

4.y

1—u 1—u
;= w)u+4)— (WP H+du+4)(-1) 2u+4—-2u®—dutu’+4du+4  —uP+2u+8
- (1—w? - (1—w)y? Ty
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78—\/57__£7 -1 _ —3/2 2, 3_5/2_ —1 3 73_2\/5
B.y= s2 g2 52 =5 8 = Yy =-5"+3s g2 255/2 ~  9245/2
VT R
36. y =
Y 24+ =
1 1 N 24x—2z
2 — ) -zl =¥ crr— s
, +x)(2\/5) Ve A VR TS e
v= (2 +2)? T 2+2)? (2422 2/z(2+a2)?
Viooor
37. f(t) =
foy =25 2
—2t 3
1,-2/3 1/3
e (t*?’)(gt / ) —t1/3(1) RS RS P s T3 243
(t—3)2 (t—3)2 (t—3)2 (t—3)2 3t2/3(t — 3)2
38 o — T L (1+cz)(c) = (cx)(c) c+Px—c’x c
SR gy v= (14 cx)?  (I+cx)2 T (1+cx)?
5., .4 _ 4.3
39. F(z) = w =222+ —-6272% = F’(x):4x—|—1+12a:_3 :4x+1+1—§or4x+—x3+12
x x x
40. A(v) = v*3(20% +1 —v72) = 283 43 ™3 =
_ _ _ 2(8v* +v° +2
Al(v) = L03/3 4 2p71/3 4 4y7/3 = 27 T/3(812/3 4 6/3 4 9y = ( — )
B Ry (Ay® + B)(0) — B(3Ay?) 3ABy?
41. = — = —
CW=gpys — YW (Ay? + B)? (Ay? + B)?
At A QR
2. F() = gp +Ct3  Bt+Ct?
F(t) = (Bt+Ct*)(0) — A(B+2Ct)  —A(B+2Ct)  A(B+2Ct)
B (Bt + Ct2)? C ()2(B+Ct)?2  t2(B+Ct)?
x (x4+c/x)(1) —xz(1 —c/2®) z+c/z—x+c/z 2¢c/x z? 2cx
43'f(x):x—|—c/x = @)= c\? - 2 2 :(x2+c)2'ﬁzm
T+ _) x” +c
( x z x?
ar+b (cx +d)(a) — (ax +b)(c) acx+ ad —acx —be ad — b
4. — ") = — —
1) cx+d F'(@) (cz + d)? (cx + d)? (cx + d)?
45. P(z) = ana™ + an1z" '+ tar® +axtan = P(z) = nanx" ' + (n— l)anflxnf2 + oo+ 2a0x + a1
46. f(:n)zmQ_l = 5
f,(m)_(:ﬁfl)lfx@x)_ - -1 ®+1 f
ST @-r @ @1 L —
Notice that the slopes of all tangents to f are negative and f'(z) < 0 F f
always.
-5
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47. f(z) = 32" —52° +3 = f'(x) =45z — 1522, 8
{ : ’
Notice that f’(z) = 0 when f has a horizontal tangent, f’ is positive i 12
1
when f is increasing, and f” is negative when f is decreasing.
-9
8. fz)=x+1/z=z+z! = flx)=1-22=1-1/2" p 6 .
f
Notice that f'(z) = 0 when f has a horizontal tangent, f’ is positive f f
when f is increasing, and f’ is negative when f is decreasing. —6 N7 6
f
\ J
-6
49. (a) 50 (b) From the graph in part (a), it appears that f’ is zero at z1 &~ —1.25, z2 ~ 0.5,

and 3 ~ 3. The slopes are negative (so f’ is negative) on (—oco, z1) and

(w2, x3). The slopes are positive (so f’ is positive) on (z1, z2) and (z3, 00).

Bl ~
-10 f
J5

© f(z) =a* —32® — 62> + T +30 = 100

f(x) =42® —92% — 1224+ 7

7

WA

50. (a) 1.5 (b) y

—40

From the graph in part (a), it appears that g’ is zero at x = 0. The
slopes are negative (so ¢’ is negative) on (—oo, 0). The slopes are

positive (so ¢’ is positive) on (0, c0).
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2
€ 1

(©) g(z) =

211
) = D) —2®Q2r) 2 M
g( )_ (£E2+1)2 - ($2+1)2 L )

2% , @+ D@ - Qo)1) 2
zr1 YT (@+1)2 BRCESVEN

51. y =
At (1,1),y" = 3, and an equation of the tangent lineisy — 1 = $(x — 1), ory = 3z + 3.

5. y=2x% —224+2 = ¢ =622z At(1,3),y = 6(1)% — 2(1) = 4 and an equation of the tangent line is

y—3=4(x—1) or y =4z — 1.

1
8.@y=[f(z)= 1522 (b) 13
o (1+23)(0)—1(2z) 22
fix) = T+ a7 T So the slope of the (-1,05)
tangent line at the point (—1, %) is f'(—1) = 2% = £ andits 74[ J 4
equationisy — 3 = 1(z+1)ory = 2o+ 1. -0s
x
— — 0.75
5. (@) y = () = 75 (®)
oy A+l —z(22) 1-—2? (3,0.3)
fl(z) = i+ a9)° TS So the slope of the
-2 5
tangent line at the point (3,0.3) is f(3) = 1g5 and its equation is J
y — 0.3 = —0.08(z — 3) or y = —0.08z + 0.54. Yy

5. y=z+Vr = ¢y =1+3i272=1+1/(2Vz). At(1,2),y = 2, and an equation of the tangent line is

y—2=35(x—1),ory = %x + % The slope of the normal line is 7%1 so an equation of the normal line is

Nlw

y—2=—2(x—1),ory=—2z+3.

5. y? =2 = y= 22 [sincez and y are positiveat (1,1)] = ¢ = %xl/Z. At (1,1),y" = 2 and an equation of the

tangent lineisy — 1 = %(x —1) ory= %x - % The slope of the normal line is f% (the negative reciprocal of %) and an

equation of the normal lineisy — 1 = —2(z — 1) or y = -2z + 3.
2 J— p—
5.y = if _—::i = y= @+ 1)((?;)2 +(f;62+ 1)(@22) . OAtL(1,2),y = 62—28 = f%, and an equation of the tangent line
isy—2=—2(x—1),ory = —3x + 2. The slope of the normal line is 2, so an equation of the normal line is

y—2=2(x—1),ory =2x.
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@+ 1) —==) - vz )
Vo , 2z (x+1) — (22) -z
58. y = = y = 5 = = .
z+1 (z+1) 2Vz(z+1)2  2Va(z+1)2
At (4,0.4),y = 555 = —0.03, and an equation of the tangent line is y — 0.4 = —0.03(x — 4), or y = —0.03z + 0.52. The
slope of the normal line is 132, so an equation of the normal lineisy — 0.4 = X (z —4) & y=107-4042 &
y= g g
59. f(x) = 0.0012® — 0.022° = f'(x) =0.0052* —0.062> = f"(x)=0.022° —0.12z
.G =ViE VT S G =B S G = g
x> 14 22)(2z) — 2%(2 2z + 4a? — 222 222 + 2z
61. f(z) = Fla) = )(2z) y 2 _ 2 d
1+ 2% (14 2x) (14 2x) (1+2x)
() = (1+22)*(4x +2) — (20 +20) (1 + 4o +42?)"  2(1+22)*(22 + 1) — 2z(z + 1)(4 + 82)
[(1+ 2z)2]? (14 2x)*
C2(1+422)[(1 4 22)° —da(z +1)]  2(1 44w + 42 —42® —4a) 2
- (1+2x)4 - (1+2x)3 T (1422)3
. . 1 (3—=x) -1 1
62. Using the Reciprocal Rule, f(x) = 3L = f(z) = ERmE = EEESE = EESE =
Fra) = — (B2 (9-6z+2®) —6+22  -2B8-z) 2
(8 —=)?]? (8 —=z)* (B —=)* B-z)*  (B-a)?
63. @) s=1t3-3t = ot)=s{t)=3>—-3 = a(t)=v(t) =6t
(b) a(2) = 6(2) = 12 m/s?
(¢) v(t) = 3t> —3 =0 whent®> = 1, thatis, ¢t = 1 [t > 0] and a(1) = 6 m/s>.
64. ) s=t* -2 +* -t = () 3 :
v(t) =s'(t) =4t — 6> +2t —1 = i af vf
t)=0'(t) =12t — 12t + 2
a(t) =v'(t) + 0 {=—— : 25
() a(1) =12(1)> —12(1) +2 =2m/ s> < J
-1.5
3 2 drL 2
65. L = 0.0155A4° — 0.3724° +3.95A 4+ 1.21 = 1= 0.0465A4° — 0.744A + 3.95, so
dL ) o
TA s = 0.0465(12)% — 0.744(12) 4 3.95 = 1.718. The derivative is the instantaneous rate of change of the length of an
=1
Alaskan rockfish with respect to its age when its age is 12 years.
66. S(A) = 0.8824%%%2 = S'(A) = 0.882(0.842A7%158) = (.742644 A7 %158 5o

S’(100) = 0.742644(100) %-!58 ~ 0.36. The derivative is the instantaneous rate of change of the number of tree species with

respect to area. Its units are number of species per square meter.
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67. (a) P = é and P = 50 when V' = 0.106, so k = PV = 50(0.106) = 5.3. Thus, P = 5—‘; and V = 5—P3
dv 5.3 av 5.3
=53p7! — =53(—-1P7 %) ==, = — = —— =—0. . ivative i
(b) V=53 = 1P 5.3( ) T2 When P = 50, P 702 0.00212. The derivative is the

instantaneous rate of change of the volume with respect to the pressure at 25 °C.  Its units are m®/kPa.

68. (a) L = aP? +bP + ¢, where a =~ —0.275428, b ~ 19.74853, and ¢ ~ —273.55234.

dL
(b) P 2aP +b. When P = 30, % =~ 3.2, and when P = 40, (Cil_ZLD ~ —2.3. The derivative is the instantaneous rate of

change of tire life with respect to pressure. Its units are (thousands of miles)/(1b/in®). When j—]LD is positive, tire life is
. . dL T .
increasing, and when P < 0, tire life is decreasing.

69. We are given that f(5) = 1, f'(5) = 6, g(5) = —3, and ¢’ (5) = 2.

@ (f9)'(5) = f(5)g'(5) + 9(5)f'(5) = (1)(2) + (-3)(6) =2 — 18 = —16
) (f)'(5) _9B)f'(B) — f(5)g'(5) _ (=3)(6) — (1)(2) _ 20

9

[9(5)]? (=3)? -9

© (g)'(5) _1(B)gB) —9BG)'(B) _ (D(2) = (=3)(6) _,,

f B IR
70. We are given that f(4) = 2, g(4) =5, f'(4) = 6,and ¢'(4) = —3.
(@) h(z) =3f(z) +8g(x) = N (x)=3f"(x)+ 8¢ (x),s0
B/(4) = 3f'(4) + 8¢/ (4) = 3(6) + 8(—3) = 18 — 24 = —6.
) h(z) = f(z)g(z) = h'(z) = f(x)g'(z) + g(z) f'(x), s0
R(4)=f(4)g'(4) +9g(4) f'(4) =2(-3) +5(6) = —6 + 30 = 24.

@ hie) = L8 o gy = LS —T@I @)

9(x) l9(z)]?
Wi - SO @ SO 5623 0+6 36
lg(4)]? B 52 T 25 25
__ g(=)
@ H) = 7o) + o)
v - LA +0@17 @ — o) @ + (@] _ @43 (3)=5f6+ (9] _ —2n-15 __3
[F(4) + g(4)]? (2+5)? 7 49
Mf@) =Vag) = f@)=Vag@) +ol) za /%50 f'(4) = Vg (4) +g(4)- 2%1 =2.748-7=16
d [h(x)] k' (2) - h(z)-1 d [h(@)] W) —h@) 2-3)—@4) 10
R ﬁ@%ﬂm* » 4 1
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73. (a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1, 2) is on the graph of f;

g(1) = 1 since the point (1,1) is on the graph of g; f'(1) = 2 since the slope of the line segment between (0, 0) and

(2,4) is ;1 : 8 = 2; ¢’(1) = —1 since the slope of the line segment between (—2, 4) and (2, 0) is 20_;(:42) =-1.
Now u(z) = f(z)g(z), so /(1) = f(1)g'(1) + 9(1) f'(1) =2-(-1) +1-2=0.
_ sy~ 9O() — f(B)g'(5) _2(=3)—3-3 -5 _ 2
(b) ’U(J)) - f(x)/g(a:), sov (5) - [9(5)}2 - 2 22 & = T - _g
74. (a) P(z) = F(z) G(z),s0 P'(2) = F(2)G'(2) + G(2) F'(2) =3- 2+ 2.0 = &
®) Qla) = F@)/Gla). 0 @/(1) = LD ZOED Lo 7 ) 1,10 5

5. (y=zg9(z) = y =zg'(2)+g() 1=z¢(2)+g(z)

_ T r_gl)-1—ag'(x) _ g(x) —xg'(x)
®v=tm =¥ lo()F l9()2
©y= 9(z) J = zg'(z) —g(x) -1 _ xg'(x) — g(x)

T (z)? 2

76. @ y=2f(z) = ¢ =2 (x)+ f(z)(2x)

By=tD L o f’(x)(;Q)fQ(w)(%) _ ol @) ~21(c)
o ,_ f@)) —2*f (x)
@v=Fm =V F@)P
@y -2
VE[ef (@) + F(@) - [1 + 2f()] ﬁ
y/ = 2
(V7)
:L‘B/zf,(x) + l’l/2f(l’) _ %xfl/Z _ %ml/2f(x) . 2$1/2 B l’f(:lf) + 2$2fl($) 1
- T 2x1/2 223/2

77. The curve y = 22° + 32> — 122 + 1 has a horizontal tangent when ¢/ = 62% + 62 —12=0 < 6z’ +2x—-2)=0 <
6(x+2)(x—1)=0 < x=—2orz = 1. The points on the curve are (—2,21) and (1, —6).

78. f(x) = 2® + 32% + 2 + 3 has a horizontal tangent when f'(z) = 32> + 62 +1=0 <«

o —0EV36-12 \/6%—12:,11%\/5

7. y=62>+5x—-3 = m=1y =182% + 5, but2? > 0 forall z, so m > 5 for all .

80. y=x2*+1 = ¢ =4x>. Theslope of the line 32z — y = 15 (or y = 32z — 15) is 32, so the slope of any line parallel to

itisalso 32. Thus,y’ =32 < 42°=32 < 2®=8 & =2, whichis the 2-coordinate of the point on the curve
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SECTION 2.3 DIFFERENTIATION FORMULAS U

at which the slope is 32. The y-coordinate is 2* 4+ 1 = 17, so an equation of the tangent line is y — 17 = 32(x — 2) or
y = 32x — 47.

The slope of the line 3z — y = 15 (or y = 3z — 15) is 3, so the slope of both tangent lines to the curve is 3.
y=2>-322+3r-3 = y =322 -62+3=3(z>-22+1)=3(x—1)% Thus,3(zx—1)2 =3 =
(x—1)*=1 = x—1=41 = x =0or2, which are the z-coordinates at which the tangent lines have slope 3. The
points on the curve are (0, —3) and (2, —1), so the tangent line equations are y — (—3) = 3(x — 0) or y = 3z — 3 and
y—(-1)=3(x—-2) or y=3z—1T1.

x—1 ; (+1)Q)—(z—-1)(1) 2

= = = .Ifthe t t int t 6
Yy T+ 1 = y (:L‘-i— 1)2 (:L‘-i— 1)2 € tangent 1mtersects

~
>y

the curve when z = a, then its slope is 2/(a 4 1)2. But if the tangent is parallel to

2 _1
(a+1)2 2

r — 2y = 2, thatis, y = %m — 1, then its slope is % Thus, =

(a+1)?>=4 = a+1=42 = a=1lor—3. Whena=1,y=0and the

equation of the tangentisy — 0 = 2(z — 1) ory = 2z — 2. Whena = -3,y = 2 and

the equation of the tangent isy — 2 = 2(z + 3) ory = s + £.

The slope of y = /x is given by y = lp-12 = # The slope of 2z + y = 1 (or y = —2x + 1) is —2, so the desired
(]

2

1
= =

1
2V 2

Vt=1 = z=1 Whenz =1,y =+/1 =1, and an equation of the normal lineis y — 1 = —2(z — 1) or

normal line must have slope —2, and hence, the tangent line to the curve must have slope % This occurs if

y=—2x+ 3.

y=f(x)=2>-1 = f'(z) =2z So f'(—1) = —2, and the slope of the
normal line is 3. The equation of the normal line at (—1,0) is
y—0=1[z— (—1)] ory = 2x + 3. Substituting this into the equation of the

parabola,weobtain%x—l—%:$2—1 s rz+1=22-2 &

20—z —-3=0 & (2r-3)(x+1)=0 < x=2or—1. Substituting £

into the equation of the normal line gives us y = %, Thus, the second point of

intersection is (2, 2), as shown in the sketch.
y Let (a, a2) be a point on the parabola at which the tangent line passes
(@) through the point (0, —4). The tangent line has slope 2a and equation
y = y—(—4) =2a(x —0) < y=2az — 4. Since (a,a”) also lies on the

line, a® = 2a(a) — 4, or a®> = 4. So a = %2 and the points are (2, 4)

(0, -4)
and (—2,4).
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86. (a) Ify = 22 4 x, then ' = 2z + 1. If the point at which a tangent meets the parabola is (a, a? + a) , then the slope of the

2
tangent is 2a + 1. But since it passes through (2, —3), the slope must also be % = La;—?).
x a—

a’*+a+3

5 Solving this equation for a we get a®> + a +3 =2a?> —3a — 2 <
a—

Therefore, 2a + 1 =

a*—4a—5=(a—5)(a+1)=0 < a=50r—1. Ifa= —1,thepointis (—1,0) and the slope is —1, so the
equationisy — 0 = (—1)(z + 1) ory = —x — 1. If a = 5, the point is (5, 30) and the slope is 11, so the equation is
y—30=11(x —5)ory = 11x — 25.

(b) As in part (a), but using the point (2, 7), we get the equation

2 —
2@_’_1:ch27 = 2¢2-3a—-2=d’+a-7 & a®—4a+5=0.
a—

The last equation has no real solution (discriminant = —16 < 0), so there is no line
through the point (2, 7) that is tangent to the parabola. The diagram shows that the

point (2, 7) is “inside” the parabola, but tangent lines to the parabola do not pass

through points inside the parabola.
87. (a) (fgh)' = [(fg)h]' = (fg)'h+ (fo)h' = (f'g+ fg)h+ (fo)h' = f'gh+ fg'h + fgh'
(b) Putting f = g = h in part (a), we have %[f(ﬂff)]3 =(fFN) =FFf+ P f+FFf =3Fff =3[f(@)]f (2).
(©y=(z*+32° +172 +82)> = o =3(a* + 3% + 17z + 82)%(42® + 927 + 17)
88. (@) f(z)=2" = f(2)=nz"' = f'(@)=nnh-12"2 = ... =

f(”)(x) =nn—-1Mn-2)---2-12" " =nl

® f@)=2"' = fll@)=(-Dz? = f@)=(-)(-2)z> = .. =
£ @) = (<D(=2)(=3) -+ (—ma~ ) = (1)nta— ) o LU

89. Let P(x) = ax® + bz + c. Then P'(x) = 2ax + band P’(x) =2a. P"(2) =2 = 2a=2 = a=1
P'(2)=3 = 21)(2)+b=3 = 4+b=3 = b=-1
P2)=5 = 12+ (-1)2)+c=5 = 2+c=5 = c=3.5P(z)=12>—-x+3.
9.y = Az’ + Bz +C = o =2Az+B = y” =2A. We substitute these expressions into the equation
y" +1y — 2y = x? to get
(2A) + (2Az + B) — 2(Az* + Bx + C) = 2°
24 +2Az + B —2A2” — 2Bz —2C = 2°

(—24)2® + (2A — 2B)z + (2A+ B — 2C) = (1)2® + (0)z + (0)

The coefficients of 2 on each side must be equal, so —2A =1 = A= f%. Similarly, 24 —2B =0 =

A=B=-3and2A+B-2C=0 = -1-3-20=0 = C=-3.
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M. y=f(z)=ax® +bx’+cx+d = f(z)=3az®>+2bx+c. Thepoint(—2,6)ison f,s0 f(—2) =6 =
—8a +4b —2c+d =6 (1). The point (2,0) ison f,so f(2) =0 = 8a+4b+ 2c+d =0 (2). Since there are
horizontal tangents at (—2, 6) and (2,0), f'(£2) =0. f(-2) =0 = 12a—4b+c¢=0 3)and f'(2) =0 =
12a + 4b + ¢ = 0 (4). Subtracting equation (3) from (4) gives 80 =0 = b = 0. Adding (1) and (2) gives 8b + 2d = 6,
so d = 3 since b = 0. From (3) we have ¢ = —12a, so (2) becomes 8a + 4(0) + 2(—12a) +3=0 = 3=16a =

a= 2. Nowc=—-12a = —12(Z) = —2 and the desired cubic functionisy = 22 — 2z + 3.

92. y=ax®+br+c = o' (z)=2ax+b. Theparabola hasslope 4 atz = 1 andslope —Satz = —1,s0%'(1) =4 =
2a+b=4 (I)andy’(—1) = -8 = —2a+b=—8 (2). Adding (1) and (2) givesus 20 = —4 < b= —2. From
(1),2a —2=4 < a = 3. Thus, the equation of the parabola is y = 322 — 2z + ¢. Since it passes through the point

(2,15), we have 15 = 3(2)% —2(2) + ¢ = ¢ =7, so the equation is y = 3z — 2z + 7.

93. If P(t) denotes the population at time ¢ and A(t) the average annual income, then T'(t) = P(t)A(¢) is the total personal
income. The rate at which T'(¢) is rising is given by T (¢) = P(¢)A'(t) + A®)P'(t) =
T'(1999) = P(1999)A’(1999) + A(1999)P’(1999) = (961,400)($1400/yr) + ($30,593)(9200/yr)
= $1,345,960,000/yr + $281,455,600/yr = $1,627,415,600/yr
So the total personal income was rising by about $1.627 billion per year in 1999.
The term P(t) A’ (t) ~ $1.346 billion represents the portion of the rate of change of total income due to the existing

population’s increasing income. The term A(t) P’ (t) =~ $281 million represents the portion of the rate of change of total

income due to increasing population.

94, (a) f(20) = 10,000 means that when the price of the fabric is $20/yard, 10,000 yards will be sold.
f'(20) = —350 means that as the price of the fabric increases past $20/yard, the amount of fabric which will be sold is

decreasing at a rate of 350 yards per (dollar per yard).

() R(p) =pf(p) = R =pf'(p)+flp)-1 = R (20)=20f'(20)+ f(20) -1 = 20(—350) + 10,000 = 3000.
This means that as the price of the fabric increases past $20/yard, the total revenue is increasing at $3000/($/yard). Note
that the Product Rule indicates that we will lose $7000/(8$/yard) due to selling less fabric, but this loss is more than made

up for by the additional revenue due to the increase in price.

0.14[S] ‘v (0.015+[S1)(0.14) — (0.14[SD(1) _  0.0021

B Uu=Go s ds] (0.015 + [5]) (0.015 + [S])*

dv /d[S] represents the rate of change of the rate of an enzymatic reaction with respect to the concentration of a substrate S.

9. B(t) = N(t) M(t) = B'(t) = N(t)M'(t) + M(t) N'(t), so

B'(4) = N(4) M'(4) + M(4) N'(4) = 820(0.14) + 1.2(50) = 174.8 g/week.
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f@) 2241 ifz<l
xT) =
r+1 ifx>1

Calculate the left- and right-hand derivatives as defined in Exercise 2.2.62:

_ 2 _ 2
F)y= tim JOED O[O FYZAHD o BE20 19y — 2and
h—0— h h—0— h h—0— h h—0~
, . fA+R)—fQ) . [(A+h)+1]-(1+1) h . .
@)= hlir0n+ h N hli%l+ h N h1~>0+ h hliIng =1
Since the left and right limits are different, 2y
}lin}) w does not exist, that is, f'(1) (1,2) 1l
does not exist. Therefore, f is not differentiable at 1. :
y=fw /0 1 v
0 1 X
2z if £ <0
glx) =<2z —2? f0<a<?2
2—x if ©>2
Investigate the left- and right-hand derivatives at z = 0 and z = 2:
g (0) = lim 9(0+h) =9 _ o 2h=20) _ 5 4
h—0— h h—0—
— — 2 J—
g4 (0) = lim w = lim (th—h)m) = lim (2~ h) = 2,50 is differentiable at z = 0.
— _ 2 _ o 12
g (2) = lim 92+h) —9(2) = lim 20+ = @+h) - (2-2) = lim Z2h oW lim (-2 —h) = -2
h—0— h h—0— h h—0— h h—0—
and
- 9(2+h) —g(2) . 2-24+n]-(2-2) .  —h L _
9+ (2) N hlLI(IJIJr h o hli,0+ h a hlir(r)gr B hli,rng( 1) =-L
so g is not differentiable at z = 2. Thus, a formula for ¢’ is
y y
2 if <0 5
g@)=<{2-2z if0<z<2 y=g(x) y=g'tx)
-1 if x> 2
0 2 X 0 i X
_2 4
(@) Notethat x> —9 < 0forz? <9 & |z/|<3 & -3<2<3. %
-9  ifz<-3 20 ifz<-3
2x if || >3
fz)={ —2*+9 if 3<z<3 = f(x)={ -2z if 3<zx<3 = ‘
] -2z if |z| <3
z2 -9 if >3 2z if >3
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by computing the left- and right-hand derivatives

fB+h) - 1B)
h

To show that f’(3) does not exist we investigate }llir%

defined in Exercise 2.2.62.

. h) — . — h)? — .
. R

iy — i JBER) = f(3) [(B+h)*-9] -0 _ 6h+h®
f®) = hlirng h h—0+ h N hllI& h

lim (6 4+ h) = 6.
h—0+

\O

Since the left and right limits are different, (b) Y y /
i LB R) — 1(3) !
h

lim does not exist, that is, f'(3)

does not exist. Similarly, f'(—3) does not exist. S N3 x

Therefore, f is not differentiable at 3 or at —3.

Ifz>1,thenh(z)=|z—1|+|z+2|=2—-14+2+2=2z+1.
If-2<z<1thenh(z)=—(z—1)+z+2=3.
Ifx < —2,then h(z) = —(x — 1) — (x + 2) = —2x — 1. Therefore,

2 -1 ifz<—2 -2 fz< -2
h(z) =14 3 if 2<z<1 = Rh@)=40 if 2<z<1
2+ 1 if >1 2 if ¢ >1

h(z) — h(1 .
To see that A’ (1) = lim Ll() does not exist, y y

r—1 €T —

_ _ y=n)
observe that lim M = lim ﬁ = 0 but 27 o/
z—1— r—1 z—1— 3 —1

y = h(x)
. h(x)—h(1) .. 20-2 o , , B
e e R 50

1/ (—2) does not exist.

y=f(z) =az® = f'(z) =2ax. So the slope of the tangent to the parabola at x = 2 is m = 2a(2) = 4a. The slope
of the given line, 2 +y =b < y= —2x+ b,isseentobe —2,so we musthaveda = -2 < a= —%. So when
x = 2, the point in question has y-coordinate —% .22 = —2. Now we simply require that the given line, whose equation is

2z +y = b, pass through the point (2, —2): 2(2) + (—2) =b < b=2.Sowemusthavea = —1 and b = 2.

(a) We use the Product Rule repeatedly: F = fg = F' = f'g+ fg =
F'=(f"g+1'9)+ g +19")=F"g+2f'd + fg".

(b) = fmg + f//g/ +2 (f//g/ + f/g//) + f/g// + fg/u _ fmg + 3f//g/ + 3f/g// + fg/// =
F(4) — f(4)g + f///g/ 43 (f///g/ + f//g//) +3 (f//g// 4 f/g///) + f/g/// + fg(4)

— f(4)g + 4f///g/ + 6f//g// + 4f/g/// 4 fg(4)
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(c) By analogy with the Binomial Theorem, we make the guess:

FO) = g g 4 p =D 4 (Z) Fo=gn Ly <:> FOR ) 4 gD g

n n! nn—(n—-2)---(n—k+1
Where<k>:k!(n—k)!:( A k)l ( 2

103. The slope of the curve y = ¢ Vrzisy = 5 \C/_ and the slope of the tangent line y = %m +6is % These must be equal at the
z
point of tangency (a, cVa ) , SO # = g = ¢ = 3+Va. The y-coordinates must be equal at z = a, so
a

c a:%a—l—G = (3\/5)\/5:%@—!—6 = 3a:%a—|—6 = %a:G = a:4.Sincec:3\/E,wehave
c=3/4=6.

104. f is clearly differentiable for x < 2 and for x > 2. Forz < 2, f'(z) = 2z, s0 f_(2) = 4. Forz > 2, f'(x) = m, so
f(2) = m. For f to be differentiable at z = 2, we need 4 = f’ (2) = f\(2) = m. So f(z) = 4z + b. We must also have

continuity at z = 2,s04 = f(2) = lim f(z) = lim (4z +b) = 8 4+ b. Hence, b = —4.

z—2t z—2

105. F=f/g = f=Fg = f =Fg+F¢ = Ff:f'—Fg/:f/—(f/g)g’:f’g—zfg’

g 9 9
106. @) zy =c = y= S LetP = (a, E). The slope of the tangent line at z = a is y'(a) = —%. Its equation is
T a a
c ¢ _c 2c . . . 2c Setti o . he 2-i .
i) (x—a)ory = —Em + o’ so its y-intercept 1s P etting y = 0 gives = 2a, so the z-intercept is 2a.

The midpoint of the line segment joining (O, %) and (2a,0) is (a, 2) =P.

(b) We know the x- and y-intercepts of the tangent line from part (a), so the area of the triangle bounded by the axes and the

tangent is 5 (base)(height) = 22y = $(2a)(2¢/a) = 2¢, a constant.

_ 1000 _
107. Solution 1: Let f(x) = x'°%°. Then, by the definition of a derivative, f'(1) = lim1 ) {(1) = lim1 z T 1.
T— xTr — xrT— xTr —

But this is just the limit we want to find, and we know (from the Power Rule) that f'(z) = 10002°°%, so

1000 _
f/(1) = 1000(1)?°° = 1000. So lim ””—11 = 1000.

Solution 2:  Note that (z1°° — 1) = (z — 1)(@°%° + 2% + 27 4+ ... + 22 + 2+ 1). So

1000 . 999 998 997 | . 2
limu:hm ] Gl i e A +x+1):lim(zggg—i-xggs+1997+---+x2+x+1)
z—1 x—1 z—1 r—1 z—1
=1+1+1+---4+1+1+1=1000, as above.
1000 ones
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In order for the two tangents to intersect on the y-axis, the points of tangency must be at
equal distances from the y-axis, since the parabola y = z? is symmetric about the y-axis.

Say the points of tangency are (a, a®) and (—a, a®), for some a > 0. Then since the

derivative of y = 2? is dy/dx = 2z, the left-hand tangent has slope —2a and equation

y —a* = —2a(x + a), or y = —2ax — a*, and similarly the right-hand tangent line has

equation y — a® = 2a(z — a), or y = 2ax — a*. So the two lines intersect at (0, —a2). Now if the lines are perpendicular,

: : 2 _ 1 1 e 1
then the product of their slopes is —1, s0 (—2a)(2a) = =1 & a® =21 <& a = 3. So the lines intersect at (0, —3).

y=2> = vy =2z, so0 the slope of a tangent line at the point (a, a?) is ¢’ = 2a and the slope of a normal line is —1/(2a),

2 2
. . . a’—c a” —c 1
for a # 0. The slope of the normal line through the points (a, a*) and (0, ¢) is w_0’' % =-g5, =
a— a a
a’> —c= f% = a>=c— % The last equation has two solutions if ¢ > %, one solution if ¢ = %, and no solution if

c< % Since the y-axis is normal to y = x* regardless of the value of ¢ (this is the case for a = 0), we have three normal lines

ifec > % and one normal line if ¢ < %

110. Y yexi— 242 From the sketch, it appears that there may be a line that is tangent to both
R curves. The slope of the line through the points P(a, a®) and
y=ux
V¥ —20+2—a® .
Q(b,b*> —2b+2)is %, The slope of the tangent line at P
0
{ is2a [y =2z] andatQis2b—2 [y’ = 2z — 2]. All three slopes are
0q x
equal,s02a =2b—2 < a=b-1.
2 ] 2 _ _ 2
Also,2b— 2= L2220 gy 5 V220D g a1 =
b—a b—(b—1)
2b=3 = b=3anda= 32 —1= 1. Thus,an equation of the tangent line at P is y — (%)2 =2(3)(z—3)or
y=x—;
APPLIED PROJECT Building a Better Roller Coaster
1. @) f(z) =ax? +br+c = f'(x)=2ax+b.

The origin is at P: f(0)=0 = c=0

The slope of the ascent is 0.8: f'(0)=08 = b=0.8

The slope of the drop is —1.6: f(100) = -1.6 = 200a+b=—1.6

2.4

(b)b=0.8,50200c +b=—-16 = 200a+08=-1.6 = 200a=-24 = a= 300 = —0.012.

Thus, f(x) = —0.0122° + 0.8z.
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(c) Since L, passes through the origin with slope 0.8, it has equation y = 0.8z. 50
LA L
The horizontal distance between P and () is 100, so the y-coordinate at Q) is _SJ P(0,0) ) 1 150
£(100) = —0.012(100)* + 0.8(100) = —40. Since Ly passes through the 0(100,—40)
point (100, —40) and has slope —1.6, it has equation y + 40 = —1.6(xz — 100) !
—100
ory = —1.6x + 120.
(d) The difference in elevation between P(0,0) and (100, —40) is 0 — (—40) = 40 feet.
2. (a)
Interval Function First Derivative Second Derivative
(—00,0) Li(z) = 0.8z Li(z) =0.8 Li(z)=0
[0,10) g(zx) = kx® +12® + mz +n g (x) = 3ka® 4 2lx +m g’ (z) = 6kx + 21
[10,90] q(r) = ax® + bz +c q(x) =2ax+b q"'(z) =2a
(90, 100] h(z) = pa® + qz* + rz + s B (x) = 3px® + 2qx +r B'(x) = 6px + 2¢
(100, c0) Ly(z) = —1.6z 4+ 120 Ly(z) = —1.6 Li(z)=0

There are 4 values of = (0, 10, 90, and 100) for which we must make sure the function values are equal, the first derivative

values are equal, and the second derivative values are equal. The third column in the following table contains the value of

each side of the condition — these are found after solving the system in part (b).

Atx = Condition Value Resulting Equation
0 g(0) = L1(0) 0 n=0

g'(0) = L (0) 2 m=0.8
g"(0) = L{(0) 0 20=0

10 g(10) = ¢(10) g 1000k + 1001 + 10m + n = 100a + 10b + ¢
g'(10) = ¢'(10) 2 300k + 200 +m = 20a + b
g"(10) = ¢"(10) —% 60k + 21 = 2a

90 h(90) = ¢(90) -2 729,000p + 8100g 4 907 + s = 8100a + 90b + ¢
R/ (90) = ¢'(90) -2 24,300p 4 180q + r = 180a + b
R"(90) = ¢"(90) - 540p + 2q = 2a

100 h(100) = L2(100) —40 1,000,000p + 10,000¢ + 1007 4+ s = —40

R/ (100) = L5(100) -3 30,000p + 200q +r = —1.6
h"(100) = L% (100) 0 600p + 2 =0
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(b) We can arrange our work in a 12 x 12 matrix as follows.

a b c k l m n p q r s constant
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0.8
0 0 0 0 2 0 0 0 0 0 0 0
—100 | —10 | —1 | 1000 | 100 10 1 0 0 0 0 0
-20 -1 0 300 20 1 0 0 0 0 0 0
-2 0 0 60 2 0 0 0 0 0 0 0
—8100 [ —90 | —1 0 0 0 0 729,000 8100 90 1 0
—180 -1 0 0 0 0 0 24,300 180 1 0 0
—2 0 0 0 0 0 0 540 2 0 0 0
0 0 0 0 0 0 | 1,000,000 | 10,000 | 100 1 —40
0 0 0 0 0 0 30,000 200 1 0 -1.6
0 0 0 0 0 0 0 600 2 0 0 0
Solving the system gives us the formulas for g, g, and h.
_ k= —0.0004 = — 5
a=-0.013 = _% o 2250
b=093=1 qlz) = —Fa® + Lo — 2 084 9(z) = —5352° + 2z
c=—-04= —% 5
n=20
p = 0.0004 = 22150
g=—-0.13= —115
i M) = g’ — a? + 18y — 200

The graph of the five functions as a piecewise-defined function:

50
[ g(pmm }
ema Y
s 0pe T < 150
7| (90.—220/9N/
: (100, —40)
2
—100 -100
This is the piecewise-defined function assignment on a A comparison of the graphs in part 1(c) and part 2(c):
TI-83/4 Plus calculator, where Yo = L1, Y6 = g, Y5 = q,
Y7 = h,and Ys = Lo. 20
[ «— Problem 2 ]
Flakl Flote Flokz —10| 110
sWasesCACE +Y 6 Problem |
CaZd and K182 +Y
ekCxE1E and X290
M PR FIE and K
=188+ 21080 ~50
~Na=
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2.4 Derivatives of Trigonometric Functions

. f(z) = 2’ sinz = f'(z) = 2* cosx + (sinz)(22) = 2% cosx + 2rsinx

f(z) =xcosz+2tanxz = f'(z) = x(—sinz)+ (cosz)(1) + 2sec’ x = cosx — xsinx + 2sec’

. f(z) =3cotx —2cosz = f'(x)=3(—csc’x) — 2(—sinx) = —3csc® x + 2sinx
.y=2secx —cscx = y =2(secx tanz)— (—cscx cotx) = 2secz tanz + cscx cot T

.y =secldtanf = 1y’ =sech (sec®d) + tanf (secftanf) = sech (sec’> @ + tan® #). Using the identity

1+ tan? @ = sec? 0, we can write alternative forms of the answer as sec @ (1 + 2tan® ) or secf (2sec?d — 1).

. g(t) =4sect +tant = g¢'(t) =4sect tant +sec’t
.y=ccost+t’sint = y =c(—sint)+t*(cost) +sint (2t) = —csint + t(tcost + 2sint)

.y = u(acosu + beotu) =

y' = u(—asinu — besc®u) + (acosu +beotw) - 1 = acosu + bcotu — ausinu — bucsc® u

x , (2—tanz)(1) —z(—sec’z) 2—tanz+ xsec’z
9.y=—= = 4= _
2 —tanz (2 — tanz)? (2 — tanx)?
10. y =sinf cos® = ¢y =sinf(—sinf) + cosd(cosh) = cos? —sin®> [or cos 20]
sin 0
1". f(0) = ———
1) 1+ cosf
£1(0) = (1+cosf)cos — (sinf)(—sinf)  cosf+cos’d+sin®0  cosf+1 1
- (14 cos 6)2 N (14 cos6)? " (1+4+cosf)?2  1-+cosb
12, y = —2%
1—sinx
, _(1—sinz)(—sinz) —cosz(—cosz) —sinz +sin®z+cos’z  —sinz+1 1
v= (1 —sinz)? B (1 —sinz)? " (1—sinz)?2  1-—sinz
tsint
3.y = ——
YT T4
, _ (L+t)(tcost +sint) —tsint(1)  tcost+sint+t°cost +tsint —tsint  (t* +t)cost +sint
V= 1 +1)2 - A +1)? - 1 +1)?
sint
10, y= S0
Y7 Titant
. sint
’ (14 tant) cost — (sint)sec? ¢ _ cost +sint — cos?t _ Cost+sint —tantsect
(1+ tant)? (1+ tant)? (1+ tant)?
15. Using Exercise 2.3.87(a), f(0) = O cosf sinf =

F/(0) = 1cos® sin 6 4 6(— sin 0) sin @ 4 0 cos O(cos §) = cos § sin@ — Osin? @ + 0 cos> 0

= siné cos 0 + O(cos® 6 — sin® @) = 1 sin20 + G cos26 [using double-angle formulas]

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



16.

17.

18.

19.

20.

21.

22

23.

24,

25.

26.

SECTION 2.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS I 145

Using Exercise 2.3.87(a), f(z) = 2®sinz tanz =

f(z) = (2*) sinz tanz + 2*(sinz)’ tanx + z? sinz (tanz)’ = 2rsinz tanz + 2 cos = tan x + 2? sin x sec® x

= 2zsing tanz + 2% sinx 4 2 sinx sec’> = wsinz (2tanx + 2 + xsec? x).

d d 1 (sinx)(0) — 1(cosz) —cosz 1 cosz

— (cscx) = — | = = — =——=—= R = —cscx cotx

dx dx \ sinz sin® x sin® x sinx sinz

d (secz) = d 1 _ (cosz)(0) — 1(—sinz) _sinz 1 sinz _ e tanx

dx dr \ cosx cos? x cos?2xr cosx cosx

d (cot z) = d (c'osx) _ (sina:)(—sinac.) ~ (cosz)(cosx) _ _sin2 x.—l;cos2 T 12 s
dx dr \sinz sin“ x sin® x sin“ x

f(z) =cosz =

F(x) = lim flx+h)— f(x) — lim cos(z+ h) —cosz lim 952 cosh —sinz sinh — cosx

h—0 h h—0 h h—0 h
. cosh—1 . sin h . cosh—1 . . sinh
= lim { cosxt ———— —sinx =cosx lim ———— —sinz lim
h—0 h h h—0 h h—0 h

= (cos x)(O) — (sinm)(l) = —sinx

y=sinz +cosz = 1y =cosz —sinz,s0y (0) =cos0—sin0=1— 0 = 1. An equation of the tangent line to the

curve y = sinz + cos z at the point (0,1)isy —1=1(x —0) or y =z + 1.

y=(1+z)cosz = y =(1+xz)(—sinx)+cosz-1. At(0,1),y" =1, and an equation of the tangent line is
y—1l=1(xz—0)ory=z+1.

y=cosz —sinz = y = —sinx—cosz,s0y (r) = —sinm —cosm =0— (—1) = 1. An equation of the tangent

line to the curve y = cosx — sin z at the point (7, —1)isy — (—1) =1(zx —m)ory =z — 7 — 1.

y=x+tanz = gy =1+sec®x,s0y’(r) =1+ (—1)®> =2. An equation of the tangent line to the curve
y = x + tanz at the point (7, 7) isy — 7 = 2(x —7) ory = 2z — 7.

(@) y =2zsinz = y =2wcosz+sinz-1). At(5,m), (b) 3777

y' =2(% cos§ +sin3) =2(0+ 1) = 2, and an equation of the

tangent lineis y — 7 = 2(x — 3 ), ory = 2.

(@y=3x+6cosz = 3y =3—6sinz. At (3,7 +3), (b)

y' =3—6sinZ :376§ = 3 — 3/3, and an equation of the
tangent lineisy — (r +3) = (3—3v3)(z — %), or

Y= (3—3\/§)m+3+7r\/§.

-2

0
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27. (a) f(z) =secx—xz = ['(z) =secw tanz —1

w
f J Note that f' = 0 where f has a minimum. Also note that f' is negative

m
2 when f is decreasing and f’ is positive when f is increasing.
f/

-

28. (a) f(z) =+/xsinz = f'(z)= ﬁcosx—l—(smm)(zx 1/2) =./xcosz +

sinz
2z

Notice that f’(z) = 0 when f has a horizontal tangent.

k A f is positive when f is increasing and f' is negative when f is decreasing.

-3
29. H9) = 0sinf = H'(A) = 6 (cosh) + (sinf) -1 = fcosf +sinf =
H"(0) = 0(—sinf) + (cosf) -1+ cosf = —Osinf + 2 cos b

30. f(t) =sect = f'(t) =secttant = f"(t) = (sect)sec’t+ (tant)sect tant = sec®t + sect tan>t, so

F(2) = (V2) +vV3(1)? = 2v2 + V3 = 33,

tanz — 1
@ fl@) = ——
sec T
o) = secz(sec’ r) — (tanz — 1)(secxrtanz)  secx(sec’z —tan’z +tanz) 1+ tanw
B (secx)? n sec? x " secx
sinx 1 sinz — cosx
tanz —1 _ cosg cosx : ' : :
() f(z) = = = =sinz —cosx = f'(x)=cosx — (—sinz) =cosz +sinz
secx 1 1
cosz cosz
1+t 1 t L . .
(c) From part (a), f'(z) = tlans 4+ 222 _ cosz +sin x, which is the expression for f'(x) in part (b).
secx secr  secr

32. (@) g(x) = f(z)sinz = ¢'(x) = f(z)cosx +sinz - f'(z), so

9(3)=f(Feos +sing f(5) =43+ (-2)=2-3

_ cosw ;_ f(x)(=sinz) —cosz - f'(x)
(b) h(z) = @ = h'(z) = F@F , SO
Wz - LB)(Csing) —cos g S'(5) _ 1(—F) - (3)(-2) _ 2341 _1-2V3
3 T G R
33. f(z) = x + 2sina has a horizontal tangent when f'(z) =0 < 1+4+2cosz=0 < cosz=-1 &

T = 2" + 27n or 2% 4 27n, where n is an integer. Note that and o+ are =% units from . This allows us to write the

solutions in the more compact equivalent form (2n 4+ 1)7 & Z, n an integer.
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cos T ,  (24sinz)(—sinz) —cosz cosx  —2sinx —sin®z —cos’x  —2sinz — 1
By=—r-— = y = - = - = - = 0 when
2+sinz (2 + sinz)? (2 + sinx)? (2 + sinx)?
—2sinz—1=0 & sinz=-3 & z=254%42morz ="+ 2wn, nan integer. Soy:%ory:—%and

the points on the curve with horizontal tangents are: (“T’T + 27n, %), (%” + 2mn, f%), n an integer.
35. (a) z(t) =8sint = wv(t) =2'(t) =8cost = a(t)=2a"(t) = —8sint
(b) The mass at time ¢ = 2% has position z(2f) = 8sin 2F = 8(@) = 4v/3, velocity v(Z£) = 8cos 2 = 8(—1) = —4,

and acceleration a (%) = —8sin 2% = —8 (@) = —4+/3. Since v (%) < 0, the particle is moving to the left.

36. (a) s(t) =2cost+ 3sint = wov(t) =—2sint+ 3cost = (b) 4

a(t) = —2cost — 3sint r s/

U /

to\ 1t
(¢)s=0 = t2~2.55. So the mass passes through the equilibrium 0 I" -

position for the first time when ¢ & 2.55 s. al X
\\/
—4

dv=0 = ¢ ~0.98,5s(t1) ~3.61cm. So the mass travels

a maximum of about 3.6 cm (upward and downward) from its equilibrium position.
(e) The speed |v| is greatest when s = 0, that is, when ¢ = t2 + n, n a positive integer.

37. From the diagram we can see thatsin = /10 < = = 10sin . We want to find the rate

of change of = with respect to 0, that is, dz:/d6. Taking the derivative of x = 10sin 0, we get

10
dx/df = 10(cos ). So when 6 = %, 42 = 10cos T = 10(%) = 5 ft/rad.
L]
X
uWw dF (usin€ + cos0)(0) — uW(pucos® —sinf)  puW(sinf — pcosb)
38 () F= — Y ar _ ( < _ W L
psin 6 4 cos 0 do (1sin 6 + cos 0) (sin @ 4 cos 9)

(b)‘;—gzo & uW(sinh — pcosf) =0 < sinh=pcosf < tanf=pu < 6O=tan 'p

0.6(50)

_ Uy <g<
0.65in0 & cosf for 0 < 6 < 1, we see that

© 12 From the graph of F' =

% =0 = 0 = 0.54. Checking this with part (b) and ;« = 0.6, we

calculate § = tan~' 0.6 ~ 0.54. So the value from the graph is consistent

with the value in part (b).

39. lim sin bx — lim é sin bx _ § i sin bx _
z—0 X z—0 3 bx 3z—0 bx
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sinx . sinzx T 1 . s 1
40. lim — = lim - .= = lim /= . — = [0 =mz]
z—0sinTr -0 x sinmx ®™ +—0 x 6—0sinf T
fm Lo Lt
6—o0 sinf T o
0

4.1

42.

43.

45.

46.

47.

48.

49.

50.

‘m tan6f lim sin 6¢ 1 t — im 6 sin 6¢ lim 1 lim 2t
t—0 sin 2t t—0 t cos6t sin2t) t—0 6t t—0 cos 6t t—0 2sin 2t

sin 6t 11 2t 11
— 61l im —— - = i —6(1)-=-=(1) =
6 lim == - lim g im o =65 (1) =3

cosf — 1 lim cosf — 1
. cosf—1 . 0 _ 60 0 _0_
;13(1) sin _glir(l) sinf .. sinf 1 =0
lim
9 0—0 0
lim sin3z lim sin 3x 3 — lim sin 3x lim 3 -1 i . 7%
250 53 — 4z 2—0 3z bx2—-4) «50 3z 2—05x2—4 —4) 4
. sin3zxsinbzx . 3sin3x 5sinbx . 3sin3x .. bsinbx
. lim ——————— = lim . = lim - lim
z—0 x2 z—0 3x 5 z—0 3x z—0  bx
— 3 lim 3T 5y, ) SIOT _ 51y 5(1) = 15
Divide numerator and denominator by .  (sin 6 also works.)
sin I sin 6
, sin 0 , 9 i o 1 1
hm0 tan0 620 sind 1 sin 0 1  1+1-1 2
=0 Uftanf  6-0 : 1+ lim lim ——
0  cosf 6—0 6O 0650 cosf
. s . sin(sinx) . sinf )
lim cscz sin(sinz) = lim ———= = lim [Asz — 0,0 =sinz —0.] =1
x—0 z—0 sinx 6—0
. cosf—1 . cosf—1 cosf+1 . cos?f —1 . —sin? 6
lim ——— = lim — - = lim — = lim ——+——
6—0 20 6—0 20 cosf+1 6-020%(cosf+1) 6-0260%(cosh+ 1)
_ 1 lim sinf siné 1 _ 1 ‘m sin 0 lim sin 6 lim 1
2050 6 0 cos@+1 2050 O o6—0 6 6—o0cosf+1
_ 1 1 _ 1
T2 1+1 4
s 2 . 2 . 2 .
lim M = lim {x M] = lim z - lim w —0- lim 22¥ [Wherey = 932]
x—0 x z—0 xr-x z—0 z—0 €T y—0t Y
( sinx)
— —— ) -cosx .
1—tanz . cosx . cosx —sinx .

= lim
z—n/4 SINT —COST  z—n/4 (sinz —cosz)-coszr aw—n/4 (SIDXT —COST)COST  z—m/4 COST

lim sin(z —1) m sin(z — 1) — lim 1 lim sin(z — 1) _1.q_1

m—>1x2+x72_x—>1($+2)(x71) z—1lgx+2z—1 x—1 3

1=0
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51.

52.

53.

54.

55.

SECTION 2.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS  UJ

d 2 d3 4
o (sinz) =cosz = pre] (sinz) = —sinz = e (sinz) = —cosz = e (sinz) = sinz.
99 pal
The derivatives of sin = occur in a cycle of four. Since 99 = 4(24) + 3, we have 409 (sinz) = e (sinx) = —cosz.

Let f(z) = zsinz and h(z) = sinx, so f(z) = xh(zx). Then f'(x) = h(z) + zh'(z),
f'(x) = W (z) + h'(z) + zh"(z) = 21/ (z) + =h'' (z),

f"(z) =2n"(z) + b (x) + zh"' (x) = 31" (z) + zh""' (x), - - - ,f(")(;r) = nh("_l)(ac) + xh(”)(x).

2
Since 34 = 4(8) + 2, we have h®¥ (z) = h? (z) = % (sinz) = —sinx and h®% (z) = — cos z.

35

d
Thus, e (zsinz) = 35hCY () + zh®® (z) = —35sinx — xcos .

y= Asinz + Becosz = 1y = Acosz — Bsinz = y” = —Asinz — Bcosz. Substituting these
expressions for y, ', and "’ into the given differential equation 3" + ¢’ — 2y = sinx gives us

(—=Asinz — Beosz) + (Acosz — Bsinx) — 2(Asinz + Beosz) =sinz <

149

—3Asinz — Bsinz + Acosz —3Bcosz =sinz < (—3A— B)sinz + (A — 3B) cosz = 1sinz, so we must have

—3A — B =1and A — 3B = 0 (since 0 is the coefficient of cos x on the right side). Solving for A and B, we add the first

equation to three times the second to get B = — 1—10 and A = — %,
Since —1 < sin (1/z) < 1, we have (as illustrated in the figure) = xsint
xsin
—|z| < zsin(1/z) < |z|. We know that liH(l) (Jz]) =0 and
lin}) (= |z|) = 0; so by the Squeeze Theorem, lin%:nsin (1/z) =0. 1
@) d tan oz — d sinx L gty SOSTCOST — sinz (—sinx) _ cos? —|—sin2x. So sec? 1 — 1 .
dz dz cosx cos? x cos?x cos? x
d d 1 0) — 1(—si i
(b) —secz = — = secr tanx = (cos)(0) ( smx). Sosecs tanz = ——er-
dx dx cosx cos? cos?x
d , . d 1+cotx
(¢ In (sinz + cosz) = p e —

. cscx (—csc®x) — (1 +cotz)(—cscx cotx)  csca [—csc® x4 (1 + cotx) cot x]
cosz —sinx = =

csc? csc? x
—CSC2:U+COt2£L‘+COtIL‘ —1+cotx
cscx cscx
. cotx —1
Socosx —sing = ——
cscx
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150 0 CHAPTER2 DERIVATIVES

56. We get the following formulas for r and A in terms of 6:

.0 r _ .0 0 h _ 0
Sm—_l_O = r-lOsmi and cos§—10 = h-lOcos2

Now A(0) = $7r? and B(0) = % (2r)h = rh. So

=

. AG) o 1 .. 10sin(6/2)
015(% ) oo+ Th 27r91ir(1)1+ N 271-012& 10 cos(6/2)

>3

=17 lim tan(6/2) =0
p Jlim tan(6/2)

57. By the definition of radian measure, s = r6, where 7 is the radius of the circle. By drawing the bisector of the angle 6, we can

/2 ro C2.(0/2) . 02

= d=2r sing So lim im im
B 2’ o—o+ 2sin(0/2) ~ 9—o sin(6/2)

see that sing = - lim ——
2 o—o+ d  e—o+ 2rsin(6/2)

[This is just the reciprocal of the limit lim % = 1 combined with the fact that as 6 — 0, % — 0 also.]

T—

has a jump discontinuity at x = 0.

58, 2 It that f(z) = ————
(a) appears that f(z) NiST

-

—

-2

x _ x _ x _ x
V1—cos2z  \/1—(1—2sin?z) V2sin’z V2|sinz|

(b) Using the identity cos 2z = 1 — sin®z, we have

Thus lim —e=fee = lim —— = = lim ——
’ e—0- /T —cos2x a—0- ﬁ\sinm\ B V2 a—0- —(sinx)
1 1 11 V2
=——lim —=——%--=——
V2 z—o0- sinz/x V2 1 2

Evaluating hm+ f(z) is similar, but | sin x| = 4 sin z, so we get %\/5 These values appear to be reasonable values for
x—0

the graph, so they confirm our answer to part (a).

Another method: Multiply numerator and denominator by /1 + cos 2x.

2.5 The Chain Rule

dy dydu 1, —2/3 4
1. Letu =g(x) = 1+4 = f(u) = ¢u. Then 2 = Z4 20 _ (1 f)y=—o
etu = g(z) +4zandy = f(u) = ¢/u. Then dr = duds (3u™7)(4) R ETE
2. Letu = g(x) = 22® + 5and y = f(u) = u*. Then dy _ dydu _ (4u®)(62?) = 2422 (22> + 5).
dr  dudzx
— g(z) = - flu) = dy _dydu _ o2 — rsec?
3. Letu = g(z) = mx and y = f(u) = tanu. Then e duds = (sec® u)(m) = wsec’ wx.
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13.

14.

15.

16.

17.

CF@) = (4az+a2)”® &L F’(x):99(1+x+x2)98~dd

SECTION25 THECHAINRULE O 151

_ _ _ . dy dydu 2 N 2
. Letu = g(z) = cotz and y = f(u) = sinw. Then o duds (cosu)(— csc® ) = — cos(cot x) csc” z.
Letu = g(z) =sinzand y = f(u) = Vu Then@*@d—u*lu’l/zcosx*msx L
' 7 Y e T dude 2Va  2vsma

. Letu = g(x) = Vzandy = f(u) = sinu. Then dy _ dydu _ (cosu)(%x’l/z) = 8% _ cos v

dz ~ dudx T ove 2vz

F(z) = (52° +22%)* £ F'(2) = 4(52° + 22%)% . d%(mﬁ +22%) = 4(52° + 223)3(302° + 622).

We can factor as follows: 4(z%)?(523 + 2)362% (52> + 1) = 242 (52® + 2)3(52% + 1)

£ (1+z+22) =99(1 + +22)%(1 + 22)

T

d 5
: =VBrFil=06z+1)"Y? & f@)=Li6z+1)""2 —(Gr+1) = ———n
fla) = VEEFT= (24 D2 & ) = b+ 1) o+ ) = e
g(z) = (2 — sinz)®/? £
g'(x)z%(2—sinac)1/2~dix(2—sinac)=%(Z—Sinm)l/z(—cosa:):—%cosac(Z—sina:)l/2

1 2(sint — sec’t)

_ _ —_92 CR ’ - _ —3(_ qj 2 = —————:c
A(t) = Tcost T tan)? (cost + tant) = A'(t) 2(cost + tant) " (—sint + sec” t) (cost + tant)?
_ 1 2 —1/3 R T —4/3 _ —2x

)

f) = cos(92) = f'(0) = fsin(92 7 (6’2) = fsin(ez) -(20) = —20 sin(6’2)

g(0) = cos?6 = (cos0)? = ¢'(f) =2(cosh)' (—sinh) = —2sinh cosf = — sin 260

h(v) = v/1+ 02 = v(1 + 0?3 =

502 4+ 3

h/(’u) —. %(1 _'_1)2)72/3(2,0) + (1 +’02)1/3 1= %(1 +U2)—2/3[21}2 + 3(1 +'02)] = 3( 3T -1 T2 )2

f@t) =tsinmt = f'(t) =t(cosmt) - m+ (sinnt) - 1 = wtcosmt + sinmt

flx) =2z -3)*@*+2+1)° =
fl(@)= 2z —3)* 5>+ 2+ 1)*Q2c+ 1)+ (@® + .+ 1)° - 422 — 3)% -2
=22 -3%@* +2+1)*(2x—3)-5(2z+ 1)+ (2 + 2+ 1) - §]

= (22 — 3)*(2? + 2 4+ 1)*(202? — 20z — 15 + 82 4 8z + 8) = (22 — 3)*(a? + = + 1)*(282% — 122 — 7)
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18. g(z) = (2> +1)*(2* +2)° =
g'(z) = (x2 +1)°%. 6(.7,’2 + 2)5 - 2x 4+ (x2 + 2)6 . 3($2 + 1)2 -2z

= 6x(x? + 1) (2% +2)°[2(2® + 1) + (2 + 2)] = 6x(x? 4+ 1)*(2* +2)°(32% + 4)
19. h(t) = (t+ 1?32t —1)° =
R(t)=(t+1)%%-3(2> —1)> -4t + (22 = 1) - 2(t + 1)/ = 2(¢ + 1) 7/3(2¢% — 1)*[18¢(¢ + 1) + (2t — 1)]
=2(t+1)7'/3(2t* — 1)*(20¢> + 18t — 1)
2. F(t)=3t—1D*2t+1)72 =
F'(t) = (3t — 1)*(=3)(2t + 1)74(2) + (2t + 1) 72 - 4(3t — 1)3(3)
=6(3t—1)3(2t+1)"4~(3t — 1) +2(2t +1)] = 6(3t — 1)*(2t +1)"*(t + 3)

w?—1\°
21. g(u) = (u3—|—1> =

b =1 d Wt =1 (@@ 1) (W 4+ 1)(3u) — (W — 1)(3ud)
g(“)_S( ) Wl W)y @ 1)

)" 3u?[(w? +1) = (u¥ —1)] 8(u3 17 3wu?(2)  48u*(u® —1)7
ud +

R VE @) @1 @1

5 4 4
2. y= a:—f—l = y =5 :L’—f—l a r—i—l =5 ac—&—l - L),
T r) dx T T 2

5(x + 1)*(2? — n

_ o 1
_8( -

Another form of the answer is

T T 1/2
2. y= = (=
Y=z 11 (:1:+1) =

,_ 1 e NP d e Y1 2T @+ 1)) —2()
Y=o\ 11 w\z+1) "2 0 2 (@+1)p
1@+ 1 1
T2 g2 (412 2y/x(z+1)3/2
4 5
_ (vt
2. U(y) = (y2 +1>
U(y) =5 VI D@ - 6+ D@2y 5+ D220+ D) — (v + 1))
y*+1 (v?+1)? (v2 + D)y +1)?
_ 10y(y* + D)yt 207 — 1)
(y? +1)°
25. h(0) = tan(6?sin0) £
h'(0) = sec*(6*sin9) - %(02 sin §) = sec?(6” sin ) - [#2 cos @ + (sin 0)(26)] = 6 sec? (62 sin 0) (0 cos § + 2sin §)
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2. f(t) =

27.

28.

29.

30. s

3.

32,

SECTION 2.5 THE CHAIN RULE

t B t 1/2
t24+4 \t24+4

7t = %(t 14)”2 4 (t2 14) _ %(t t+4>”2. G +(f2)(i)4)—2t(2t)

_ (P49 a2 4
- 2t 1/2 (t2+4)2 - 2t1/2(t2+4)3/2

COsS

v= V1 +sinx

y' = (cosz) - (—3)(1+sinz) ~3/2cosx + (14 sinz) Y3 (—sinx)

= (cosz)(1 +sinz) 2 =

—2(1+sinz

=—2(1+sinz)” 3/2[cos?x + 2(1 + sinz) sinz] = f%(l+sinx)_3/2(0032x+2sinx+2sin2x)
Y73/2(1 4 2sinx + sin?z) = %(1+sinx)73/2(l+sinz)2
)

=—2(1+sinz 12 or —1V1T+sinz
t2
Vit +1
(8 + 1)M2(2t) — 12 - (3 +1)71/2(3¢%) _ e+ )72 2 4+ 1) — 347
(\/t3 +1)° (3 +1)!

_ P +2) (14
(t3 + 1)3/2 2(t3 + 1)3/2

F(t) =

F'(t) =

_ (7’271)3
H(T)—m =

_ @41 307 = 12(2r) = (PP = 1) -5(2r £ DY2)  2(2r + D*(r? = 1)*[3r(2r +1) = 5(r? — 1)]

[(2r +1)5]2 (2r +1)10
2(r> = 1)%(6r*> + 3r —5r> +5) _ 2(r> — 1)*(r*> 4+ 3r + 5)
(2r +1)8 o (2r +1)8

1—|—smt 1+sint 1/2 -
1+cost \1-+cost

S(t) = 1(1+sint>_1/2 (14 cost)cost — (1 +sint)(—sint)
2

1+ cost (1+ cost)?
1 (14 sint) "2 cost + cos? t + sint + sin® ¢ _ cost +sint +1
2 (14cost)"1/2 (1+cost)? "~ 2y/T¥smi(l+cost)??

y = cos(secdz) =

y' = — sin(sec 4x) di:lp sec4x = —sin(sec4x) - sec4x tandx - 4 = —4 sin(sec 4x) sec 4z tan 4x

J(0) = tan®(nf) = [tan(nd)]®* =

J'(0) = 2[tan(nd)]* die tan(nd) = 2tan(nd) sec?(nd) - n = 2n tan(nd) sec?(nd)
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154 [ CHAPTER2 DERIVATIVES
B.y=sinvVI+a22 = y =cosvVI+aZ I(1+2%) "2 2z= (z cosvV1+a?)/V1+a?

xcos(1 4 z?)

34, y = \/sin(1 + 22) = [sin(1 + 2?)]V/? = ¢ = 1lsin(1 + 2)]” Y2 cos(1+a?) 2z =
sin(1 + z2)

1—cos2z\*
/B.y=(—"7-—
y (1 + cos 295)
'y 1—cos2z\® (1 + cos2z)(2sin2z) + (1 — cos 2z)(—2sin 2x)
Y= 1T+ cos2z (1 + cos2x)?

_ 4<1 - C052m>3 2sin2z (1 +cos2x +1—cos2x) 4(1— cos2z)® 2sin2z(2)  16sin2z (1 — cos2z)?

1+ cos2z (1 + cos2z)? ~ (1 +cos2z)3 (1+4cos2x)? (1 + cos2x)®
1 P | 1 1 .11 1
3. y=xsin—- = y =sin—+zcos—|—— ) =sin— — —cos—
x x x\ T x T x

37. y = cot?(sinf) = [cot(sinf)]> =

y' = 2[cot(sin 0)] - die [cot(sin @)] = 2 cot(sin §) - [ csc(sin @) - cos ] = —2cos § cot(sin @) csc?(sin )
38. y =sin(t +cosvt) =

y' = cos(t + cosv/t) - 7 t+cos\/_ = cos(t + cos V1) - (1fsin\/f.i)_cost+cos\/— 2\/_ sin v/t

2/t T ovi
39. f(t) = tan(sec(cost)) =
’ 2 d 2 d
f'(t) = sec*(sec(cost)) - 7 sec(cost) = sec”(sec(cost)) - sec(cost) tan(cost) - o cost
= —sint sec?(sec(cost)) sec(cost) tan(cost)
40. g(u) = [(v* - 1)° - 3u]* =
i[(u2 —1)% — 3u] = 4[(v® — 1)® — 3u]® - [6(u® — 1)® - 2u — 3]

" du
=12[(uv* — 1)® — 3u)®[4u(u® — 1)° — 1]

g'(w) = 4(u? = 1)° — 3uf®

Ny=\etyz = y=3i@+z)” 1/2(1+1 1/2)—2W<1+2\lﬁ>

2. y=\z+Ve+vz = y'=%(m+ x+\/;)71/2{14-%(m+\/§)71/2(1+%x71/2)}

43. g(x) = (2rsinrz +n)? = ¢'(x) = p2rsinre +n)?"1(2rcosrxz - r) = p(2rsinrx +n)P1(2r? cosrx)
4. y = cos*(sin®z) = [cos(sin®z)]* =

y' = 4[cos(sin® z)]3(— sin(sin® 2)) 3sin® z cosz = —12sin® = cos = cos®(sin® x) sin(sin® z)
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45. y = cos \/sin(tan 7x) = cos(sin(tan7z))*/? =

—12 4

d
y' = — sin(sin(tan 7z))*/2 - T (sin(tan 72))/? = —sin(sin(tan 7z))"/? - 1 (sin(tan 7z)) (sin(tan 7z))
x
— sin 4/sin(ta: d — sin 4/sin(ta:
—— ntanrz) cos(tan7z) - — tanmx = - - n(tanrz) cos(tan ) - sec®(wz) -
2 y/sin(tan wx) dz 2 y/sin(tan wx)

— cos(tan wx) sec () sin /sin(tan )

2 y/sin(tan wx)

46.y:[m+(x+sin2m)3]4 = y':4[x+(x+sin2m)3]3-[1+3(x+sin2x)2~(1+2sinxcosm)]

47. y = cos(sin30) = 1y’ = —sin(sin30) - (cos30) - 3 = —3 cos 30 sin(sin30) =
y" = —3[(cos 3) cos(sin 30) (cos 30) - 3 + sin(sin 30)(— sin 30) - 3] = —9 cos?(30) cos(sin 30) + 9(sin 30) sin(sin 30)

1 2 , —2sec’ x

48. y=———— = (1 +tanz) ° = =—2(1+tanxz) 3sec?r = ———_.
4 (1 + tanz)? ( ) Y ( ) (1 +tanz)®

Using the Product Rule with y' = [—-2(1 + tan x)73] (secx)?, we get
y' = —2(1 4 tanz) "2 - 2(secz)(secx tanz) + (secz)® - 6(1 4 tanz) *sec® x

2 is the lesser exponent for sec

=2sec’z (1 +tanz)* [-2(1 + tanz) tan x + 3sec® z] and —4 for (1 + tan )

=2sec?z (1 +tanz) * [-2tanz — 2tan® z + 3(tan® z + 1)]
_ 2sec’ x (taan — 2tana:+3)
B (1 + tanx)*

—sect tant

49. y =T —sect = 9y =21(1—sect) ?(—sect tant) = —————.
Yy Yy 2( ) ( ) 2m
Using the Product Rule with y = (—3 sect tant) (1 — sect)™'/2, we get
y" = (—3sect tant) [—%(1 —sect)"%/?(—sect tant)} + (1 —sect)™1/2 (—1)[sect sec®t + tant sect tant].

2

Now factor out — sec ¢(1 — sec t)~3/2. Note that —3 is the lesser exponent on (1 — sect). Continuing,

Y’ = —21sect (1 —sect)®/? [3sect tan® ¢ + (1 — sect)(sec® t 4 tan” t)]
= —2sect (1 —sect) 2 (1sect tan®t + sec’ ¢ + tan’ t — sec® ¢t — sect tan”t)
= —%sect (1 —sect)” 3/2[ sect (sec®t — 1) +sec®t + (sec®t — 1) — sec® ¢]
= —1sect (1 —sect) 3/2( 2sec®t +2sec’ t + 2 sect — 1)

sect (1 —sect) ™2 (3sec®t —sec®t — Ssect + 3)

_ sect (3sec®t —4dsec®t —sect + 2)
o 4(1 — sect)3/2

sect (3sect + 2)y/1 — sect

7 . We chose to find a factored form with

There are many other correct forms of 3y, such as y” =

only secants in the final form.
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B0y — ol
'y_\/x+1
, VrHl-d—do-f@+ 1)V arrl-2/Vr 1l 4A@+1)—22  2z+4
. (Varli) - r+1 T RNk
s @+ 2-Qe+4) 3@+ (@4 DY?R@+1)-3+2)] 20+2-3x-6  —x—4
. @+ D7 B (@ + 1) T @R @y

5l.y=0Bx—1)"°% = ¢y =-6Br—1)""-3=-1803z—1)"". At(0,1),y = —18(—1)"" = —18(—1) = 18, and an

equation of the tangent line is y — 1 = 18(z — 0), ory = 18z + 1.

322 3.4
52 y=v1+ad =142 = ¢ =11+42%)"Y2.322 = —=—— At(2,3),y' = =—— = 2, and an equation of
y ( ) y =3 ) Niew (2,3),y Wil q

the tangent lineis y — 3 = 2(x — 2), ory = 2z — 1.

53. y = sin(sinz) = gy’ =cos(sinz)-cosz. At(m,0),y" = cos(sin) - cosm = cos(0) - (—1) = 1(—1) = —1, and an

equation of the tangent lineisy — 0 = —1(z — 7),ory = —x + 7.

54. y =sin?rcosx = 1y =sin®x(—sinz)+ cosz(2sinzcosz). At (7/2,0),y = 1(—1) + 0 = —1, and an equation of

the tangent lineisy — 0 = —1 (x - %),ory =-r+ 7.

55. () y = f(z) =tan(Z2®) = f'(z) =sec®(32%)(2- Zz). (b) 3
The slope of the tangent at (1, 1) is thus a.n
f'(1) =sec® (%) =2+ F = =, and its equation 0 1.4
isy—l=n(z—Nory=nmz—m+1. J

X
NeEri ®) ‘

VZ=22(1) —z(3)(2 - 2*)7V/?(—22) (2 x?)t/?
(VZ—a2) (2—a2)1/2 (L 1)

(2 —2°) + 22 2 -15 15
= (2 — 22)3/2 = (2 — 22)3/2 L J

56. (a) Forz > 0, |[z| = z,andy = f(z) =

f'(x) =

-1

So at (1, 1), the slope of the tangent line is f'(1) = 2 and its equationisy — 1 =2(z — 1) ory = 2z — 1.

5. (a) f(z) = evV2 — 22 = 2(2 — 2H)V? =

2 — 222

fll@)=z-12-2)""2(=22)+ (2-2)? 1=(2-2°)""? [-2® + (2-27)] = Worwr

2

b

(b)

f' = 0 when f has a horizontal tangent line, f’ is negative when f is

2 decreasing, and f' is positive when f is increasing.

-3
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. (a) 1 From the graph of f, we see that there are 5 horizontal tangents, so there
f must be 5 zeros on the graph of f’. From the symmetry of the graph of f,
we must have the graph of f' as high at x = 0 as it is low at z = 7. The
intervals of increase and decrease as well as the signs of f’ are indicated in
0 ' ' & the figure.
FALFVEFALFY I £y
feif =i fif— i f-
y
0 z o

f'(z) = cos(x +sin 2z) - di (z +sin 2z) = cos(z +sin 2z) (1 + 2 cos 2x)
x

3
(b) f(x) =sin(x 4+ sin2z) = F\ w
Ot \17

. For the tangent line to be horizontal, f'(z) = 0. f(z) = 2sinz +sin’z = f'(z) = 2cosz +2sinz cosz =0 <

-3

2cosz(l +sinz) =0 < cosz=0orsinz =—1,s02 = 5 + 2nmw or 37” + 2nm, where n is any integer. Now
f(%) =3 and f(%") = —1, so the points on the curve with a horizontal tangent are (% + 2nm, 3) and (37" + 2nm, 71),

where n is any integer.

1
Ly=vV1+2z = ¢y =211+22)"?.2=——— Theline6z + 2y =1 (ory = —3z + 1) has slope —3, so the
ymvide = sl ito 7+ 2y =1 (ory = —3z+3) has slop
1 1
tangent line perpendicular to it must have slope 2. Thus, = = —— <& 142x=3 = 14+2x=9 <
& petp Pe3 3 Vitor

20 =8 & z=4.Whenz =4,y =+/1+2(4) = 3, so the point is (4, 3).
F(x) = f(g(z)) = F'(z)=["(9(x)) g (x),50 F'(5) = f'(9(5)) - g'(5) = f'(-2) - 6 =4-6 =24

hz) = /4+3f(x) = h(z)= %(4+3f(a:))71/2 -3f'(x), so

W(1)=34+3f1)?-3f(1)=3(@4+3-7)7"/?.3.4=-L =8¢

5

- @ h(z) = f(g(z)) = h'(z)=f"(9(x)) g (),s0 h'(1) = f'(g(1)) - ¢'(1) = f(2) - 6 =56 = 30.
(b) H(z) =g(f(x)) = H'(z)=g(f(2)) f(2),s0 H'(1) =g (f(1))- f'(1) =¢'(3)-4=9-4=36.
@ F) = f(f(z)) = F(z)=[f () f(z),s0F(2)=f(f(2)-f(2)=f(1)-5=4-5=20.

(b) G(z) =g(9(z)) = G'(z) =¢'(9(z)) - g'(x),50G'(3) = g'(9(3)) - ' (3) =¢'(2)- 9=T-9=63.
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65.

66.

67.

68.

69.

70.

7.

72,

@ u(z) = flg(x)) = v'(z)=f'(9(x))g'(x). Sow'(1)=f"(9(1))g'(1) = f'(3)g'(1). Tofind f(3), note that f is

. . . 3—4 1 - .
linear from (2, 4) to (6, 3), so its slope is 2 — =7 To find ¢’ (1), note that g is linear from (0, 6) to (2, 0), so its slope

is 5 — 5 =3 Thus, f'(3)g'(1) = (=1)(-3) = }.

®)v(z) =g(f(z)) = ' (z)=4(f(2)f (x). Sov'(1)=g'(f(1))f (1) =¢'(2)f'(1), which does not exist since

g’ (2) does not exist.

(©) w(z) =g(g9(z)) = w'(x)=g(9(x))g (z). Sow'(1) =g (9(1))g'(1) = ¢'(3)g'(1). To find ¢'(3), note that g is

—0_ % Thus, ¢’ (3)g/(1) = (2)(~3) = —2.

. . .2
linear from (2, 0) to (5, 2), so its slope is 5

@ h(z) = f(f(2)) = W(x)=[f(f@)f (). Soh'(2)=f(fNS(2)=FD)f Q)= (-1)(-1) =1

®) g(z) = f(2*) = ¢'(x)=f'(a?)- d% (%) = f'(2®)(22). Sog'(2) = f'(2*)(2-2) =4f'(4) = 4(2) = 8.
The point (3, 2) is on the graph of f, so f(3) = 2. The tangent line at (3, 2) has slope Ay = %4 = ,;

9@@) =/f@) = ¢'@@)=3/@] " fa) =

) G(2) = [f(2)]" = G'(2) =alf(@)"" f(2)

r(x) = flg(h(x)) = r'(z) = f'(9(h(x))) - g'(h(x)) - B (x), s0
r'(1) = f'(g(h(1))) - g'(h(1)) - B'(1) = f'(9(2)) - '(2) - 4= f'(3)-5-4=6-5-4=120

fl@) =2g(a®) = [f(2)=2g(2") 20 +g(?) 1= 22" (2) + g(a*) =
f'(x) = 22%¢" (2%) 22 + ¢ (%) 4z + g’ (2%) 22 = 42" (2%) + dag' (2?) + 22g' (2?) = bag'(2?) + 42°g" (2?)

F() = f3(4f(@)) =
F/(e) = /3141 @) - = BFAF (@) = f BFAF (@) -3 (4F(2)) - - (4f(2))
= F'3AS @) 3 (4f (@) - 4f (@), 5o
F/(0) = F'(3F(41(0))) -3/ (4F(0)) - 45'(0) = f'(3/(4-0)) -3 (4:0) -4-2 = f/(3:0)-3-2-4-2=2:3.2.4.2.= 96,
F@) = fef(@f@) =
F(a) = 1o (@ (@) - 5 (o (af@) = 1o @f@) - [ F@f@) - S f @) + f(ef@) 1
= ['(@f@f @) [ef @f @) - @ @)+ £) 1) + fef @], so

FI) = @) - Q) - () + f) + £ = £ (f(2) - [f(2) - (44 2) + f(2)]
=f'(3)-[p-6+3] =6-33=198.
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74.

75.

76.

7.

78.

79.

80.

81.
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Let f(z) = cosx. Then Df(2x) = 2f'(2x), D*f(2x) = 22 f"(2x), D* f(2x) = 23 f""'(2x), .. .,
D™ f(2z) = 2" f(™)(2z). Since the derivatives of cos z occur in a cycle of four, and since 103 = 4(25) + 3, we have
f(103) (z) = f(?’) (x) = sinz and D% cos 2z = 2103f(103)(2x) = 2103 gin 2z,
Let f(x) = zsinmz and h(z) = sinwx, so f(z) = zh(z). Then Df(x) = zh'(z) + h(z),
D*f(z) = xh” (x) + h'(x) + b’ (z) = zh” (z) + 2h' (x), D3 f(2) = zh"(z) + W' (z) + 21" (z) = =h'" (x) + 3" (z), ...,

D" f(x) = zh{™ () + nh("~Y (x). We now find a pattern for the derivatives of h: h'(z) = 7 cos 7, b’/ (z) = —n? sin 7z,

R (x) = —7% cos mx, h*(x) = ©* sin 7wz, and so on. Since 34 = 4(8) + 2, we have h*¥ (z) = —7** sin 7z and
h®) () = —7% cos wx. Thus,

D3 f(x) = xh®® (x) + 353 (z) = 2(—73° cos mx) + 35(—7>* sinwz) = —7°°z cos mx — 35754 sin 7.

s(t) =10+ 2 sin(10mt) = the velocity after ¢ seconds is v(t) = s'(t) = 1 cos(10mt)(10m) = 2F cos(107t) cm/s.

(@) s = Acos(wt +68) = velocity = s’ = —wAsin(wt + §).

nw—0

(b)IfA#0andw #0,thens’ =0 < sin(wt+46)=0 & wt+d=nr & t= , m an integer.

(a)B()—40—|—035sm@ = ﬁ:(035 2 )<2W>:—O'7Wcosﬁ:7—7rcos@

5.4 dt 5.4 5.4 5.4 5.4 54 5.4
dB 77T 2w

L(t) =12+ 2.8sin(2=(t — 80)) = L'(t) = 2.8cos(2=(t — 80)) (2%).

565 (
On March 21, ¢ = 80, and L'(80) = 0.0482 hours per day. On May 21, ¢ = 141, and L'(141) ~ 0.02398, which is
approximately one-half of .’ (80).

dvidvdsidv

By the Chain Rule, a(t) = Dl ds v(t) = v(t)

The derivative dv/dt is the rate of change of the velocity

with respect to time (in other words, the acceleration) whereas the derivative dv/ds is the rate of change of the velocity with

respect to the displacement.

(a) The derivative dV/dr represents the rate of change of the volume with respect to the radius and the derivative dV//dt

represents the rate of change of the volume with respect to time.

. B 4 3, av. _ dVdr o dr
(b) Since V' = o dr A 4drr 7
45(t — 2)®

(a) Derive gives ¢'(t) = without simplifying. With either Maple or Mathematica, we first get

(2t +1)10

gl(t) (t ) —18 (t _ 2)9

( 1) TSNk and the simplification command results in the expression given by Derive.

(b) Derive gives 3y = 2(z® — z + 1)3(2z + 1)*(172® + 622 — 92 4 3) without simplifying. With either Maple or

Mathematica, we first get ¢’ = 10(2x + 1)*(2® — x + 1)* + 4(2z + 1)5(2® — = + 1)3(32% — 1). If we use
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Mathematica’s Factor or Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives

the polynomial expansion instead. For locating horizontal tangents, the factored form is the most helpful.

4 —
e 1\ (Bat — 1)y s x+1
82. (a) f(z) = (m) . Derive gives f'(z) = E— 1)(24_53;—:_ ) whereas either Maple or Mathematica
4
. , -1 . .
give f' (z) = = 3 after simplification.
[T 2L a a1y
441 ;
®) f(2)=0 & 3*-1=0 o x:if/gsio.ms. f 1
—4 4
(c) Yes. f'(z) = 0 where f has horizontal tangents. f’ has two maxima and £
one minimum where f has inflection points.
-2

83. (a) If f is even, then f(x) = f(—z). Using the Chain Rule to differentiate this equation, we get

fl(x) = f'(—=) % (—z) = —f'(—=). Thus, f'(—z) = —f'(x), so f is odd.

(b) If f is odd, then f(z) = —f(—=z). Differentiating this equation, we get f'(z) = —f'(—z)(—1) = f'(—z),so0 [ is
even.
| 28] — (1@ @)Y = £ @ @]+ ()o@ @10

g(x
_ '@ f@)d' @) _ g@)f' (@) - f(@)g'(x)
g(z)  [g(x)]? [g(x))?

This is an alternative derivation of the formula in the Quotient Rule. But part of the purpose of the Quotient Rule is to show

that if f and g are differentiable, so is f/g. The proof in Section 2.3 does that; this one doesn’t.

d e . .
85. (a) o (sin™ x cosnx) = nsin™ "' & cosx cosnx + sin™ x (—n sinnx) [Product Rule]
x
=nsin" ! x (cosnz cosx — sinnz sinx) [factor out nsin™ " z]
= nsin" !z cos(nx + x) [Addition Formula for cosine]
=nsin" ! z cos[(n + 1)x] [factor out ]
d n n—1 : n :
(b) T (cos™ x cosnz) = ncos" " x (—sinx) cos nx 4 cos” x (—nsinnz) [Product Rule]
x
= —ncos” ! x (cosnx sinx + sin nx cos x) [factor out —n cos™ ! ]
= —ncos" ! xsin(nz + z) [Addition Formula for sine]
= —ncos" ! xsin[(n + 1)x] [factor out ]

86. “The rate of change of y° with respect to x is eighty times the rate of change of y with respect to 7 <

d d d d .
Lp=80Y & 5yt g0l o 5y = 80 (Note that dy/dx # 0 since the curve never has a
dx dx dz dz

horizontal tangent) < y* =16 < y=2 (sincey > O forall x)
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T

: o d : o d ™ ™ o
87. Since §° = (15 )0 rad, we have — 7 (sinf°) = — 7 (sin 1£560) = 155 cos 1550 = 155 cos 6°.

88. (a) f(z) = |z| = Va2 = (2?2 = f(z)=3(2%)""*(22) =2/Va2 =g/ |z|forz #£0.
f is not differentiable at x = 0.

() f(z) = |sinz| = Vsin’z =

sinx

f'(z) = 3(sin’ z) "'/?2sinz cosz = Tsing] cosx XX Jr\ ! > >
NN

CcosS T if sinz >0
—cosz if sinz <0

f is not differentiable when x = n, n an integer.
(©) g(z) =sin|z| =sinvVz? = y

. 4
cos T if >0
g (z) = cos|z| - e = = cosw = . 27 /N — I\,
T —cosz if x<0 N QWL Nl Nmox

g is not differentiable at 0.

89. The Chain Rule says that d— dy du
dr ~ dudz’

d2y d (dy d (dydu\ |d (dy\|du dy d (du
da?  dx (dm =Gz \dude) " |dz \du )| @@ " duds \ @z ) [ProductRule]
du+dyd2 d%y @2+dyd2
dr = du dz? du2 dx du dx?

2 2
90. From Exercise 89, M & gy (35) + =2 dy d”u =
T2

So

dz? ~ du? du dz?
Py_ d Py _ d [y (0] | d[dye
de3 ~ drdx®  dx |du dx dz | du dz?
d (dy\] (du)® | |d (du\*| dy  [d (dy\]dPu  [d (d®u)]dy
dz \ du? dx dx \ dz du? dx \ du dx? dx \ dx? du
d (dy\du] (du\* dududly  [d (dy\du] (du)  dudy
du \ du? ) dz dx dx dx? du? du \du ) dz dx? dx3 du

dPy (@)3 Sdudzucﬁy dy d*u

T dud \ dx dr do? du? ' du dzd

APPLIED PROJECT Where Should a Pilot Start Descent?

1. Condition (i) will hold if and only if all of the following four conditions hold:
(a) P(0) =0
(8) P'(0) = 0 (for a smooth landing)
(7) P'(£) = 0 (since the plane is cruising horizontally when it begins its descent)

) P(£) = h. [continued]
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First of all, condition o implies that P(0) = d = 0, s0 P(z) = ax® + bx®> +cx = P'(z) = 3ax® + 2bx + c. But

P'(0) = ¢ = 0 by condition 3. So P'(¢) = 3al? + 2b¢ = £ (3al + 2b). Now by conditiony, 3al +2b =0 = a= 72—2.
2b 3 _2b g 2
Therefore, P(z) = —3% + ba?. Setting P(¢) = h for condition d, we get P({) = Zf +blf=h =
1 3h 2h 2h 3h
_ 22 2 Lo _ _on _ eI
bé +bl=h = 3b€ h = b 2 T e= 5 Soy = P(z) = —BT Tt

2. By condition (ii), Z—f = —v forall ¢, so x (t) = ¢ — vt. Condition (iii) states that | —= d < k. By the Chain Rule,

we have % :Z il; = i? (32%) C(li_j + 3—h (2z )d;v = 6h;20 - 6}2:;” (forz <0 =

% = % (2 )Z—f - %% = —12;?) x+ 6};) . In particular, when ¢t = 0, x = £ and so

% . =— IQ;U {+ 62: i = —GZ: Thus, Z; 61;;) : < k. (This condition also follows from taking = 0.)
3. We substitute £ = 860 mi/h?, b = 35,000 ft x 52818 3 and v = 300 mi/h into the result of part (b):

6(35,000 - ===)(300)* [ 35,000 _
< > S 2 64. .
72 <860 = ¢>3004/6 5980 . 860 64.5 miles

4. Substituting the values of A and ¢ in Problem 3 into

P(z) = 3? 4 :Z—Zm gives us P(x) = ax® + ba?,

where a ~ —4.937 x 1075 and b ~ 4.78 x 1073,

0 64.52

2.6 Implicit Differentiation

1. (a)%(sz—yZ):i(l) = 18z-2yy' =0 = 2y =18z = ¢y =—

dx
®92% —9y*=1 = > =9>-1 = y:i\/gxz—1,soy’:i%(9x2—1)*1/2(18x):i%.
72
(c) From part (a) o % which agrees with part (b)
Py T e ¢ partio)
2, (a)i(2x2+x+:1cy):i(1) = 4dr+l4+ay+y-1=0 = zy=—dz—y-1 = y,:_4x—|—y—|—1
dx dx x
2 2 1 / 1
b)2z"+z+zy=1 = wy=1-22"-2 = y=—--2r—1lsoy =—— —2
x x
(¢) From part (a),
T T e
x T T x x x
agrees with part (b).
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4 _4 Lo Lo IR VY
'(a)dx(ﬁ+\/g)_dx(1) = 3% +3Y y=0 = 2\/yy— N = y NG

O v+ y=1 = Jy=1-/z = y=01-vz)? = y=1-2yz+4x,50

163

O R VN PR
y =-2 2:E +1=1 \/E
(c) From part (a), vy’ = —% =— ! ?/%/E [from part (b)] = —% + 1, which agrees with part (b).
d (2 1 d _ _ 1 2 2y2
-(a)%(;—§>=a(4) = 2’4y =0 = ?ylzﬁ = y'=$—y2
(b)zflzél = l:274 = 1_2-40 = y:L,so
T oy Yy Y T 2 —4x
, (2-42)(1) —x(—4) 2 or 1
N (2 — 4z)? (2 —4x)2 21 —2x)2 |
2
(=x)
242 2 — 4z 222 2 . .
(c) From part (a), y' = x_yz == [from part (b)] = 22— 42)? = 2= 4$)z,whlch agrees with part (b).

d d
.%(xz—élxy—l—yz):%(él) = 2z —4[zy +y()]+2yy =0 = 2yy —dxy =4y -2z =

2y —x
"y — 22) = 2 — = =2 =
y(y—22)=2y—z V= o

d d
2ty — ) = —(2) = drtay +y(l) -2y =0 = zy —2yy = —4dx—y =

dx dx
—4xr —y
_ ! — _ — I " J
(z—2y)y dr—y = y p—
d 4, 22, 3 d 3., .2 ry2 2 2, 2 3 2
E(m +xy +y)=%(5) = 4o+ 2yy' 4y -20+3y°y =0 = 2z°yy +3y°y = —4dx® — 22y =

—4z® — 2zy® _2$(2$2 + %)
2x2y +3y2  y(222 + 3y)

222y + 3% )y = —4ax® — 22y = Y =

dx

2 2 2 2
— 3z y° — 3x
32 —22y)y =y — 322 = o = 2 -
(By” —2zy)y' =y~ — 3z Y = 3 oy ~ 3Gy —20)

!

2y =

‘Az \zty) dx (z +y)2

/

227 +2zy — 2 — 2y =2y(x +v)?y = 2422y =2z +y)y +2y =

x(x + 2y)
222y + 4dxy? + 293 + 22

/

oz +2y) = 2y(2® + 22y + %) + 2%y = Y =

Or: Start by clearing fractions and then differentiate implicitly.
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d d
10. . (v° +2%y°) = . (1+2%) = bBy'y +2° 3% +¢y° 22 =0+2" +y-42° =

43y — 2x7°

4 2,2 4y _ 4.3 3 —
y'(5y + 3z%y —a:)—4my—2fvy = y/_5y4+3x2y2—$4

1. di;(ycosx):d;i(xz—&—yz) = y(—sinz)+cosz-y =2x+2yy = cosz-y —2yy =2z +ysinz =

9 .
y'(cosx — 2y) = 2z + ysinz = y':w
cosT — 2y

12, 4 cos(xy) = dd (1+siny) = —sin(zy)(xy’ +y-1)=cosy -y = —xy'sin(zy) —cosy -y’ =ysin(zy) =

dx dr

— N o L ysin(zy) _ __ ysin(zy)
yl-wsin(y) — cosy] = ysin(ay) Y —zsin(zy) — cosy zsin(zy) + cosy

d d B
B Vrty=— (" +y") = F@+y) PA+y) =4t + 4ty =

dx dx
1 1 / 3 3,/ 1 3 3,/ 1 /

+ =4z +4 = ——42° =4 - =
2z +y 2,/ac+yy vy 2v/x+y Y 2\/as+yy
1—8x3\/x+y_8y3\/m+y—1 N ,_1—8$3\/m+y

2/ +y 2/ +y Y Y 8y2vr+y—1

14. di [ysin(z?®)] = di [zsin(y®)] = ycos(a?) -2z +sin(z®) -y = zcos(y?) - 2yy +sin(y®) -1 =
x x

, _ sin(y?) — 2zy cos(z?)
" sin(x2) — 2zy cos(y?)

y' [sin(z®) — 2zy cos(y?)] = sin(y®) — 2zycos(z?) =

d d y-l—x-y
15 L = @)y =1y
5 - tan(z/y) Tn (z+y) = sec(z/y) 7 Tty =

ysec’(z/y) —xsec®(z/y) -y =y* + v’y = ysec’(x/y) —y® = >y +wsec(z/y) =
2 2

2 2 1.2 2 / , _ ysec (z/y) —y

ysec’(z/y) —y* = [v* +zsec®(z/y)] -y = o = PERa—T

d d B
16— (2y) = =V T2 = ay +y() =3 (@ +y") P et y) =

xy +y= a + Y = ay — Y = < -y =
Y Yy \/x2 +y2 \/x2 +y2y Y /$2+y2y /m2+y2 Yy
svetyr oy, royyaeriy? o s yyatty?
/22 + 12 Yy /22 + 12 /22 +y2 —y
d _d 2 1 —1/2(,. 1 _ 2.
17 —oy=—1+27y) = 5(zy) (zy +y-1)=0+2"y +y-2z =
dx dx
z / Y 2 / x 2 Yy
Yy + =2y +2zy = vy —x° | =2zy —
2/ xy 2/ xy <2 Ty ) 2/ xy
J x—2x2\/:cy :4my\/xy—y N y,:4xy\/xy—y
2/ zy 2\/zy T — 222 +\/xYy
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19.

20.

21.

22

23.

24.
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.i(msiny—i—ysinaﬁ):i(l) = xzcosy-y +siny-1+ycosz+sinz-y' =0 =

dx dx

/ : ' : ’ . . , —siny—ycoszx
zcosy -y +sinz-y =—siny—ycosz = y'(xcosy+sinz)=—siny—ycosz = Yy =—"-""""—
T COSY + sInx

dix sin(xy) = % cos(z+vy) = cos(zy)-(zy +y-1)=—sin(z+y)- 1+y) =

zcos(zy)y + ycos(ry) = —sin(zx +y) —y'sin(z +y) =
zcos(zy)y’ +y sin(z +y) = —ycos(zy) —sin(z +y) =

_ycos(zy) +sin(z +y)
z cos(zy) + sin(z + y)

[z cos(zy) +sin(z +y)]y = —1[ycos(zy) +sin(z +y)] = y' =
d _d (v 2 )=
dxtan(m y)_dm (1—!—1‘2) = (1+z%)tan(zx —y)=y =
1+ 2% sec’(z—y)- (1 —y) +tan(z —y) - 20 =3y =
(1+2*)sec’*(z —y) — (1 +2%)sec’*(z —y) - v + 2zxtan(z —y) =y =
(1+a®)sec’(z —y) + 2ztan(z —y) = [1+ (1 +2°)sec®(z —y)] -y =

, (14 2%)sec®(z —y) + 2z tan(z — y)
v= 14 (1+22?)sec?(z —y)

L@+ 2 @P) = (10) = f(@) +a? 3@ @)+ @] 20 =0. 1z =1,we have
PO+ 3FOP - FO+FOP20)=0 = f(1)+1-3-22-f(1)+2°-2=0 =

) +12f'(1)=-16 = 13f/(1)=-16 = [f'(1)=—-1.

dix [9(z) + xsing(z)] = % (#?) = g'(z)+zcosg(x)- g'(x) +sing(z) -1 =22 Ifz=0,wehave

g'(0)+0+sing(0) =2(0) = ¢'(0)+sin0=0 = ¢(0)+0=0 = ¢'(0)=0.

d d
d—y(x4y2—m3y+2xy3):d—y(0) = o' 2y+y? 4t — (2 14y 327 ) + 2 -3t +yd ) =0 =

drdy? o’ — 32y’ + 2982’ = 2ty +2® —6xy? = (42®y® — 32y + 2% 2’ = 22ty +2® — 6 =

, _dx 22ty + % — 62>

v dy ~ 4xdy? — 332y + 293

d d
d—(ysecr)zd—(xtany) = y-secx tanz -z’ +secr-1=x-sec’y+tany -z =
Y Y

ysecr tanx -’ —tany -z’ = xsec’y —secx = (ysecx tanz —tany)x’ = xsec’y —secr =

, _dr xzsec’y —secx
dy ~— ysecx tanx —tany
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25.

26.

27.

28.

29.

30.

31.

U CHAPTER2 DERIVATIVES

ysin2z = xcos2y = y-cos2x-2+sin2z-y = z(—sin2y-2y’) +cos(2y)-1 =
sin2z -y + 2zsin2y -y = —2ycos2zx +cos2y = 4'(sin2x + 2wsin2y) = —2ycos2x + cos2y =

; f2yc0s2x+cos2y' When 2 — =

(—m/2)(-1)+0 w/2 1 .
Y= Sno. T+ 2zsin2y 5 ~— L~ = ' = — 50 an equation of the

O04+m-1 T 2

andy = Z, we have y =

tangent lineisy — Z = 3(z — 5),ory =

sin(z+y)=2x—-2y = cos(z+vy)- 1+y)=2-2¢y = cos(z+y) y +2y=2—cos(z+y) =

2—-1 1
.When95:7randy:7r,wehavey/:1—4_2 :§,s0

2 — cos(z + y)
! 2 =92— = g =2 T Y
y'[cos(z +y) + 2] cos(z +y) Y cos(@ T+ 9) +2

an equation of the tangent line is y — 7 = 1 (z — 7), ory = 2 + 2.

2 —zy—1yP=1 = 20— (zy'+y-1)—2yy =0 = 2x—ay —y—2yy' =0 = 22x—y=oy +2yy =

2 4—1 .
2r—y=(z+2y)y = y = acx—i— 23. Whenz = 2andy = 1, we have ¢’ = 773 %, so0 an equation of the tangent

lineisy —1=2(zx—2),ory =32 — 3.

2?42y +4y2 =12 = 2o +22y +2y+8yy' =0 = 2y +8yy =-20-2y =

T +y
x4+ 4y

241
2+4

1 .
(z+4y)y =—2z—y = y =— .Whenz =2andy = 1, we have ¢y = — :—E,soanequatlonofthe

tangent lineisy — 1= —3(z —2)ory = —22 + 2.
2?+y? = (22" +2y° —2)° = 2z+2yy =2(22°+2y° —x)(dx +4yy’ —1). Whenz =0andy = 1, we have

0+y =2(3)2y' —1) = ¢y =2y—1 = ¢ =1,s0anequation of the tangent line is y — 3 = 1(z — 0)

or y=x+ 3.

1 ’ i’,/_
2/3 2/3 _ 2, —-1/3 | 2, —1/3,1 __ y ’_ Y _
22/3 4+ —4 = 2571342 =0 = —+ =0 = y =-——=. Whenz=-33

! : WY Ve Uy YT

2/3
-3v3
andy = 1, we have iy = — ! 73 :—( \/_) = 3 —i,so an equation of the tangent line is
(=3/3) —343 3v3 V3

y—l:%(m—l—iﬁﬁ) or y:%x+4.

2022 +y3)? = 25(x —¢%) = 4(2® + )2z +2yy) = 25(2x — 2yy) =
Az +yy)(@® +y°) =25z —yy') = 4yy'(=®+y°) + 259y = 250 — da(2® +y°) =

, 25z —da(a® + %)

_ _ _75-120 _ 45 _ _ 9
Yy = By T AT 1 ) Whenz =3andy = 1, wehavey = =28 = —32 = — 13,
so an equation of the tangent lineisy — 1 = — % (z — 3) or y = — 3z + 2.
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32. (P —4) =2%(2? —5) = ' 4P =2-52> = 4Py —8yy =42® — 10z
Whenz =0andy = —2, we have =32y’ + 16y’ =0 = —16y' =0 = 3 =0, so an equation of the tangent line is

y+2=0x—0)ory =—2.

3 _ 5
33. @y =5z'—2? = 2y =5Usd)-2x => ¢ = M (b)
Yy
. 10(1)* — 1 .
So at the point (1,2) we have 3y = % = %, and an equation 1,2
-2 2
of the tangent lineisy —2 = 2(z — 1) or y = 22 — 2. L / /\ J
-2
2
3. @)y =23 +327 = 2y =322 +3122) = o = % So at the point (1, —2) we have
2
Y = 3(1;(—"_2()3(1) = 7%, and an equation of the tangent lineisy +2 = —2(z — 1) or y = -2z + 1.
(b) The curve has a horizontal tangent where y' =0 < () 3

(=2,2) ;

32°4+6x=0 & 3z(z+2)=0 & x=0o0rz=-2.
But note that at x = 0, y = 0 also, so the derivative does not exist.
Atz =—2,y> = (-2)® +3(-2)° = -8+ 12=4,s0y = £2. K

So the two points at which the curve has a horizontal tangent are o2 -
-3

(1,-2)

(—=2,—2) and (-2,2).

3B +4y2 =4 = 22+8yy =0 = ¢y =-—x/4y) =

w_ ly-1—wm- Y _ ly- zl—z/(4y)] 1 4y? + 2® _ 14 since = and y must satisfy the
Yy = 4 y2 - 4 y2 - 4 4y3 - 44y3 original equation 3:2+4y2 =4
1
Th "=
us, y e
2 2 ! / / / *2$*y
6. z°+zy+y°=3 = 242y +y+2yy’ =0 = (z+2y)y' =-22—y = y:m,

Differentiating 2x + zy’ + y + 2yy’ = 0 to find y'’ gives 2 + xy” + vy’ + ' +2yy”" + 20’y =0 =

20 +y 2x +y 2
29y’ =—-2—-2y —2(y) = -2 |1—
(z+2y)y y —2(y) [ T2y <x+2y> =
=2 (z +2y)* —(2w+y)(m+2y)+(2w+y)2]
T+ 2y (z + 2y)?
2
= —m (x2 +dzy + 4y® — 222 — Aoy — zy — 2y° + 4a2? —|-4xy—|—y2)
_ 2 2 2\ 2 since = and y must satisfy the
N _(x + 2y)3 (327 + 3wy +3y°) = _(x + 2y)3 9) |:0riginal equation z2 + zy + y> = 3
18
Th V= ooo—
oy (z +2y)*
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37.

38.

39.

40.

41.
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. , . , sinx
siny4+coszr=1 = cosy-y —sinx=0 = y =

cosy

, _ cosy cosx —sinz(—siny)y’  cosy cosx + sinz siny(sinz/ cosy)

(cosy)? cos?y

. cos?y cosz + sin® x siny . cos? y cosz + sin® z siny

cos? y cosy cos?y

Using siny + cos ¢ = 1, the expression for 4 can be simplified to 3’ = (cos® x + siny)/ cos® y.

22—y =7 = 32— =0 = y== =

_2z(y—2/y?) _ 2a(y® —a®)
(y?)? yt y3 y3y? y° y°

g = YR2) — 2 2yy) _ 2wyly —a(@/y)]

Ifx =0inzy +y> =1, thenwegety? =1 = y = 1, so the point where = = 0 is (0, 1). Differentiating implicitly with
respect to @ gives us zy’ + y - 1+ 3y” ¢’ = 0. Substituting 0 for z and 1 for y givesus 1 + 3y’ =0 = ¢ = —1.
Differentiating zy’ 4 y 4+ 3y? y' = 0 implicitly with respect to = gives us 3" + v + 3’ + 3(v%y" + v - 2yy') = 0. Now

substitute 0 for z, 1 fory,and —3 fory’. 0— 3 — 2 +3[y" +(—3)-2(—3)] =0 = 31" +3)=2 =

Ife=1inz?+oy+y® =1 thenwegetl+y+4°=1 = ¢*+y=0 = yk?>+1) = y=0,sothepoint
where « = 11is (1, 0). Differentiating implicitly with respect to « gives us 2z + zy’ 4y - 1 + 3y* - ' = 0. Substituting 1 for
zand0forygivesus2+7y +04+0=0 = 3 = —2. Differentiating 2z + zy’ + y + 33>y’ = 0 implicitly with respect
tox givesus 2+ zy” + v - 1+ v + 3(¥*y" + v - 2yy’) = 0. Now substitute 1 for x, 0 for y, and —2 for y/'.

249" 4+ (=2)+ (-2) +3(0+0)=0 = 3"’ =2. Differentiating 2 + 23" + 2y’ + 3y%y” + 6y(y’)* = 0 implicitly
with respect to « gives us xy”’ +y” - 1+ 2y” + 3(y*y"”" +y" - 2yy’) + 6[y - 2y'y” + (v')?y’] = 0. Now substitute 1 for z,

Ofory, —2fory’,and 2 fory”. v +2+44+3(04+0)+6[0+(-8)]=0 = ¢ =-2—-4+48=42.

(a) There are eight points with horizontal tangents: four at x ~ 1.57735 and - 1 N
four at = 0.42265. </
32% — 62 + 2 ~)
b)y' = "= —lat(0,1)andy’ = 3 at (0,2). Y - —
()y 2(2y373y27y+1) = Yy a(O,)any 33(03) 2 5
Equations of the tangent lines are y = —z + 1l and y = %m + 2. \/\
\ J
3

©y =0 = 322—62+2=0 = a=1+1V3
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(d) By multiplying the right side of the equation by x — 3, we obtain the first
graph. By modifying the equation in other ways, we can generate the other

graphs.

SECTION 2.6

IMPLICIT DIFFERENTIATION O

4

A

/|

y(y* =Dy —2)
=z(x —1)(z —2)(z —3)

y(y* —4)(y - 2) y(y+1)(y° - 1)y - 2) (+D* -1y —-2)
=z(z—1)(xz—2) =z(z—1)(x—2) =(z—-1)(xz—2)
3 4 4
-3 3 . N\ . -4 4
=
) -3 ’ -3 h -4
z(y+1)(y* = 1)(y - 2) y(y* + 1y —2) y(y+1)(y* - 2)
=y(z—1)(z —2) =z(2® - 1)(z—2) =a(r—1)(z* - 2)
42. (a) . 3 \ (b) %(2y3+y2—y5): %(:pkzxﬂgﬂ) =
j 6%y +2yy —Syty =4a® —62% + 22 =
-3 o) 4 , 2x(22° -3z +1)  2z(2x—1)(z—1)

+2—5y3)

/\ VT e r2y syt g6y
values for which ¢’ = 0, we speculate that there are 9 points with horizontal

From the graph and the

4 tangents: 3atx =0, 3 atx = %, and 3 at x = 1. The three horizontal

tangents along the top of the wagon are hard to find, but by limiting the

y-range of the graph (to [1.6, 1.7], for example) they are distinguishable.
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43.

45.

46.

47.

48.

49.

U CHAPTER2 DERIVATIVES

From Exercise 31, a tangent to the lemniscate will be horizontal ify’ = 0 = 25z —4a(2® +y*) =0 =
225 —4(z* +y3)] =0 = 2?47 = 275’ (1). (Note that when « is 0, y is also 0, and there is no horizontal tangent

at the origin.) Substituting % for 2 + 42 in the equation of the lemniscate, 2(x* + 3%)? = 25(z* — y?), we get

22 _ . 2_ 1 2 _
2% —y? = 22 (2). Solving (1) and (2), we have z* = 72 and y* = 22,

s
so the four points are (:t%, :t%).

22 4P ' 2
— + b_2 =1 = z—f + 2213 =0 = ¢ = —22—93 = an equation of the tangent line at (zo, yo) is
32 2
Y—Yo = azyxo (z — mo). Multiplying both sides by % gives % - ?;—g = —@ + O . Since (xo, yo) lies on the ellipse,
0
wehave% + yg)zy = @ +b—2 =1
2 2 ' 2
% - Z_Q =1 = z—f - 2133/23; =0 = ¢y = ZTZ = an equation of the tangent line at (xo, yo) is
b2z S . Yo . Yoy Yo woxr md
Yy—yo = 70 (z — xo). Multiplying both sides by R Eves S — = T Since (o, yo) lies on the hyperbola,
2 2
ToT Yoy _ To Yo _
Wehave?—bT—ﬁ—ﬁ—l.

Vat+\y=ve = L+——0 =y =-

Voo 24y
Vo

sy —yo=— (z—20).Nowax =0 = y=19yo—
Vo /1’0

vV Yo Yo VI
Yo+ Vzrov/yo. Andy=0 = —yo=— (x—x0) = z—20=
Vg VYo

T = xo + Vo \/Yo, S0 the x-intercept is xo + v o v/ Yyo. The sum of the intercepts is

(yo+\/m_0\/%)+(xo+x/ﬁ\/z£):xo+2\/5\/z%+yo:(VRJM/;E)Q:(\/E)Q:&

= an equation of the tangent line at (xo, yo)

5 SIS

(—z0) = yo + Vxo /Yo, so the y-intercept is

If the circle has radius 7, its equationis z° + 3> =7 = 2242y’ =0 = ¢ = —E, so the slope of the tangent line
Yy

= @, which is the slope of O P, so the tangent line at
—zo/Yo  Zo

at P(zo,y0) is — 20 The negative reciprocal of that slope is
Yo

P is perpendicular to the radius OP.

q P

1 1 “1.p/
= qui 1y/ —p$p71 = ' = pxP _ pxP 1y _ paP~ P/ _ Qx(lﬂ/q)*l

qye~1 qy? qxP q

y =T

x? 4 y* = r? is a circle with center O and a2 + by = 0 is a line through O [assume y

2

and b are not both zero]. 2>+ =1 = 20 +2yy =0 = y = —x/y,sothe

slope of the tangent line at Py (o, yo0) is —xo/yo. The slope of the line O P, is yo /o,

which is the negative reciprocal of —z¢/yo. Hence, the curves are orthogonal, and the

families of curves are orthogonal trajectories of each other.
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50. The circles 2 + > = ax and 22 4+ 3> = by intersect at the origin where the tangents are vertical and horizontal [assume a

51.

52,

53.

and b are both nonzero]. If (20, %o ) is the other point of intersection, then 3 + 33 = axo (1) and 23 + v = byo (2).

y

Nowz? +y? =az = 20+2yy=a = y = a—2u andz? +y2=by =

! / ! 2$
2c+2yy =by = Y = s Thus, the curves are orthogonal at (o, y0) < >
a — 2% = _b=2y & 2axo — 4w = 4y —2byo & axo +byo = 2(2f + i),
2y0 2$()
which is true by (1) and (2).
y=cz? = y =2crandz®+2y®> =k [assumek >0] = 2z +4yy =0 = y
, , T T 1 .
2y = —r = Y =-—-—~ =—z—>5 = —=—, so the curves are orthogonal if

2(y) ~ 2(cx?) 2cx
¢ # 0. If ¢ = 0, then the horizontal line y = cx?® = 0 intersects = + 2y* = k orthogonally
at (i\/E, 0), since the ellipse 2> + 2y> = k has vertical tangents at those two points.

y=azx® = 3y =3az?anda®+3y> =b [assumedb>0] = 2z +6yy =0 =

1 .
3yy = —x = o = —ﬁ = —ﬁ = g3 s0 the curves are orthogonal if

a # 0. If a = 0, then the horizontal line y = az® = 0 intesects 2 4 3y = b orthogonally

at (i Vb, O) , since the ellipse 22 + 3y? = b has vertical tangents at those two points.

Since A% < a2, we are assured that there are four points of intersection.
2 2 / /
x Yo 2 2yy vy
(l)ﬁ—’_b_z_l = ﬁ-‘r b2 =0 = b—2——§ =
, xb?
y =mi = ——2
ya
2 2 ! ’
x Yo 2x 2yy yy T
@75~ 5 T 0T mETae T
P — zB?
y 2 yA2 .
zb®> xB? B% g? . . . 2?2yt a? 3>
Now mimeg = fﬁ . W = ? (3). Subtracting equations, (1) — (2), gives us o + AT + Zhe 0 =
2 2 2 2 2 2 272 2 2 242 2072 2 202 42
y_+y_:x_7x_:>yB+yb:ma z?A :>y(b+B)::1c(a A)(4).Since
2 T B2 T AT g2 b2 B2 A2q2 b2 B2 a2 A2
2 2 2 2 2
2 2 _ 42 2 2 2 _ 32 2 : y T z= _ A’a
a® —b* = A + B*, we have a® — A° = b° + B~. Thus, equation (4) becomes 2RI A2g2 E = W,and
. z? . , v¥’B? a’A? .
substituting for ? in equation (3) gives us mima = — PR —1. Hence, the ellipse and hyperbola are orthogonal

trajectories.
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5. y=(z+c)' = y=—(z+c) *andy=a(z+k)"? = y =3la(z+k) >3 so the curves are othogonal if the

a

-1
(@+o)? 3(@+k323 -1 = a=3@+’@@+k)"* =

product of the slopes is —1, that is,

2 2
a:3<l> (g) [since y> = (z +¢) 2and 3 = a*(z + k)?/?] = a:3<i2) = =3 = a= 3.
Yy a a
55. @) (P+ %) (V—nb) = nRT = PV—Pub+ 0% oy
: V2 - 1% Iz

d 2 1,1 3 —2 _i
dP(PV Pnb+n“aV n°abV )—dP(nRT) =

PV +V-1—nb—n?aV 2.V +20%abV 2. V' =0 = V' (P-n?aV 2+2nabV "3 =nb-V =

nb—V oV _ V3(nb—V)
P —n2aV-2+42n3abV-3  dP ~ PV3 —n2aV + 2n3ab

V' =
(b) Using the last expression for dV/dP from part (a), we get

av (10 L)3[(1 mole)(0.04267 L /mole) — 10 L]
dP

(2.5atm)(10 L)® — (1 mole)?(3.592 L?- atm/ mole?)(10 L)
+ 2(1 mole)®(3.592 L- atm/ mole?)(0.04267 L/ mole)

. 4
_ 9957.33 L ~ —4.04 L/ atm.
2464.386541 L3- atm

—2rx—vy

5. (@) 2° +ay+yP+1=0 = 2z+xy +y-1+200+0=0 = ¢(z+2)=-20-y = ¢ = P

(b) Plotting the curve in part (a) gives us an empty graph, that is, there are no points that satisfy the equation. If there were any
points that satisfied the equation, then = and y would have opposite signs; otherwise, all the terms are positive and their
sumcannotequal 0. 2?4+ ay+y*+1=0 = 2>+ 2xy+y’—ay+1=0 = (x+y)®>=xy— 1 Theleft
side of the last equation is nonnegative, but the right side is at most —1, so that proves there are no points that satisfy the

equation.

Another solution: * +zy+y* +1 =32 +ay+2y° + 122+ L2 + 1 =12 + 2ay+ v°) + 1 (2® + %) + 1
=30+’ +30@"+y?) +121

Another solution: Regarding 2 4 zy + y* + 1 = 0 as a quadratic in z, the discriminant is y* — 4(y* 4+ 1) = —3y* — 4.

This is negative, so there are no real solutions.

(c) The expression for 3/’ in part (a) is meaningless; that is, since the equation in part (a) has no solution, it does not implicitly

define a function y of z, and therefore it is meaningless to consider y'.

57. To find the points at which the ellipse 2> — zy + y® = 3 crosses the z-axis, let y = 0 and solve for .
y=0 = 22—2(0)+0°=3 & z= ++/3. So the graph of the ellipse crosses the z-axis at the points (:I:\/g, 0).

[continued]
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Using implicit differentiation to find y/, we get 2z —xy' —y +2yy’' =0 = Y (2y—2z)=y—-2z & ¢ =

0-23
2(0) — /3

0+2V3

Soy’ at (\/3, 0) is 20) 13

=2andy at (—\/3, 0) is

58. (a) We use implicit differentiation to find 3/ = gy_fz as in Exercise 57. The slope

1—2(-1) = 3 = 1, so the slope of the

of the tangent line at (—1,1) ism = -1 3

L 1 . L
normal line is —— = —1, and its equationisy — 1 = —1(z + 1) <
m

y = —x. Substituting —x for y in the equation of the ellipse, we get
2?—2(-2)+ (—2) =3 = 32°=3 <& ===l Sothenormal line
must intersect the ellipse again at z = 1, and since the equation of the line is

y = —uz, the other point of intersection must be (1, —1).

(b)

IMPLICIT DIFFERENTIATION O 173

y —2x
2y —x

= 2. Thus, the tangent lines at these points are parallel.

(=11

SN

5. 22 tay=2 = 2.2y +y* 20 t+a-y +y-1=0 & y(2rlPy+a)= 22—y &

;o 2wy’ +y 2y’ +y

T2ty +a o_2r2y+x

=1 & 2z +y=22%+zr & yRey+1)=22zy+1) <

y(Rry+1) —z2zy+1)=0 & QRay+1)(y—2)=0 & ay=—jory=axButzy=-1 =

x2y2+xy:%f%752,sowemusthavex:y.Then 2P dry=2 => '422=2 & 2*422-2=0 &

(z? 4+ 2)(2* — 1) = 0. So x® = —2, which is impossible, or > = 1 <« =z = +1. Since = = y, the points on the curve

where the tangent line has a slope of —1 are (—1, —1) and (1, 1).

60. 22 +4y° =36 = 2248y =0 = ¢ = —%. Let (a, b) be a point on 2> + 4y> = 36 whose tangent line passes

through (12, 3). The tangent line is then y — 3 = -z (x—12),s0b—3 = —% (a — 12). Multiplying both sides by 4b

4b

gives 4b® — 12b = —a® + 12a, s0 4b® + a® = 12(a + b). But4b®> + a®> = 36,5036 = 12(a +b) = a+b=3 =

b = 3 — a. Substituting 3 — a for b into a® + 4b*> = 36 gives a® +4(3 —a)* =36 & a®+36—24a+4a®> =36 &
50> —24a=0 < a(5a—24)=0,s0a=00ra=2.1fa=0,b=3-0=3,andifa=2,p=3-2 =2,
So the two points on the ellipse are (0,3) and (2, —2). Using s

“ y=3 10.3) (12.3)
y—3= —£(x — 12) with (a, b) = (0, 3) gives us the tangent line /2 \ /
y—3=0ory=3. With (a,b) = (2, —2), we have ) o x

24/5
4(-9/5)

y—3=— (-12) & y—-3=2(x-12) & y=2z-5.

A graph of the ellipse and the tangent lines confirms our results.

y= ?7
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6. @y=J@x)andzy" +y +2y=0 = zJ"(z)+ J'(z)+zJ(z) =0.Ifz =0, wehave 0 + J'(0) + 0 = 0,
so J'(0) = 0.
(b) Differentiating zy” + 3" + zy = 0 implicitly, we get zy"”’ +y" -1+ ¢y +zy' +y-1=0 =
2y +2y" +ay +y=0,s0xJ" (x) +2J"(x) + 2J'(z) + J(z) = 0. If z = 0, we have
0+2J"(0)+0+1 [J(0)=1lisgiven] =0 = 2J(0)=-1 = J"(0)=—3.
62. 22 +4y° =5 = 20+4Q2w)=0 = ¢ = —%. Now let h be the height of the lamp, and let (a, b) be the point of

tangency of the line passing through the points (3, 2) and (—5, 0). This line has slope (h — 0)/[3 — (—5)] = £h. But the

slope of the tangent line through the point (a, b) can be expressed as 3’ = ,i, or as b0 = b [since the line
4b a—(=5) a+5
passes through (—5, 0) and (a, b)], so 74% = _?_5 & 4 = —a® —5a & a® +4b* = —5a. Buta® +4b* =5
a
[since (a, b) is on the ellipse], s0 5 = —5a < a = —1. Then4b® = —a® —5a = —1—5(—1) =4 = b= 1, since the
oint is on the top half of the ellipse. So h_o b 1 1 = h = 2. So the lamp is located 2 units above the
P P P 0 T 5 T1+5 1 - P

T-axis.

LABORATORY PROJECT Families of Implicit Curves

1. (a) There appear to be nine points of intersection. The “inner four” near the origin are about (£0.2, —0.9) and (£0.3, —1.1).

The “outer five” are about (2.0, —8.9), (—2.8, —8.8), (—7.5, —7.7), (—7.8, —4.7), and (—8.0, 1.5).

-1

(b) We see from the graphs with ¢ = 5 and ¢ = 10, and for other values of ¢, that the curves change shape but the nine points

of intersection are the same.

2. (a) If ¢ = 0, the graph is the unit circle. As c increases, the graph looks more diamondlike and then more crosslike (see the

graph for ¢ > 0).
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For —1 < ¢ < 0 (see the graph), there are four hyperboliclike branches as well as an ellipticlike curve bounded by
|z] < 1and|y| <1 for values of ¢ close to 0. As c gets closer to —1, the branches and the curve become more rectangular,
approaching the lines || = 1 and |y| = 1.

Forc = —1, we get the lines x = £1 and y = £1. As c decreases, we get four test-tubelike curves (see the graph)

that are bounded by |z| = 1 and |y| = 1, and get thinner as |c| gets larger.

c>0 —-1<e<O0 c< -1
1.1 5
c=0
c=1
c=5
c=20 c=-2 c=-10
¢=100
—
—1.1 1.1 =5 5
|
__c=-1
—1.1 =5 =5

(b) The curve for ¢ = —1 is described in part (a). Whenc = —1, weget z° +y?> —2%y> =1 <
0=2%—2>—9*+1 & 0=(2>-1@*—-1) & z==%1 or y=+1, which algebraically proves that the

graph consists of the stated lines.
d 2 2 2,2 d / 2 / 2
(c)%(ac +y —l—cxy):%(l) = 2z+2yy +c(z® 2yy +y° -22)=0 =

_z(l+cy’)

2yy +2ca’yy’ = -2z — 2cxy? = 2y(l+ca?y = -22(1+cy?) = y = y(1+ca?)’

1—y%) z(1+y)(1—y) :
Fore— 1,4 = 20—v) _ " —Owheny = +1 — 0 (which leads to y = +1
or ¢ ,Y ) y(l—i—x)(l—x)’soy when y or x (which leads to y )

and v’ is undefined when & = &1 or y = 0 (which leads to x = £1). Since the graph consists of the lines x = 41 and

y = =1, the slope at any point on the graph is undefined or 0, which is consistent with the expression found for 3.

2.7 Rates of Change in the Natural and Social Sciences

1. (@) s = f(t) =3 — 9% + 24t (infeet) = w(t) = f'(t) = 3t> — 18t + 24 (in ft/s)
(b) v(1) = 3(1)% — 18(1) + 24 = 9 ft /s

(c) The particle is at rest when v(t) = 0. 3t — 18t +24 =0 < 3(t*—6t+8)=0 < 3(t—-2)(t—4)=0 =
t=2sort=4s.

(d) The particle is moving in the positive direction when v(t) > 0. 3(t —2)(t —4) >0 < 0<t¢<2ort>4.

(e) v changes sign at t = 2 and 4 in the interval [0, 6]. The total distance traveled during the first 6 seconds is

1£(2) = fOO) 4+ |f(4) — f(2)|+|f(6) — f(4)] =120 — 0] + |16 — 20| + |36 — 16| =20 + 4 + 20 = 44 ft.
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t=6
(f) s=36
(=
s=16
t=2
20
t=0 s
s=0
(@ v(t)=3t2— 18t +24 = thy %

a(t) = v'(t) = 6t — 18 [in (ft/s) /s or ft/s°].

a(l) =6 — 18 = —12 ft /s>,

0 L
//
—-20

() a(t)>0 < 6t—18>0 < t> 3. The particle is speeding up when v and a have the same sign. From the figure

in part (h), we see that v and a are both positive when 4 < ¢ < 6 and both negative when 2 < ¢ < 3. Thus, the particle is
speeding up when 2 < ¢ < 3and 4 < ¢t < 6. The particle is slowing down when v and a have opposite signs; that is, when

0<t<2and3<t<4
2. (a) s = f(t) = 0.01t* — 0.04t (infeet) = w(t) = f'(t) = 0.04t> — 0.12¢> (in ft/s)
(b) v(3) = 0.04(3)® — 0.12(3)> = 0 ft/s
(c) The particle is at rest when v() = 0. 0.04t> —0.12t> =0 < 0.04t*(t —3)=0 < t=0sor3s.

(d) The particle is moving in the positive direction when v(t) > 0. 0.04t*(t —3) >0 < t> 3.

(e) See Exercise 1(e). ()
|£(3) = f£(0)| = |—0.27 — 0] = 0.27. by s %048
|£(8) — £(3)| = |20.48 — (—0.27)| = 20.75. i i~ 05— 0
The total distance is 0.27 4+ 20.75 = 21.02 ft. : >

(2) v(t) = 0.04t> — 0.12t> = a(t) =v'(t) = 0.12¢> — 0.24t. a(3) = 0.12(3)® — 0.24(3) = 0.36 (ft/s)/s or ft/s>.

(h) Here we show the graph of s, v, and a L

for0<t<4and4 <t <8.

—0.3
(1) The particle is speeding up when v and a have the same sign. This occurs when 0 < ¢t < 2 [v and a are both negative]
and when t > 3 [v and a are both positive]. It is slowing down when v and a have opposite signs; that is,

when 2 < t < 3.
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3. (a) s = f(t) =sin(nt/2) (infeet) = wv(t) = f'(t) = cos(mt/2) - (w/2) = % cos(wt/2) (inft/s)

(b) v(1) = Fcos T = 5(0) =0ft/s

(c) The particle is at rest when v(t) = 0. S cos 5t =0 <« cosft=0 & ft=7T +nm < t=142n,wheren
is a nonnegative integer since ¢t > 0.
(d) The particle is moving in the positive direction when v(¢) > 0. From part (c), we see that v changes sign at every positive

odd integer. v is positive when 0 < t < 1,3 <t < 5,7 <t < 9, and so on.

(e) v changes sign at t = 1, 3, and 5 in the interval [0, 6]. The total distance traveled during the first 6 seconds is
[F(1) = FO)+1fB) = fFMI+1fB) = fFB) +[£(6) = fB) =1 = 0]+ [-1 =1+ [1 = (=1)[ + [0 — 1]
=142424+1=6"1t

) ;if) (g) v(t) = S cos(nt/2) =
=3 s a(t) = v'(t) = § [~ sin(nt/2) - (7/2)]
s=-1
=1 _ 2 : 2
Y = (—n*/4)sin(nt/2) ft/s
t=0 s 2 . 2 2
5=0 a(l) = (== /4)sin(n/2) = —n* /4 ft /s
(h) 3¢ N (i) The particle is speeding up when v and a have the same sign. From
Lo the figure in part (h), we see that v and a are both positive when
B s
3 < t < 4 and both negative when 1 < ¢ < 2and 5 < ¢t < 6. Thus,
0 6
the particle is speedingup when 1 < ¢ < 2,3 < t < 4, and
| 5 < t < 6. The particle is slowing down when v and a have
5 a opposite signs; that is, when 0 < ¢t < 1,2 <t < 3,and 4 < t < 5.
_ 9 o (499 —9t(2t) -9 +81  —9(t*—9) .
4. (a)s=f(t) = 719 (infeet) = w(t)=f'(t) = @2+ 9)° BN CETE (in ft/s)
-9(1-9) 72
b)v(l) = ——=—=0.721t
) v(1) =719 =10 ~ T2 R/
o —9(t* - 9) 2 .
(c) The particle is at rest when v(t) = 0. NCFTER =0 <& t*—-9=0 = ¢=23s [sincet>0].

(d) The particle is moving in the positive direction when v(t) > 0.

—9(t2 —
u>0 = —9#*-9)>0 = ¥ -9<0 = <9 = 0<t<3.
GEE
(e) Since the particle is moving in the positve direction and in (f) 1,
the negative direction, we need to calculate the distance }
traveled in the intervals [0, 3] and[3, 6], respectively. Pt PP
s=0 1.5

1f(3) = F(0)| = |3 —0| =3
116) = f@) =[5 - %l=%5
The total distance is 3 + -5 = 2 or 1.8 ft.
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@ () = ~9 g
o o492 - (920 +9)(2t) 2t + 9[> +9) — 2> —9)] _ 18t(t* —27)
alt) = v'(t) = =9 (GEDRE =9 @ +9)7 ENEETE
a(l) = %0326) = —0.468 ft/s”
(h)

(i) The particle is speeding up when v and a have the same sign. a is negative for 0 < ¢ < /27 [~ 5.2], so from the figure in
part (h), we see that v and a are both negative for 3 < ¢ < 3+/3. The particle is slowing down when v and a have opposite

signs. This occurs when 0 < t < 3 and when ¢ > 3+/3.

5. (a) From the figure, the velocity v is positive on the interval (0, 2) and negative on the interval (2, 3). The acceleration a is
positive (negative) when the slope of the tangent line is positive (negative), so the acceleration is positive on the interval
(0,1), and negative on the interval (1, 3). The particle is speeding up when v and a have the same sign, that is, on the
interval (0, 1) when v > 0 and a > 0, and on the interval (2, 3) when v < 0 and a < 0. The particle is slowing down
when v and a have opposite signs, that is, on the interval (1,2) whenv > 0 and a < 0.

(b) v>00n(0,3)andv <0on(3,4). a>0on(1,2)anda < 0on (0,1) and (2,4). The particle is speeding up on (1, 2)

[v>0,a>0]andon (3,4) [v <0, a < 0]. The particle is slowing down on (0,1) and (2,3) [v > 0,a < 0].

6. (a) The velocity v is positive when s is increasing, that is, on the intervals (0, 1) and (3, 4); and it is negative when s is
decreasing, that is, on the interval (1, 3). The acceleration a is positive when the graph of s is concave upward (v is
increasing), that is, on the interval (2, 4); and it is negative when the graph of s is concave downward (v is decreasing), that
is, on the interval (0, 2). The particle is speeding up on the interval (1,2) [v < 0,a < 0] and on (3,4) [v > 0,a > 0].
The particle is slowing down on the interval (0,1) [v > 0,a < 0] and on (2,3) [v < 0, a > 0].

(b) The velocity v is positive on (3,4) and negative on (0, 3). The acceleration a is positive on (0, 1) and (2, 4) and negative
n (1,2). The particle is speeding up on the interval (1,2) [v < 0, a < 0] and on (3,4) [v > 0, a > 0]. The particle is

slowing down on the interval (0,1) [v < 0,a > 0] and on (2, 3) [v < 0, a > 0].

7. (a) h(t) =2 +24.5t —4.9t> = v(t) = h'(t) = 24.5 — 9.8t. The velocity after 2 s is v(2) = 24.5 — 9.8(2) = 4.9 m/s

and after 4 sis v(4) = 24.5 — 9.8(4) = —14.7m/s.
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(b) The projectile reaches its maximum height when the velocity is zero. v(t) =0 < 245-98t=0 <

245
t=222 _ 955
98 s

(¢) The maximum height occurs when ¢ = 2.5.  h(2.5) = 2 + 24.5(2.5) — 4.9(2.5)> = 32.625m [or 322 m|.

(d) The projectile hits the ground when h =0 < 24245t —4.9t> =0 <

—24.5+ /24.52 — 4(—4.9)(2
‘= \/2(_49) ( )(2) = t=t; ~5.08s [sincet > 0]

(e) The projectile hits the ground when ¢ = ¢. Its velocity is v(t;) = 24.5 — 9.8ty ~ —25.3 m/s [downward)].

. (a) At maximum height the velocity of the ball is 0 ft/s. v(t) =s'(t) =80—32t =0 < 32t=80 < t=3.

So the maximum height is 5(2) = 80(2) — 16(2)* = 200 — 100 = 100 ft.

(b) s(t) =80t —16t> =96 < 16t>° —80t+96=0 < 16(t> —5t+6)=0 < 16(t—3)(t—2)=0.
So the ball has a height of 96 ft on the way up at ¢ = 2 and on the way down at ¢ = 3. At these times the velocities are

v(2) = 80 — 32(2) = 16 ft/s and v(3) = 80 — 32(3) = —16 ft/s, respectively.

. (@) h(t) =15t — 1.86t> = w(t) = h'(t) = 15 — 3.72t. The velocity after 2 s is v(2) = 15 — 3.72(2) = 7.56 m/s.

15 + /152 — 4(1.86)(25)

t=t1 ~ 23500t =ty ~ 5.71.
2(1.86) ! ort=te

©)25=h < 186t2—15t+25=0 < t=
The velocities are v(t1) = 15 — 3.72¢1 & 6.24 m/s [upward] and v(t2) = 15 — 3.72t2 ~ —6.24 m/s [downward].

(@) s(t) =t* — 413 — 201> + 20t = o(t) =s'(t) =4t — 126> — 40t +20. v=20 &
43 — 1267 — 40t +20 =20 & 4¢3 — 122 40t =0 < 4t(t*-3t—10)=0 <
4t —5)(t+2)=0 & t=0sorbs [fort>0]
G alt)=v'(t)=12t2 —24t —40. a=0 & 122 -24t—-40=0 & 43> -6t—10)=0 <

,_ 6% 62 — 4(3)(—10)
o 2(3)

=1+ %\/ 39 ~ 3.08 s [for t > 0]. At this time, the acceleration changes from negative to

positive and the velocity attains its minimum value.

(@) A(x) =2 = A'(z) = 22. A'(15) = 30 mm?/mm is the rate at which

/
Ax 4 4

the area is increasing with respect to the side length as = reaches 15 mm.
(b) The perimeter is P(z) = 4, so A'(z) = 2z = 1(4z) = 3 P(z). The
figure suggests that if Ax is small, then the change in the area of the square x - x(Ax)

is approximately half of its perimeter (2 of the 4 sides) times Ax. From the

figure, AA = 2x (Ax) + (Az)?. If Az is small, then AA ~ 2x (Ax) and

s0 AA/Az =~ 2z. X Ax
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dV dv .
_ .3 _ a2 _ 2 _ 3
12 (@) V(z) =2" = e = 3z°. . = 3(3)° = 27 mm° /mm is the

r=3
rate at which the volume is increasing as x increases past 3 mm.
(b) The surface area is S(z) = 627, so V'(z) = 32® = 1(62°) = 15(). % x
X

The figure suggests that if Az is small, then the change in the volume of the

X
cube is approximately half of its surface area (the area of 3 of the 6 faces)

X
times Az. From the figure, AV = 322(Axz) + 3z(Az)? + (Ax)3. JJ
) Ax
If Az is small, then AV ~ 32%(Ax) and so AV/Azx =~ 322 ! ax
13. (a) Using A(r) = 72, we find that the average rate of change is:
L AB)—A(2) 9 —4Am . A(2.5) —A(2)  6.25m —4mw
D W=55—2 = o5 "
A(21) — A(2)  441m —4nm

(iii)

51-2 01 A7

(b) A(r) =mr? = A'(r) =2nr,s0 A'(2) = 4.

(¢) The circumference is C(r) = 27r = A’(r). The figure suggests that if Ar is small,
then the change in the area of the circle (a ring around the outside) is approximately
equal to its circumference times Ar. Straightening out this ring gives us a shape that
is approximately rectangular with length 277 and width Ar, so AA =~ 27r(Ar).
Algebraically, AA = A(r 4+ Ar) — A(r) = w(r + Ar)? —7r? = 2nr(Ar) + (A7)
So we see that if Ar is small, then AA = 27r(Ar) and therefore, AA/Ar = 27r.

14. After ¢ seconds the radius is r = 60¢, so the area is A(t) = 7(60t)> = 36007t> = A'(t) = 72007t =
(a) A'(1) = 72007 cm? /s (b) A'(3) = 21,6007 cm?/s (c) A'(5) = 36,0007 cm? /s
As time goes by, the area grows at an increasing rate. In fact, the rate of change is linear with respect to time.

15. S(r) = 4nr® = S'(r)=8rr =
(a) S'(1) = 8 fi? /ft (b) S§'(2) = 167 fi /ft (c) S'(3) = 24n ft?/ft

As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect to the

radius.

16. (a) Using V(r) = §7rr we find that the average rate of change is:
V(8) — V(5) —71(512) — 371(125)

_ 3
S5 3 = 1727 pm® /um
271(216) — 47(125 _
(ii) (6é ;/( ) _ — 37 ult )1 m(125) = 121.37 pm®/pm
1) — 17(5.1)% — 27(5)3 _
(iif) V(5;i _5(5) _ 5™ )0.1 370N _ 102,013 pm? /pm

(b) V'(r) = 4nr?, so V'(5) = 1007 pm?® /pm.
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() V(r)=3mr® = V'(r) = 4mr® = S(r). By analogy with Exercise 13(c), we can say that the change in the volume
of the spherical shell, AV, is approximately equal to its thickness, Ar, times the surface area of the inner sphere. Thus,

AV = 4rr?(Ar) and so AV/Ar ~ 4772,

The mass is f(z) = 322, so the linear density at x is p(z) = f'(x) = 6z.

(@ p(1) = 6 kg/m (b) p(2) = 12 kg/m (©) p(3) = 18 kg/m

Since p is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

V(t) = 5000(1 — &t)* = V'(t) =5000-2(1 — kt)(—%) = —250(1 — t)

(@) V'(5) = —250(1 — %) = —218.75 gal /min (b) V'(10) = —250(1 — 43) = —187.5 gal/min
() V'(20) = —250(1 — 23) = —125 gal/min (d) V'(40) = —250(1 — 33) = 0 gal/min

The water is flowing out the fastest at the beginning— when ¢ = 0, V' (¢) = —250 gal/min. The water is flowing out the

slowest at the end—when ¢ = 40, V'(t) = 0. As the tank empties, the water flows out more slowly.

The quantity of charge is Q(t) = t> — 2t> + 6t + 2, so the current is Q' (t) = 3t> — 4t + 6.
(a) Q'(0.5) = 3(0.5)> — 4(0.5) + 6 = 4.75 A b Q(1)=3(1)>-4(1)+6=5A
The current is lowest when Q' has a minimum. Q" (¢) = 6t — 4 < 0 when ¢ < 2. So the current decreases when ¢ < Z and

increases when ¢ > 2. Thus, the current is lowest at t = 2 s.

(@) F = Gm_QM = (GmM)r—? = (2—F = —2(GmM)r—3 = — QGTZM, which is the rate of change of the force with
r r T

respect to the distance between the bodies. The minus sign indicates that as the distance 7 between the bodies increases,

the magnitude of the force F' exerted by the body of mass m on the body of mass M is decreasing.

(b) Given F”(20,000) = —2, find F’(10,000). —2 = *EOGSS% = GmM = 20,000%
F’(10,000) = _2(20.000°) _ —2-2% = —16 N/km
’ T 10,0003 N
U2 —1/2
Withm:m0<1f—2) s
C

d d d 02\ 1 o\ P 20\
F:E(mv):ma(v)JrvE(m):mo(lfc—Q) ~a+wv-mg -5 (170—2) <f§)a(v)

(1N Y L] mea
= 1o 2 2 2| (A —v2/c2)3/2

Note that we factored out (1 — v2 /c?)~%/2 since —3,/2 was the lesser exponent. Also note that % (v) = a.

(a) D(t) = 7+ 5¢0s[0.503(t — 6.75)] = D'(t) = —5sin[0.503(t — 6.75)](0.503) = —2.515sin[0.503(¢ — 6.75)].
At 3:00 AM, t = 3, and D'(3) = —2.515sin[0.503(—3.75)] = 2.39 m/h (rising).

(b) At 6:00 AM, ¢ = 6, and D'(6) = —2.515sin[0.503(—0.75)] ~ 0.93 m/h (rising).

() At9:00 AM, ¢ = 9, and D'(9) = —2.5155in[0.503(2.25)] ~ —2.28 m/h (falling).

(d) Atnoon, t = 12, and D’(12) = —2.515sin[0.503(5.25)] &~ —1.21 m/h (falling).
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23. (a) To find the rate of change of volume with respect to pressure, we first solve for V' in terms of P.

C av C

(b) From the formula for dV/d P in part (a), we see that as P increases, the absolute value of dV/dP decreases.

Thus, the volume is decreasing more rapidly at the beginning.

@ LAV _ 1/ Ccy__¢c _C _1
© VdP~ V\ P2) (PV)P CP P

4. (a) [C] = aZ:]fl = rate of reaction = % _ (akt + 1)((;1251—1)(2(1%75)((1]?) _ a2k(((l:]§t111)_2akt) _ (akf—fl)z
(b) Ifz = [C],thena —z =a — alilfl = aZkta—ll;ta+—1a2kt = akta—l— T
So k(a —x)* = k(akta—i— 1)2 = (ak(tzz—flﬁ = % [from part (a)] = Z—f
25. (a) 1920: my = H - 11—100 =11, my = H - 21_1(? — o1,
(m1+m2)/2 = (114 21)/2 = 16 million/year
1980: m; — 4450 — 3710 740 s 5280 — 4450 _ 830 — 83,

1980 — 1970 10 T 1990 — 1980 10
(m1+m2)/2 = (74 + 83)/2 = 78.5 million/year

(b) P(t) = at® + bt*> + ct + d (in millions of people), where a =~ —0.000 2849003, b ~ 0.522 433 122 43,
¢~ —6.395641 396, and d ~ 1720.586 081.
() P(t) =at® +bt> +ct+d = P'(t) = 3at® 4 2bt + c (in millions of people per year)

(d) 1920 corresponds to ¢ = 20 and P’(20) & 14.16 million/year. 1980 corresponds to ¢ = 80 and

P’(80) ~ 71.72 million/year. These estimates are smaller than the estimates in part (a).

(e) P’(85) ~ 76.24 million/year.

26. (a) A(t) = at® +bt® + ct® + dt + e, where a ~ —1.199 781 x 107°, (d)
b~ 9.545853 x 10%, ¢ ~ —28.478 550, d ~ 37,757.105 467, and

e~ —1.877031 x 107.

b)) Alt) =at* + bt +ct? +dt +e = A'(t) = 4at® + 3bt + 2ct + d.

025
(c) Part (b) gives A’(1990) = 0.106 years of age per year.

0.15

0.05

O Nl L 1111

1950 | 1970 | 1990 | 2010
1960 1980 2000
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27. (a) Usingv = 4%(1%2 —r?) with R = 0.01, 1 = 3, P = 3000, and = 0.027, we have v as a function of r:

o(r) = %(0.012 —72). (0) = 0.925 cm/s, v(0.005) = 0.694 cm/s, v(0.01) = 0.
(b) v(r) = 4L;]Z(R2 - = J(r)= 4%;[(727") = f%. When ! = 3, P = 3000, and = 0.027, we have

3000

v (r) = ~ 300273 v’'(0) = 0, v'(0.005) = —92.592 (cm/s)/cm, and v'(0.01) = —185.185 (cm/s) /cm.

(c) The velocity is greatest where » = 0 (at the center) and the velocity is changing most where r = R = 0.01 cm

(at the edge).

\

I

[\
=)=
= %\

|
A~

[N~}

h
—

S
N———
el
I

U
3%

|
N =

(i) f = i - (2_\/LT> oz o W1 (@) yor_ VT

(b) Note: Illustrating tangent lines on the generic figures may help to explain the results.

@) % < Oand L is decreasing = fisincreasing = higher note

df

¥ > 0and T is increasing => fisincreasing =- higher note

(i)

... df - . . .

(iii) P < Oand pisincreasing = f isdecreasing =- lower note
P

M 7 G f (iii) f

0 L 0 T 0 o

29. (a) C(x) = 2000 + 3z + 0.01z2 +0.00022° = C’(z) = 0+ 3(1) 4 0.01(2z) 4 0.0002(32?) = 3 4 0.02z + 0.00062>
(b) C’'(100) = 3+ 0.02(100) + 0.0006(100)? = 3 + 2 + 6 = $11/pair. C’(100) is the rate at which the cost is increasing as
the 100th pair of jeans is produced. It predicts the (approximate) cost of the 101st pair.
(c) The cost of manufacturing the 101st pair of jeans is
C(101) — C(100) = 2611.0702 — 2600 = 11.0702 ~ $11.07. This is close to the marginal cost from part (b).
30. (a) C(q) = 84 + 0.16¢ — 0.00064¢> + 0.000003¢> = C’(q) = 0.16 — 0.0012¢ + 0.000009¢>, and

C'(100) = 0.16 — 0.0012(100) 4 0.000009(100)* = 0.13. This is the rate at which the cost is increasing as the 100th

item is produced.

(b) The actual cost of producing the 101st item is C'(101) — C'(100) = 97.13030299 — 97 ~ $0.13
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() — -1 (1) —
A'(x) >0 = A(z) is increasing; that is, the average productivity increases as the size of the workforce increases.
p(x)
x

(b) p'(x) is greater than the average productivity = p'(z) > A(z) = p'(z) > = zp'(z) > p(z) =

zp'(z) —p(z) >0 = M>O = A'(z) > 0.

1,'2
0.4 0.4 —0.6y _ 0.4 —0.6
32. (a) B = 40 + 24x o og- ar _ (1 +42™%)(9.627°°%) — (40 4 242°%)(1.627"°)
1+ 4204 dx (14 420-4)2
_ 9.607 %% 43842 %% — 640" "% — 3842 %% 54407
(1 + 4m0'4)2 - (1 + 4m0'4)2
(b) 4 At low levels of brightness, R is quite large [R(0) = 40] and is quickly

expected: at low levels of brightness, the eye is more sensitive to slight

changes than it is at higher levels of brightness.

0 N
M decreasing, that is, S is negative with large absolute value. This is to be
0 1
Vel
J

—40

PV PV 1
3. PV = nRT =17 -
nRT = nR ~ (10)(0.0821) _ 0.821

(PV). Using the Product Rule, we have

dr 1

— =—|[P ! P’ = — —0.1 1 .10)] &~ —0.2436 K/min.

= s [POV/(1) + V()P ()] = 552 [(8)(~0.15) + (10)(0.10)] ~ ~0.2436 K /min

' 1 —-1/2 D D . . .
M. f(r)=2vDr = f'(r)=2-5(Dr) -D = =4/ —. f'(r) is the rate of change of the wave speed with
v Dr T
respect to the reproductive rate.
. . .. . . dC aw

35. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is, e 0 and v 0.

(b) “The caribou go extinct” means that the population is zero, or mathematically, C' = 0.

(c) We have the equations % =aC — bCW and % = —cW +dCW. Let dC/dt = dW/dt = 0, a = 0.05, b = 0.001,
¢ = 0.05, and d = 0.0001 to obtain 0.05C — 0.001CW =0 (1) and —0.05W/ 4 0.0001CW = 0 (2). Adding 10 times
(2) to (1) eliminates the C'W-terms and gives us 0.05C' — 0.5W =0 = C = 10W. Substituting C' = 10W into (1)
results in 0.05(10WW) — 0.001(10W)W =0 < 0.5W —0.01W? =0 < 50W -W?=0 <&
WBO—-—W)=0 < W =0or50.Since C = 10W, C = 0 or 500. Thus, the population pairs (C, W) that lead to

stable populations are (0, 0) and (500, 50). So it is possible for the two species to live in harmony.
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36. (a) If dP/dt = 0, the population is stable (it is constant).

P 8 P rp_. B _ B
(b) _0 = ,BP—ro(l PC)P = ro_l 2 = Pc_l - = P_Pc(l )

If P. = 10,000, 7o = 5% = 0.05, and 3 = 4% = 0.04, then P = 10,000(1 — £) = 2000.

(¢) If B = 0.05, then P = 10,000(1 — 2) = 0. There is no stable population.

2.8 Related Rates

v dV dz , dx

_ .3 — ar
e N TR T
dA dAdr dr dr
2 (@ A=mr" = e T = 27r o (b) =27 7 27(30 m)(1 m/s) = 607 m*/s

3. Let s denote the side of a square. The square’s area A is given by A = s2. Differentiating with respect to ¢ gives us

C(lif =2s % When A = 16, s = 4. Substitution 4 for s and 6 for d— gives us C(lif = 2(4)(6) = 48 cm?/s.
B dA _ dw a )
4 A=tw = v =L w Tt = 20(3) 4+ 10(8) = 140 cm/s.
dv dh dh dh 3
2 2, _ av _
5. V=mr‘h=n(5)"h =257th = il = 257 - 3 =257 7w = m/min.
av _ dr av 2
_ 4.3 av 2 &Y qn(L. = 3
6.V =3mr’ = — Bt = 4m (5 - 80)"(4) = 25,600 mm?/s.
1S—dm? = By o 45 5. 2 = 1287 cm? /min.
dt dt dt
8 A= Labsing dA—lb 9d0—1 1 = 2 /mi
. (@) A= absinf = g = 2abcost o = £(2)(3)(cos £)(0.2) = 3(3)(0.2) = 0.3 cm® /min.

(b) A= %absin@ =

A 0 1
(il_t = ; (bcosea + sin 6&) = 3(2)[3(cos 3)(0.2) + (sin 3)(1.5)]
=3(3)(02) + 1v3 (%) =03+ 3V3 cm’/min [~ 1.6]

() A= %absin@ =

% _ % (@ bsind + a % sinf + abcos ﬁ) [by Exercise 2.3.87(a)]

3[(2:5)(3)(3V3) + (2)(1.5)(3V3) + (2)(3)(3)(0.2)]
(Bv3+2v/340.3) = (23 +0.3) cm?/min [~ 4.85]

Note how this answer relates to the answer in part (a) [# changing] and part (b) [b and 6 changing].
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B dr dy dydz 1 —1/2 B 3 _ody B
9. (@) y =2z + land dt_3 > ST L d 2(2:10—&-1) 2-3= 2$+1.Whenz—4, dt_\/§_1'

b y=+v2x+1 = y¥*=22+1 = 2r=9y*-1 = x—2y f—anddt 5 =

dr _ dzdy _
= .5 = 5y. =12,y = /25 = 5,50 = = 5(5) = 25.
a T dydt 5 = 5y. When z Y 5= 5s0 dt 5(5) 5
10. (a)—(4:1: +9y?) = jt(?’ﬁ) = SxCCll—tJrlS ‘j;z—o = 4x%+92 =0 =

4(2)d +9<3\/5)<%):0 = 8@:—2\/5 = @:—1\/5

dt dt dt 4
(b) 4z =2 +9y§i{f0 = 4(72)(3)+9(§\/5)%:0 = 6\/5%:24 = %:%
11.;):( FoP 2% = jt(g) = 2m‘;—t+2y‘$+2z%_o = m%—l—yfg %:0.
If%*B ‘2ﬂand(m,y,z):(2,2,1),then2(5)+2(4)+1%:o = %:—18.
12.%(@/):%(8) = Zt—i- il;*O. Iff;; —3cm/sand (z,y) = (,2),then4(—)+2§—:§:0 =
% = 6. Thus, the z-coordinate is increasing at a rate of 6 cm/s.

13. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over a radar station.

If we let ¢ be time (in hours) and = be the horizontal distance traveled by the plane (in mi), then we are given

that dz/dt = 500 mi/h.

(b) Unknown: the rate at which the distance from the plane to the station is increasing (c) =
when it is 2 mi from the station. If we let y be the distance from the plane to the station, ! ‘ :y
then we want to find dy/dt when y = 2 mi.

(d) By the Pythagorean Theorem, y? = 2> +1 = 2y (dy/dt) = 2z (dz/dt).

V3

zdz _ %5 (500) = 250 /3 ~ 433 mi/h.

(e)a Jd (500) Since y*> = 2% + 1, wheny = 2,z = /3, s0

dt

14. (a) Given: the rate of decrease of the surface area is 1 cm?/min. If we let ¢ be ()
time (in minutes) and S be the surface area (in cm?), then we are given that
dS/dt = —1 cm?/s.
(b) Unknown: the rate of decrease of the diameter when the diameter is 10 cm.
If we let « be the diameter, then we want to find dz:/dt when = 10 cm.
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187
(d) If the radius is 7 and the diameter x = 2r, thenr = 1z and S = 47r® = 47r(%r)2 =mz? =
4S _dSdr _, v
dt ~ drdt dt’
ds dx dx dx 1
(e) 71—5 2mx dt = E—*ﬁ When:): 10 i

1
%= 20m . So the rate of decrease is —— cm/min.

15. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 ft/s. If we let ¢ be time (in s)
and z be the distance from the pole to the man (in ft), then we are given that dz/dt = 5 ft/s

(b) Unknown: the rate at which the tip of his shadow is moving when he is 40 ft

(c)
from the pole. If we let y be the distance from the man to the tip of his 15
d 6
shadow (in ft), then we want to find o (z +y) when z = 40 ft
x y
- . 1
(d) By similar triangles, ) _rty

= 1by=6x+6y = 9y=6z = y:%

5dr 4 25
= — = = = = f .
m+3x) 5 7 2(5) = 2 ft/s

(e) The tip of the shadow moves at a rate of 4 (m +y) = i (

16. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 km/h, and ship B is sailing north at 25 km/h

If we let ¢ be time (in hours), = be the distance traveled by ship A (in km), and y be the distance traveled by ship B (in km)
then we are given that dz/dt = 35 km/h and dy/dt = 25 km/h.

(b) Unknown: the rate at which the distance between the ships is changing at

(© B
4:00 pM. If we let z be the distance between the ships, then we want to find z y
dz/dt whent = 4 h. A
d d X 150 — x
@22=(150—2)%+y> = 2= =20150—2)(-2) +2y
dt dt
(e) At4:00 PM, z = 4(35) = 140 and y = 4(25) = 100 = z = /(150 — 140)2 + 1002 = /10,100.
dz 1 dz dy —10(35) + 100(25) 215
So =z |@ B0 G v dt} /10,100 V101 m/
17. Y

. d , d .

We are given that d—f = 60 mi/h and d_zt/ =25mi/h. 22 =2 +4® =

dz dx dy dz dz dy dz 1 dx dy
2: 2 =222 42y e e

z x T @ TV 77 Ve T (

a ~Ca Y a2\

After 2 hours, z = 2(60) = 120 and y = 2 (25) =50 =

z = 4/120% + 502 = 130,
d 1/ dz d 120(60) + 50(25
© dj z( Y y) = =

= i/h.
at Y 130 65 mi/
dx 24
18. We are given that — = 1.6 m/s. By similar triangles, - = y=— =
dt 12 T T
dy 24 dx 24 dy _ 24(1. 6)
— =——— = ——(1.6). Whenz = — the sh
It i = (1.6). When z = 8, i 6 0.6 m/s, so the shadow

is decreasing at a rate of 0.6 m/s.
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19 T We are given that Ccil_f =4 ft/s and Ccll_ZZ =51ft/s. 22 = (z + y)* + 500> =
X
vty z 2z % 2(x + )<da: ?iifl) 15 minutes after the woman starts, we have
P
y x = (4 ft/s)(20 min)(60 s/min) = 4800 ftand y = 5- 15 - 60 = 4500 =
- 500 z = \/(4800 + 4500)2 + 5002 = /86,740,000, so
dz  x+y/(dx dy) 4800 -+ 4500 837
— = ———(4+5) = ~ 8.99 ft/s.
dt z ( dt  dt /86,740,000 ( ) V8674 /s

20. We are given that % =24 1t/s.

dy dx
— — 2 —_— —_
y> =(90 —2)* + 90> = 2y— i 2(90 )( 7 ) When z = 45,

dy 90 —z dx _ 45 24
= /452 £ 902 = 45 /5, so —= (——) = ==,
90 — x

so the distance from second base is decreasing at a rate of 24 ~ 10.7 ft/s.

(b) Due to the symmetrlc nature of the problem in part (a), we expect to get the same answer—and we do.

2?2490 = 222 90 % Whenw = 45, 2 — 4545, s0 L& = B _ A

dt dt dt F\/g( 4) = E ~ 10.7 ft/S.

21. A = Lbh, where b is the base and h is the altitude. We are given that % = 1 cm/min and % = 2 cm?/min. Using the

dA dh
Product Rule, we have L3 (b 7 +h dt)' When h = 10 and A = 100, we have 100 = 2b(10) = 1b=10 =
1 db db db  4-20
b=2 2=—-120-1+10— 4=2 10 — — = =—1. in.
0, so 2(0 + 0d> = 0+ Odt = 10 6 cm/min
. dy dzx dy dx
. pulley 29— i — 2 =2 - i
22 Given 7 1 m/s, find o whenz =8m.y*=z2"+1 = 2y I 2z 7 =
y
0t° ! dr _ydy _ —Y Whenz = 8,y = V65, s0 dz = fﬂ. Thus, the boat approaches
dat  zdt = dt 8
X /
the dock at % ~ 1.01 m/s.
23. 100 B We are given that flj = 35 km/h and % =25km/h. 22 = (z +y)* +100° =
y y -
2z— = (d— ) At4:00 PM, 7 = 4(35) = 140 and y = 4(25) = 100 =

=

\/(14() +100)2 + 1002 = /67,600 = 260, so

dz _z4y(de  dy\ _ 140 4 100 720
(dt 0 ) = e (33+25) = T ~55.4km/h.

d z

S

24. The distance z of the particle to the origin is given by z = /22 + 42, so 2° = 2 + [2sin(7z/2)]* =

dz dx LT T 7 dx dz dx LT T dx
ZZE = 2x$ +4-2sm(§;r) cos(ax) i = ZE = mE +27rs1n(§x) cos(gx) T When

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



25.

26.

27.

28.
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(z,y) = ,/ +12 1/ \/ \/ —§\/10+27rsin%cos%-\/m =

189

1dz 1 1 dz 3V3m
3@ 3" (2)(5\/5) = g T
. . . dv 5
If C = the rate at which water is pumped in, then T C — 10,000, where
1 2 . . L. . r h 1 T, T
V = 3mr~h is the volume at time ¢. By similar triangles, 5% = r= §h =
6
_ 2 a3 v _ 7,5 dh h
‘ZL = 20 cm/min, so C' — 10,000 = %(200)2(20) = C =10,000 + 800{’900% ~ 289,253 cm®/min.
o . 3 b
By similar triangles, 1=7% b = 3h. The trough has volume 3 T
b
dv dh dh 2
= 1ph(10) = 5(3h)h = 15h2 12=22 —30p 2L o _ <2 |
V' = 5bh(10) = 5(3h) 5 = 0 30 % - @ h _l_
dh 2 4
12 = == i
When h = 35, it =51°5 ft/min.
025 03 025 The figure is labeled in meters. The area A of a trapezoid is
\ . / 1 (base; + basez) (height), and the volume V' of the 10-meter-long trough is 10A.
0.5
h
03 Thus, the volume of the trapezoid with height /v is V = (10)£[0.3 + (0.3 + 2a)]h.
. . 2 1
By similar triangles, % = % =350 2a =h = V =5(0.6+h)h =3h+5hr%
dv dV dh dh dh 0.2
Now o ama 0'2_(3+10h)dt = o =3 i0n When h = 0.3,
dh 02 02 m/min = L m/min or 10 cm/min
dt ~ 3+10(0.3) 6 ~ 30 3 '
The figure is drawn without the top 3 feet. I 34 |
N b L
V = (b + 12)R(20) = 10(b + 12)h and, from similar triangles, ? X7 Yy
c 6 .y 16 8 8h 11h e —l—1n—1 16—
Z=—andZ="==,s0b= 12 =h+12+ — =12+ —.
A i S A 73
11h 110R7 dv 220\ dh
Th =10( 24 4+ — =24 8=—=1(24 .
us, V ( + 3 >h 0h + and so 0.8 7 ( 0+ 3 h) 7
When h = 5, dh _ 0.8 ~ 3~ 0.00132 ft/min.

dt — 240+ 5(220/3) 2275

3
We are given that v _ 30 ft® /min. V = %m"Zh = l7r<ﬁ> h= mh

dt 3 2 12
WV _vdh 0 xhdh o dh 120
dt — dh dt T4 dt dt — mh?’
When h = 10 ft, dh _ 120 :£z0.38ft/min.

dt 1027 5w
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31.

32.

33.

34.

35.

36.
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We are given dx/dt = 8 ft/s. cot 0§ = 1%)0 = x=100cotf =
> 100
dx do do sin” 0 100 1
=1 60— === When y = 2 6= =
T 00 csc? 7 = 7 100 - 8. en y = 200, sin 300 — 3 = -
X
ili_f (11/020) = 510 rad/s. The angle is decreasing at a rate of 5 rad/s.
The area A of an equilateral triangle with side s is given by A = i 352,
dA d
= iv3-2s d—; — 1/3-2(30)(10) = 150+/3 cm?/min.
1
cosf = 1—10 = —sinf ill—f = 110 le:: From Example 2, % =1and "
. 8
whenz =6,y = 8,s0sinf = —. 10
10 y
8 db 1 do 1
Thus, —— — = —(1 = = —=rad/s.
U To@ 10 T g T g s L ’
X ground
From the figure and given information, we have 2> + y* = L?, dy = —0.15m/s, and
dt wall
% = 0.2m/ s when z = 3 m. Differentiating implicitly with respect to ¢, we get
L
dx dy dy dx . .
2 2 — LZ Qr— 2 —_ = —r—. h Y
7 +y = 2z 7 + dt =0 = y 7 T 7 Substituting the given
information gives us y(—0.15) = —3(0.2) = y=4m. Thus,3°+4*=1°2 =
O
=25 = L=5m. x ground
dy z dx . , .
According to the model in Example 2, o —5 TR e 0, which doesn’t make physical sense. For example, the

model predicts that for sufficiently small y, the tip of the ladder moves at a speed greater than the speed of light. Therefore the
model is not appropriate for small values of y. What actually happens is that the tip of the ladder leaves the wall at some point
in its descent. For a discussion of the true situation see the article “The Falling Ladder Paradox” by Paul Scholten and Andrew
Simoson in The College Mathematics Journal, 27, (1), January 1996, pages 49—54. Also see “On Mathematical and Physical

Ladders” by M. Freeman and P. Palffy-Muhoray in the American Journal of Physics, 53 (3), March 1985, pages 276-277.

The area A of a sector of a circle with radius r and angle 0 is given by A = %r29. Here r is constant and 6 varies, so
% % 2 Ccilf The minute hand rotates through 360° = 2 radians each hour, so % = %r2(27r) = 7mr? cm? /h. This

answer makes sense because the minute hand sweeps through the full area of a circle, 772, each hour.

The volume of a hemisphere is 277°, so the volume of a hemispherical basin of radius 30 cm is 27(30)* = 18,0007 cm®.

If the basin is half full, then V = 7 (rh® — $h%) = 9000m = 7 (30h* — 3h®) = £h® —30h*+9000=0 =
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h = H =~ 19.58 [from a graph or numerical rootfinder; the other two solutions are less than 0 and greater than 30].

av _ dh L cm® dh
— 2_ 18 dd — _p2 2— ) (1000 =—) = 2
V =7(30n" — 3h%) = — (60h - —h dt) = ( min)( 000 — ) m(60h —h*) —

dh 2000 .
E = m =~ 0.804 Cm/mln.

Differentiating both sides of PV = C with respect to ¢ and using the Product Rule gives us P d_‘t/ + VE = =
av V dP dP av 600 .
- Pa When V' = 600, P = 150 and rre = 20, so we have v —1—50(20) —80. Thus, the volume is

decreasing at a rate of 80 cm?/min.

dv dp dv vt dp vV dpP
1.4 0.4 1.4 av _ _ o _ all
PVii=0 = PV Vg =0 S S T T havei dr © TAP i
dpP dv 400 250
h — 400 P = i have — = — —10) = ——. Thus, the vol is i i
When V 00, 80 and 7 0, so we have 7 1.4(80)( 0) 7 us, the volume is increasing at a
rate of 222 ~ 36 cm®/min.
1 1 1 1 180 9 400 1 1 1
th Ry = =1 === = = ——. Differentiating = = —— + —-
With R; = 80 and R» 00, R 7 + o 30 + 100 — 3000 400,S0R 9 ifferentiating R R + &
. 1 dR 1 dR: 1 dR» dR 1 dRy 1 dR»
with respect to ¢, we have T _R_%W _R_gﬁ = s *RQ(R2 7 R—gﬁ).When Ry =80 and
dR  400%] 1 1 107
R> =100, Tl {802 (0.3) + 1002 (0.2)] = g0~ 0.132 Q/s.
dB . 2/3 2.53
We want to find T when L = 18 using B = 0.007W */° and W = 0.12L*°".
dB _ dB dW dL 2 ,1/3) 1.53 20— 15
dt — dW dL dt (0'007 sW (0.12-2.58 - L) 10,000,000
= [0.007- 2(0.12- 182-53)*1/3] (0.12-2.53 - 18"%%) <%> ~ 1.045 x 10° g/yr
We are given df/dt = 2°/min = g5 rad/min. By the Law of Cosines,
12
x? =122 +15% — 2(12)(15) cos § = 369 — 360 cos = .
dx do dr  180sin6 df
- — i - - — 60° 15
2z T 360 sin 0 7 = T - ¥ . When 6 = 60°,

dm 180sin60° # w3 Tw .
x = /369 — 360 cos 60° = /189 = 3/21 = — = = ~ 0.396 m/min.
°Ur T T ayaT 90 3yar ol /

Using () for the origin, we are given % = —2 ft/s and need to find % when z = —5. P
Using the Pythagorean Theorem twice, we have v/z2 + 122 + \/ y2 + 122 = 39, .
the total length of the rope. Differentiating with respect to ¢, we get

x Q y

x dm dy —0.s @ CTy*+122de

y TVy? +12% do
JETIZE Al | P iD dt Ca T T e dt
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Now when z = —5,39 = \/(=5)2 + 122 + /32 + 122 = 13 + /32 + 122 & /y% + 122 = 26, and

dy (—5)(26) 10
= /262 — 122 = \/532. Sowhen z = —5, 2 = —~ 20 (L) = __—_ ~ (.87 fi/s.
Y dt —  /532(13) =2 133 /

So cart B is moving towards () at about 0.87 ft/s.

43. (a) By the Pythagorean Theorem, 4000% + 3> = ¢2. Differentiating with respect to ¢,
. d de d
we obtain 2y d—i] =2 e We know that d—? = 600 ft/s, so when y = 3000 ft, ¢ y
£ = /40002 + 30002 = 4/25,000,000 = 5000 ft 0
4000

d¢  ydy 3000 1800

=22 277 =— = ft/s.
and = (dt =~ 5000 (600) 5 360 ft/s

Y d d y 5, db 1 dy dd  cos?6dy
H _ —_- = —\ - _—=—— _——=—
(b) Here tan§ = 5o = (tan0) = (4000) = O = I00dt  dt 4000 a¢ vren

_ dy B 4000 4000 4 do  (4/5)° B
y = 3000 ft, o = 600 ft/s, £ = 5000 and cos = 7 = 5000 -5 % = 2000 (600) = 0.096 rad/s.

44, We are given that % = 4(27) = 8r rad/min. x = 3tanf = >

dx 5, d0 2 2 3

I = 3sec GE. Whenz = 1, tan6 = %, sosec’d =1+ (3) = 2

P
and Ccll—f =3(3)(87) = L7 ~ 83.8 km/min. x
x dd 1ldx ™2/ T 1dzx
R s =1 ECHICIIT -
5. cot 0 5 = csc th = = csc g 5 = =
2
% = %(%) = I?Pﬂ' km/min [~ 130 mi/h] 5
[4
X

46. We are given that % = 2;;;?1? = 7 rad/min. By the Pythagorean Theorem, when

h=6,z=28,s0sinf = 1% and cos 0 = 1%. From the figure, sin § = % =

. dh df 8 .
h =10sin, so i 10C0SQE = 10(m> m = 87 m/min.

47. We are given that % = 300 km/h. By the Law of Cosines,

y? =2 +1> —2(1)(z) cos120° = 2® + 1 — 2z(—3) =2° +z + 1,50

\ D
~

Qy@*QId—x do @*21+1@.After1minute,m:%:5km

dt — T dt 0 dt dt — 2y dt

dy  2(5)+1 1650
=v524+54+1=+31km = —Z=—"—-(300) = — =296 km/h.
y=v ” at = ovar 0 Ua /

= 1
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We are given that % = 3 mi/h and % = 2 mi/h. By the Law of Cosines,

2% = 2% 4+ 9* — 2xy cos 45° :m2+y2 —\/imy =

dz dx dgé NG r

22— =20 — +2y

- 1
% = y -2 y . After 15 minutes [= ; h], x

dt

— 3 —
wehaver =  andy =

dz 2

3 1o _ 39 — 1 = 2 13— 6\/_ ~ mi1
E_\/TW[Z(Z)?’JFQ(?V V2(3)2-v2(3)3] = /13— 62 ~ 2.125 mi/h.

V13 —-62

Let the distance between the runner and the friend be ¢. Then by the Law of Cosines,

¢
22 =200% 4+ 100% —2-200 - 100 - cos & = 50,000 — 40,000 cos @ (x). Differentiating A\
S . . al . do . 200 ——1
implicitly with respect to ¢, we obtain 2¢ o —40,000(— sin 0) R Now if D is the
distance run when the angle is 0 radians, then by the formula for the length of an arc
on a circle, s = 76, we have D = 1006, so § = LD = 9 = L db L . To substitute into the expression for

100 dt 100 dt 100"

d—f, we must know sin @ at the time when ¢ = 200, which we find from (x): 200% = 50,000 — 40,000 cos§ <

cosf =1 = sinf=4/1— (i) ‘/_ . Substituting, we get 2(200) 36 = 40,000@(%0) =

de/dt = %‘{E ~ 6.78 m/s. Whether the distance between them is increasing or decreasing depends on the direction in which

the runner is running.

The hour hand of a clock goes around once every 12 hours or, in radians per hour,

2z = % rad/h. The minute hand goes around once an hour, or at the rate of 27 rad/h.
So the angle 6 between them (measuring clockwise from the minute hand to the hour
hand) is changing at the rate of df /dt = £ — 27 = —LZ rad/h. Now, to relate 6 to £,

we use the Law of Cosines: £ =42 482 —2.4.8.cosf = 80 — 64cosf ().
. e . al . do .
Differentiating implicitly with respect to ¢, we get 2¢ o= —64(—sin6) I At 1:00, the angle between the two hands is

one-twelfth of the circle, that is, << 12 = & radians. We use (x) to find £ at 1:00: £ = /80 — 64 cos g = /80 — 32 V3.

() L o MO s

Substituting, we get 2¢ % = 64 sin — (—

= — =— ~ —18.6.
6

6 dt 2./80—323 34/80 — 323

So at 1:00, the distance between the tips of the hands is decreasing at a rate of 18.6 mm/h ~ 0.005 mm/s.
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2.9 Linear Approximations and Differentials

1. f(x) =2*—22+3 = f/(z) =32° — 22,50 f(—2) = —9 and f'(—2) = 16. Thus,
L(z) = f(=2) + f'(=2)(z — (=2)) = =9+ 16(x + 2) = 162 + 23.
2. f(z) =sinz = f'(z) =coswz,so f(£) = 5 and f'(Z) = /3. Thus,

L) = f(§) +/(E) e —§) = $+ V30— 8) = $vBa+ § - 5VBr
3 f(x)=vT = f(r)=32""2=1/(2y/7),50 f(4) = 2and f'(4) = L. Thus,
Liz)=f@)+f4)(z—4) =2+ 3(x—-4)=2+32—-1=jz+1

2z
572> 50 f(3) =1and

4 f(x)=2/Va?—5=2(>-5)""? = f(z)=2(-%)("-5)"%*(22) = “E s

J'(3) = 2. Thus, L(z) = f(3) + FB) (@ —3) = 1 - 3(¢ —3) = ~3u + L.

5 flx)=vV1i—2z = f'(ff)=2—m

,s0 f(0) =1and f'(0) = —3.

Therefore,

VI—z=f(z)= f0)+ f(0)(z—0) =1+ (—3)(x—0) =1— 3z
Sov0.9=+yT-01I~1-2(0.1)=0.95

and v0.99 = /T —0.01 ~ 1 — £(0.01) = 0.995.

6. g(z)=VI+ta=1+2)"" = g¢(z)=231+2)"%3s0g(0) =1and 2
g'(0) = 3. Therefore, /1 + 2 = g(x) =~ g(0) + ¢'(0)(z — 0) = 1 + 3. ; o, ')4
So ¥/0.95 = {/T+ (—0.05) ~ 1 + £(—0.05) = 0.983, 325 / 3
and V1.1 = ¢TI+ 0.1~ 1+ 3(0.1) =1.03. ! J

T fl@)=vI+2r = fl(z)=301+22)%*2)=3(1+22)"" 50

f(0) = Land f'(0) = 1. Thus, f(z) =~ f(0) + f'(0)(z — 0) = 1 + 2z

We need v/1+ 2z — 0.1 < 1+ 22 < /T+ 22 + 0.1, which is true when
—0.368 < = < 0.677.

0
8. fz)=(1+2)"* = f(z)=-3(1+x)"*so0f(0)=1and 2
)
f(0) = —3. Thus, f(z) = f(0) + f'(0)(x — 0) = 1 — 3z. We need \
(14+2)™%-0.1<1-3z < (1+2)"2+0.1, which is true when o, F4+01

—0.116 < z < 0.144.
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— ; — —4 L5
.f(x)—(1+2z)4—(1+2az) = \
-8
"(z) = —4(14+22)75(2) = ——— =1 '(0) = -8.
/() = =41+ 22) () = g0 £(0) = Land (0) = =8 N\
Thus, f(z) ~ f(0) + f'(0)(z —0) =1+ (—8)(z — 0) =1 — 8.
1 1
W — =01 <1- —_ .1, which is t —008
eneed(l_i_%v)4 0.1< 8x<(1+2x)4+0 , which is true 05 L
when — 0.045 < x < 0.055.
f(z) =tanz = f'(z) =sec®x,so f(0) =0and f'(0) = 1. p 1 /L
Thus, f(z) ~ f(0) + f(0)(z —0) =0+ 1(z — 0) = =.
We need tanz — 0.1 < x < tanz 4+ 0.1, which is true when f-o.1
-1 1
—0.63 < x < 0.63. F+0.1

(a) The differential dy is defined in terms of dz: by the equation dy = f(z) dx. Fory = f(z) = (z* — 3)72,

’ 2 - 4 4
f(@) = —2(a* —3)7*(2z) = —ﬁ, so dy = —ﬁdm
(6) Fory = F(8) = V=T, £/(t) = 31— 912 (~4t%) = —— 2 sody = —— 2t
> 2 1 —¢& V1 —t4
o 1420, (143w)@) - (1+20B3) -1 e
(@) Fory = f(u) = 75 /'(w) = 1+ 3u)? =T YT e

(b) Fory = f(0) = 6*sin 20, f'(0) = 6°(cos20)(2) + (sin 20)(26), so dy = 20(0 cos 26 + sin 26) d6.

1 sec? \/f sec? \/f
a) Fory = f(t) = tanv/2, f'(t) = sec® V- =t /2 = 2= X" sody = dt.
(a) Fory = f(t) Vi, (1) Vi NG v="7
1 -2
(b) Fory = f(v) = 1102
F() = A+v*)(=20) = (1 —-v*)(20) _ =20[A+v)+ (A -]  —20(2)  —4v
(1+v2?)2 (1+v2?)2 (1+v2)2  (1+0v2)?
—4v
SO dy = m dv.
_ . 1+sint 1+sint
(a) Fory = f(t) = vt —cost, f'(t) = 3(t — cost)"*/*(1 +sint) = PN e dy = PN dt.
B _ 1. , _ 1 1 . xzcosz—sinz __ xcosx —sinx
(b) Fory = f(z) = —sinz, fl(z) = —COST — —sInE = ——— 5, 50 dy = — dz.
(@ y=tanr = dy=sec’zdx
(b) When 2 = 7 /4 and da: = —0.1, dy = [sec(m/4)]*(=0.1) = (v2)* (=0.1) = —0.2.
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16. (a) y = cos mx = dy = —sin 7z -wdr = —7 sinTrdr

(b)z=1anddr =—-0.02 = dy=—sin%(—0.02) = (v/3/2)(0.02) = 0.017 /3 ~ 0.054.

_ _1 2\—1/2 _ L
1 1
_z+1 (e-1DA)—(z+1)(QAQ) , =2
18. () y = p—] = dy= @1y der = 7(17 1) dx
(b)yz=2anddz =0.05 = dy= (2:71)2(0.05) = —2(0.05) = —0.1.

19.y=f(r)=2°—42, x=3, Az =05 =

Ay = f(35)— f(3) = —1.75 — (=3) = 1.25

dy = f'(x)dz = (2 —4)dz = (6 — 4)(0.5) =1

20.y=fx)=z—-2° =0, Az =-03 = Y

Ay = f(—0.3) — f(0) = —0.273 — 0 = —0.273

y=x—x°

—03 dx = Ax
dy = f'(z)dz = (1 — 32%)dz = (1 — 0)(—0.3) = —0.3 -

A
).;,
>
=
—t—
j=J
w
(=}
=

Ny=fx)=vVr—-2, =3, Ae =08 = Y
Ay =f(3.8) — f(3) =v1.8 - 1~0.34
1 1

dy = f'(z)de = ——d 0.8)=0.4
0
X
2 y=2° =1 Az=05 = ’ y=x
Ay = (1.5)> — 1% =3.375 — 1 = 2.375. T
dy = 3z% dx = 3(1)%(0.5) = 1.5
Ay
dy
14 >
~ dx = Ax
0 1 X
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. To estimate (1.999)*, we’ll find the linearization of f(x) = z* at a = 2. Since f'(z) = 42, f(2) = 16, and
f'(2) = 32, we have L(z) = 16 + 32(x — 2). Thus, z* ~ 16 + 32(z — 2) when z is near 2, so

(1.999)* ~ 16 + 32(1.999 — 2) = 16 — 0.032 = 15.968.

y=f(x)=1/z = dy=—1/2"dz. Whenz =4 and dz = 0.002, dy = —+(0.002) = S0

—1i
8000°

1 ~ 1 1 __ 1999 __
Tas A f(4) +dy = 3 — o5 = 1292 = 0.249875.

Ly=f(x) =¥z = dy=3272/*dz. Whenz = 1000 and dz = 1, dy = %(1000)"*/3(1) = k5, so

300°
/1001 = f(1001) = f(1000) + dy = 10 4+ =*= = 10.003 ~ 10.003.
300
cy=f(x) =z = dy=327"?dz. Whenz = 100 and dz = 0.5, dy = %(100)"/?(3) = &, s0

v/100.5 = £(100.5) ~ f(100) + dy = 10 + 55 = 10.025.

.y = f(z) =tanz = dy = sec®xdx. When 2 = 0° [i.e., 0 radians] and dz = 2° [i.e., 30 radians],
dy = (sec® 0) (&) = 1°(&) = &, s0tan2° = f(2°) ~ f(0°) + dy =0+ & = & ~ 0.0349.
y = f(z) =cosz = dy= —sinzdr. When z = 30° [r/6] and doz = —1° [—7/180],
dy=(—sinZ) (&) = —3(—&5) = 55,50 c0s29° = f(29°) ~ f(30°) + dy = 3v/3 + 5% ~ 0.875.
y=f(z) =secx = f'(z)=secz tanz,so f(0) =1and f'(0) =1-0 = 0. The linear approximation of f at 0 is
£(0) + f(0)(x — 0) = 1+ 0(z) = 1. Since 0.08 is close to 0, approximating sec 0.08 with 1 is reasonable.
cy=[f(z)=vz = f'(x)=1/(2y/x),s0 f(4) = 2and f'(4) = ;. The linear approximation of f at 4 is
f(4)+ f'(4)(z —4) =2+ X (z — 4). Now f(4.02) = v/4.02 ~ 2+ $(0.02) = 2+ 0.005 = 2.005, so the approximation is
reasonable.
. (a) If 2 is the edge length, then V = 2® = dV = 32 do. When z = 30 and dz = 0.1, dV = 3(30)?(0.1) = 270, so the
maximum possible error in computing the volume of the cube is about 270 cm>. The relative error is calculated by dividing

the change in V', AV, by V. We approximate AV with dV'.

Relative error = v oY e 3 = 3

2

ﬂNﬂ:&r dx dz 0.1 — 0.0L
30

Percentage error = relative error x 100% = 0.01 x 100% = 1%.

(b) S =62> = dS = 12zdz. When z = 30 and dr = 0.1, dS = 12(30)(0.1) = 36, so the maximum possible error in

computing the surface area of the cube is about 36 cm?.

Relative error = ﬁ & 48 _ Radr 2 de = 2(0'1

T = =2 %) = 0.008.

Percentage error = relative error x 100% = 0.006 x 100% = 0.6%.
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33.

34.

35.

36.

37.

38.
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(@ A=nr? = dA=2nrdr. Whenr = 24 and dr = 0.2, dA = 27(24)(0.2) = 9.6, so the maximum possible error
in the calculated area of the disk is about 9.67 &~ 30 cm?.

. _AA dA _ 2mrdr 2dr 2(02) 02 1 —
(b)Relatlveerror—TNI— g ] —12—60—0.016.

Percentage error = relative error x100% = 0.016 x 100% = 1.6%.

(a) For a sphere of radius r, the circumference is C' = 27 and the surface area is S = 4772, so

C

2 2
=L 4 S:4w<—) ¢ dS:%CdC.WhenC:84anddC:0.5,dS:2 84

27 T 71_(84)(0-5) = o

. . 4 . 4 1
so the maximum error is about 8 ~ 27 cm?. Relative error ~ — = 84/m = — =~ 0.012 =1.2%
™ S 84%/m 84

4 4, 4 (CV P 1, B _
dv = L(84)2(0.5) = @, so the maximum error is about 1764 ~ 179 cm®,
272 w2 w2

2
The relative error is approximately dVV = % = 5_16 ~ 0.018 = 1.8%.
s

For a hemispherical dome, V = 27r® = dV = 27r®dr. Whenr = £(50) = 25 m and dr = 0.05 cm = 0.0005 m,

dV = 2m(25)*(0.0005) = 3Z, so the amount of paint needed is about 3% ~ 2 m®.

@V =nr’h = AV ~dV =2xrhdr = 2rrh Ar
(b) The error is
AV —dV = [n(r + Ar)*h — 7r?h] — 2mrh Ar = 7r2h + 2nrh Ar + w(Ar)2h — rh — 2nrh Ar = 7(Ar)?h.

(a) sinf = = x=20cscl =

8|8

da = 20 20

—~

—cscf cot ) df = —20csc30° cot 30° (£1°)

T 2\/5
= —202)(V3) (#1555 ) =+ 5=

So the maximum error is about :I:% V31~ +1.21 cm.

. . Az dz :t% V3r V3 . .
(b) The relative error is - = T(Z) = iﬁ 7 ~ £0.03, so the percentage error is approximately +3%.
_ 2
V=Rl = I= % = dI = —% dR. The relative error in calculating [ is # ~ d—II = w = —d—g.

Hence, the relative error in calculating [ is approximately the same (in magnitude) as the relative error in R.

dF _ 4kR’dR

_ .p4 _ 3
F=kR* = dF =4kR°dR iR

=4 (d_]f) . Thus, the relative change in F' is about 4 times the
relative change in R. So a 5% increase in the radius corresponds to a 20% increase in blood flow.
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dc d du
39. (a) dc = Ed:c—()dx—o (b) d(cu) = E(cu)dm-cadm—cdu
d du dv du dv
(c)d(u—l—v)—ﬂ(u—kv)da:— <£+%)da:—£dz+%dm—du+dv
d dv du dv du
(d)d(uv)—ﬂ(uv)d:ﬂ— (u%—l—va)da:—uadx—&—vadm—udv—}-vdu
Udu udv vdu da udv da
U _i u _ de dz T dz T U dx _vdu—udv
© d(v) Cdx (U) de = v2 de = v2 N v?
) d(=z") = 4 (z™)dz = na" "t dx
= =

40. (a) f(z) =sinz = f'(x) =cosz,so f(0) =0and f'(0) = 1. Thus, f(z) = f(0)+ f(0)(x —0) =0+ 1(z —0) =

1 y=1.02sinx 0.36 Y=
(b) - - ;
~ .
Ny =0.98sin x y=102sinx
-1 1 / 4
y=0.98sinx
V=x
1 g 0.33 -~ 0.36
-0.33 y=X
'd
b y=1.02sinx
y=10.98sin.x
N
/
~0.36 < —0.33

We want to know the values of z for which y = x approximates y = sin z with less than a 2% difference; that is, the

values of x for which

TTAMTL 902 o —002< 7T g2 o

sinx

{—0.02 sinz < z —sinz < 0.02sinz if sinz > 0 {0.98 sinz < x < 1.02sinz  if sinz >0
=4

—0.02sinxz > z —sinz > 0.02sinz if sinz <0 1.02sinz < x < 0.98sinz if sinx <0

In the first figure, we see that the graphs are very close to each other near = 0. Changing the viewing rectangle
and using an intersect feature (see the second figure) we find that y = z intersects y = 1.02sinx at z ~ 0.344.

By symmetry, they also intersect at x ~ —0.344 (see the third figure). Converting 0.344 radians to degrees, we get
0.344(@) ~ 19.7° ~ 20°, which verifies the statement.

41. (a) The graph shows that f'(1) = 2,s0 L(z) = f(1) + f/()(z — 1) =5+ 2(x — 1) = 2z + 3.
£(0.9) = L(0.9) = 4.8 and f(1.1) ~ L(1.1) =5.2.
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(b) From the graph, we see that f’(z) is positive and decreasing. This means that the slopes of the tangent lines are positive,
but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too

large.
42. @) ¢(z) = V2 +5 = ¢(2) =9 =23 g(1.95) = g(2) + ¢'(2)(1.95 — 2) = —4 + 3(—0.05) = —4.15.
g(2.05) ~ g(2) + ¢'(2)(2.05 — 2) = —4 + 3(0.05) = —3.85.

(b) The formula ¢’ (x) = /22 + 5 shows that g’ () is positive and increasing. This means that the slopes of the tangent lines
are positive and the tangents are getting steeper. So the tangent lines lie below the graph of g. Hence, the estimates in

part (a) are too small.

LABORATORY PROJECT Taylor Polynomials

1. We first write the functions described in conditions (i), (ii), and (iii):

P(z) = A+ Bx + Ca? f(z) =cosz
P'(z) =B+2Cx f'(z) = —sinz
P'(z) =2C /" (z) = —cosz

So, taking a = 0, our three conditions become

P(0) = f(0): A=cos0=1
P'(0)=f'(0): B=-sin0=0
P"(0) = f(0): 2C =—cosO0=-1 = C:_%

The desired quadratic function is P(z) = 1 — %x2, so the quadratic approximation is cosx ~ 1 — %xQ.

1.4

L

y = cos x

The figure shows a graph of the cosine function together with its linear

approximation L(z) = 1 and quadratic approximation P(z) = 1 — 127

=35 3.5
/ \ near 0. You can see that the quadratic approximation is much better than the
P

q J linear one.
-1.4

2. Accuracy to within 0.1 means that [cosz — (1 — 32%)[ < 0.1 & —0.1<cosz— (1—32°) <01 <&

O.1>(1—%m2)—cosx>—0.l = cosx+0.1>l—%;r2>cosx—0.1 & cosm—0.1<1—%m2<cosm+0.1,

1.2 y=cosx+0.1

P / From the figure we see that this is true between A and B. Zooming in or

using an intersect feature, we find that the z-coordinates of B and A are

about +1.26. Thus, the approximation cosx ~ 1 — %:):2 is accurate to

—1.6 (£ \y 1.6 within 0.1 when —1.26 < = < 1.26.
-0.1
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3. If P(z) = A+ B(z —a) + C(z — a)?, then P'(z) = B 4+ 2C(z — a) and P"(z) = 2C. Applying the conditions (i), (ii),
and (iii), we get
Pla) = f(a): A= f(a)
P'(a) = f'(a): B =f'(a)
P’(a) = f"(a): 2C=f"(a) = C=3f"(a)

Thus, P(z) = A+ B(z — a) + C(z — a)® can be written in the form P(z) = f(a) + f'(a)(z — a) + 1 f"(a)(z — a)*.

4. From Example 2.9.1, we have f(1) =2, f'(1) = 3, and f'(z) = (= + 3) /2. 4 L\f
So f'(x) = —3(x+3)7* = (1) =3 %”
From Problem 3, the quadratic approximation P(z) is L
VEFBA () +F WD)+ (D)@ -1)? =2+ -1) - Z— 1" -4l\Pf 1
The figure shows the function f(x) = v/z + 3 together with its linear -1 ’

approximation L(z) = $ + I and its quadratic approximation P(z). You can see that P(z) is a better approximation than

L(z) and this is borne out by the numerical values in the following chart.

from L(x) actual value from P(x)

Vv 3.98 1.9950 1.99499373 ... | 1.99499375
v4.05 2.0125 2.01246118... | 2.01246094
V4.2 2.0500 2.04939015 ... | 2.04937500

5 Tn(x) = co +ci(x —a) + ca(x — a)® + ca(x — a)® + -+ + co(x — a)™. If we put £ = a in this equation,
then all terms after the first are 0 and we get T}, (a) = co. Now we differentiate T}, (z) and obtain
T, (x) = c1 + 2c2(z — a) + 3ez(x — a)® + 4ea(z — a)® + -+ - + nen(x — a)™ L. Substituting x = a gives T}, (a) = c1.
Differentiating again, we have T, (z) = 2¢c2 + 2 - 3cs(z — a) + 3 - dea(x — a?) + -+ - + (n — D)ncy(z — @)™ 2 and so
T} (a) = 2c». Continuing in this manner, we get T (z) = 2- 3¢z +2-3-4ca(z —a) +- -+ (n— 2)(n — Dnca (z — a)" 3

and 7' (a) = 2 - 3cs. By now we see the pattern. If we continue to differentiate and substitute = = a, we obtain

(@) = 23 4cq and in general, for any integer k between 1 and n, T\ (a) =2-3-4-5- - - key = klcy =
(k) (k)
Ccr = In k'(a) . Because we want T}, and f to have the same derivatives at a, we require that ¢, = ! k'(a) for
k=1,2,...,n.

" (n)
6. Tn(z) = f(a) + f'(a)(z — a) + / 2('a) (x—a) 4+ / n'(a) (z — a)™. To compute the coefficients in this equation we

need to calculate the derivatives of f at O:

f(x) =cosx f(0) =cos0=1
f(z) = —sinz f(0) = —sin0 =
f"(z) = —cosz f7(0) =-1
f"(x) =sinz =0

f@(z) = cosx @) =1
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We see that the derivatives repeat in a cycle of length 4, so £©)(0) = 0, f©®(0) = —1, f(7(0) = 0, and f® (0) = 1.

From the original expression for 7}, (z), with n = 8 and a = 0, we have

aa an (8) 0
Ts(z) = f(0) + f'(0)(z — 0) + f2—(,)(x —0)%+ fg—f)(x -0 4+ ! 8,( )(m —0)®
-1 1 -1 1 22 gt 2% o8
=1+0- a:+2—x +0x—|—4x +0x+6x+01+§x =1- 2!+Z—a+§
x2 N
and the desired approximation is cosx ~ 1 — — —|— T + g The Taylor polynomials 7%, T4, and T consist of the
z? 2?2 at
initial terms of T up through degree 2, 4, and 6, respectively. Therefore, T2(x) = 1 — o Tu(z)=1-— o + Ik and
22 xt xﬁ
Te(z)=1— o + = TR We graph T5, Ty, Ts, Tg, and f:
fo I 1.4 I Ti Notice that T () is a good approximation to cos x
near 0, T4 (z) is a good approximation on a larger
interval, Ts () is a better approximation, and
y=cosx y=cosx
s / s Ts(z) is better still. Each successive Taylor
polynomial is a good approximation on a larger
interval than the previous one.
. J
T, T, 14 T, T,
2 Review
TRUE-FALSE QUIZ
1. False. See the note after Theorem 2.2.4.
2. True. This is the Sum Rule.
3. False. See the warning before the Product Rule.
4. True. This is the Chain Rule.
d d i 1 /()
5. True. — z) = —[f(@)]V? = < [f(2)]" V2 f ==
7 VI = U@ = 3@ 1) = 50
6. False. %f(ﬁ):f’(ﬁ)%xil/zz fQ(—\\;_i),WhiChiSHOt 'QL\/Z‘E)
7. False. f(z) =2’ +z|=2’+azforz >00rz < —land |2° + 2| = —(2® + z) for -1 <z < 0.

Sof(m):2x+1form>00rm<—1andf(m):

forz > —%and 2z + 1] = -2z — 1 forz < —1.

—(2z+1)for-1<z<0.But|2z+1]=2x+1
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8. True. f(r) exists = fisdifferentiableatr = fiscontinuousatr = lim f(z)= f(r).

9. True. g(z)=2° = g¢'(z)=5z* = ¢(2) =5(2)* = 80, and by the definition of the derivative,

i 42) = 9(2)
xr—2 xTr — 2

=4'(2) =5(2)* = 80.

2 2 2
10. False. % is the second derivative while (%) is the first derivative squared. For example, if y = «, then % =0,

dy 2 B
but <%> =1.

11. False. A tangent line to the parabola y = 22 has slope dy/dx = 2z, so at (—2, 4) the slope of the tangent is 2(—2) = —4

and an equation of the tangent line is y — 4 = —4(z + 2). [The given equation, y — 4 = 2z(z + 2), is not even

linear!]
12. True. diic (tan® z) = 2 tanz sec® z, and % (sec’ ) = 2 secx (secx tanz) = 2 tanx sec? x.

2 2 2
- 4 . 1 _a .
Or. (sec” x) x( + tan® ) (tan® x)

13. True. If p(z) = anz™ + An_12"" 1+ -+ a1z + ao, then p(z) = na,z"t + (n— 1)an,1x"*2 + ... 4 a1, whichis

a polynomial.

14. True.  Ifr(z) = PE) then r'(z) = g(@)p' (@) — p(x)q'(x)

[q()]?

, which is a quotient of polynomials, that is, a rational

function.

15. True. f(x) = (2% — *)® is a polynomial of degree 30, so its 31st derivative, £V (z), is 0.

EXERCISES

1. (@) s = s(t) = 1 + 2t 4 t* /4. The average velocity over the time interval [1, 1 4 h] is

oo _s(4h)—s(1) 1+20+h)+ (1+Rh)7/4-13/4 10h+h* _10+h
T (1+h) -1 h 4 4

So for the following intervals the average velocities are:
(i) [1,3]: k=2, vave = (1042)/4 =3m/s (i) [1,2]: h =1, vaye = (10 +1)/4 = 2.75m/s

(iii) [1,1.5]: h = 0.5, vaye = (10 + 0.5)/4 = 2.625m/s  (iv) [1,1.1]: h = 0.1, vave = (10 + 0.1)/4 = 2.525 m/s

(b) When ¢t = 1, the instantaneous velocity is lim s +h) = s(1) = lim 10+4 = 10 =2.5m/s.
h—0 h h—0 4 4
2. f is not differentiable: at = —4 because f is not continuous, at z = —1 because f has a corner, at x = 2 because f is not

continuous, and at x = 5 because f has a vertical tangent.
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. The graph of a has tangent lines with positive slope for x < 0 and negative slope for > 0, and the values of ¢ fit this pattern,

so ¢ must be the graph of the derivative of the function for a. The graph of ¢ has horizontal tangent lines to the left and right of
the z-axis and b has zeros at these points. Hence, b is the graph of the derivative of the function for c. Therefore, a is the graph

of f, cis the graph of f/, and b is the graph of f”’.

. 2% =64,50 f(z) =5 and a = 2.

. (a) f'(r) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars/(percent per year).

(b) The total cost of paying off the loan is increasing by $1200/(percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

(c) As r increases, C increases. So f’(r) will always be positive.

. . . . . . ~ L1 _ ~ =16 _
. (a) Drawing slope triangles, we obtain the following estimates: F’(1950) ~ +1 = 0.11, F'(1965) ~ =5 = —0.16,

10

and F'(1987) ~ 52 = 0.02.

(b) The rate of change of the average number of children born to each woman was increasing by 0.11 in 1950, decreasing

by 0.16 in 1965, and increasing by 0.02 in 1987.

(c) There are many possible reasons:

e In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.

o In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a
large family.

e In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

. (a) P’(t) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are

percent per year (%/yr).
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P(t+h)—P(t) Pt+h)—P(t)

, .
(b) To find P’(t), we use ]!LLHIO W ~ " for small values of h.
o _ P(1960) — P(1950) _ 35.7—31.1 _
For 1950: P'(1950) & —— oo = == = 0.46

For 1960: We estimate P’ (1960) by using h = —10 and h = 10, and then average the two results to obtain a

final estimate.

P(1950) — P(1960) _ 31.1 — 35.7

= — / ~ = — =0.
h=—-10 = P'(1960) e O — 0.46
P(1970) — P(1960)  34.0 — 35.7
1 P'(1960) ~ _ - 01
h=10 = P(1960) 1970 — 1960 10 0-17

So we estimate that P’ (1960) ~ [0.46 + (—0.17)] = 0.145.

t 1950 1960 1970 1980 1990 2000 2010
P'(t) | 0.460 0.145 —0.385 —0.415 —0.115 —0.085 —0.170

y
© P()
0.5+
374
0.4+
354
0.3+
33+ y=P'(t)
0.2+
314
0.1+
294
274 1950 1960\ 1970 1980 1990 2000 2010 !
70.]__
25+
23l —0.2+
70‘3__
1950 1960 1970 1980 1990 2000 2010 ° —0.4+
70.5__

(d) We could get more accurate values for P’(t) by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995, and

2005.
10.f(z):§;i -
4—(z+h) 4-=
vy o fle+h)—f(@) . 3+(x+h) 3+ . (4—xz—h)B+z)—(4—-2)B3+x+h)
Fle) = Jimy h = i I = fim, hB+a+h)(3+ 1)
—7h -7 7

= BTG Y A Brr i Gt Bra?

"N f(z)=2>+5x+4 =
[ +h) = ) _
h

3 T
f(z) = lim i @R 5@+ h) +4- (@7 +5044)
h—0 h—0 h

2 2 3
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:hm\/3—5(z+h)—\/3—51\/3—5(x+h)+\/3—5x
h=0 h V3—5(@+h)+3—bx
i BB AR -3 —5 _ -5
Mh(¢3—5<z+h)+\/3_5m) h=0./3—5(z+h)+v/3—bz 2V3— bz

2. @) f'(x) = lim w

(b) Domain of f: (the radicand must be nonnegative) 3 — 5z > 0 =

br <3 = xe(—oo,%} 6

P
Domain of f’: exclude % because it makes the denominator zero; \f w

s€ (~o0,3) S
f/
(c) Our answer to part (a) is reasonable because f'(z) is always negative and \ J
AN
f is always decreasing. -6

13,y =(2>+2%* = o =4+ 23322+ 32%) = 4(2?)*(1 + 2)32(2 + 32) = 42" (2 + 1)3(32 4 2)

14, y:Lszm_l/Qfm_?’/5 = y’:flm_3/2+§x_8/5 or

N 2 5 5xv/x3  2x\/x

3 1

or 1—1037_8/5(75371/10 +6)

2
2—2+2  am 1 o .3 1 _ 3 1 1
15, y = =—— 22 _ p3/2 _ 41/ 2 /2 _2.1/2 _ - -1/2 _ 3/2 _ 2 =
Y NG S - v =g 27 v Vo e Vo3
tan z ,  (14+cosz)sec?z —tanz(—sinxz) (1+cosz)sec’z +tanz sinz
16. y=——— = ¢y = _
1+ cosz (1 + cosx)? (1 + cosx)?

17. y =2*sintr = 3y = 2?*(cosmz)m + (sinnz)(2x) = x(7x cos mx + 2sinTx)

1\Y7 1\ 2
18.y:(x+—2) = y':ﬁ(er—Q) <17—3)
x x x

19, v — tt—1 I (' + )48 — (¢* — 14> a?[¢* +1) - (¢ —1)] 8¢
ST v= (" + 1)z - (t* +1)2 BEE
20. y = sin(cosx) = 3y’ = cos(cosz)(—sinz) = —sinx cos(cos )

1 )<_1) B _secQ\/m
2V1i—z 21—z

f'(x) 1

[f ()] we have y = sin(z — sinx)

2. y=tany1l -z = g/:(secZ\/l—m)(

22. Using the Reciprocal Rule, g(z) = ﬁ = g'(x)=-

,_ _cos(z —sinz)(1 — cosx)

sin?(z — sin z)

d d
23.£(xy4+x2y)za(x+3y) = -4 4yt 1422y dy20=14+3y =

1—y*— 22y

(4o 2 _3y—_1_44_9 r_
Y (dzy” +2° —3) T A vor s

2. y=sec(l+2?) = 1y =2wsec(l+2?) tan(l + 2?)
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sec 20
1+ tan20
. (1+tan20)(sec 20 tan 20 - 2) — (sec20)(sec®260 - 2)  2sec 26 [(1 + tan 26) tan 20 — sec” 20]
v= (1 + tan 26)2 - (1 + tan 20)2
_ 2sec20 (tan20 + tan® 20 —sec® 20)  2sec 26 (tan 26 — 1) 2
o (14 tan 26)2 - (14 tan26)2 [1+ tan® 2 = sec” z]

(22 cosy + sin 2y) = d (wy) = 2?(—siny-y') + (cosy)(2x) +cos2y -2y =x -y +y-1 =

Yy — 2xcosy

y' (—a®siny +2cos2y —x) =y —2wcosy = Y = -
2cos2y —x2siny —x

Z7.y=1-2"1H"1' =

Y =-11-a ) [(-la7)] = -(1-1/2) 27 = —((z - 1) /) *a™? = (2 = 1)*

1 -1/3 4/3 1

By=—=(z+Va = y=-1(z+Va (+—)

v (ee ) (o vE) i
29, sin(zy) =2® —y = cos(wy)(zy +y-1) =22 —y = wzcos(zy)y +y =2z —ycos(zy) =

22 — y cos(zy)
’ 1] = 20 — 1 2t = Y eos\ry)
y'[zcos(zy) + 1] = 22 — ycos(zy) = y reos(zy) £ 1
—1/2
30. y = sinvez = y = %(sin\/g) (cos\/_) ( ) cosV'z
2V 4V xsinve
3. y =cot(32® +5) = o' = —csc®(3x2 + 5)(6x) = —6x csc?(3z? + 5)
(x+ )" p_ @@ @+ — (@ + N 4®) 4z + 2P - Aa?)
Roy=-T0 oy = . - :
zt+ A (z* + 2\*)? (z* + 1*)?
B.y= VzcosvVr =
! !
y = vV (cos \/E) + cos V' (\/5) =z [— sin vz (%xil/z)] + cosVz (%xil/Q)
=171/ (7\/5 Sin\/EJrcosx/g;) _ cos VvV — vV sinVa
2V
34. y = (sinmax)/z = o' = (mzcosma —sinmz)/x?
35. y = tan?(sin @) = [tan(sin@)]* = 3’ = 2[tan(sin )] - sec?(sin @) - cos O
o 2 r_ r tany
6. ztany=y—1 = tany+ (zsec’y)y’' =y = y —7179“6(:224
37. y = (ztanz)?® = 4 = %(mtanx)f‘lﬁ(tanx + xsec’ x)
%8, 4 — (x—1)(z—4) 2?—-5x+4 I (2> =5z +6)(2z —5) — (z° = bz +4)(2x —5)  2(2z—5)
YT @—2)z—-3) 22-52+6 v= (22 — 5z + 6)2 T (@—-22(z—3)2

39. y =sin(tanv1+23) = 3 =cos(tanv/1+a3)(sec® vV1+a3)[32°/(2vV1+23)]
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208 [1 CHAPTER2 DERIVATIVES
40. y = sin? (COS m) = [Sin (cos m)} ? =
y' =2 [sin(cos \/M)] [sin(cos \/M)} / =2 sin(cos \/M) CcoSs (cos \/M) (cos \/SM)/
= 2sin (cos \/M) Ccos (COS \/M) (f sin \/M) (m)/
= —2sin (cos m) cos (cos m) sinVsin 7z - 3 (sinwa) "/ (sin wx)’
— sin (cos \/M) cos (cos Vsinx ) sin v/sin 7z

sinmx

—7r sin (cos Vsinx ) cos (cos Vsinx ) sin v/sin Tx cos wx
Vsinmx

M) =VvEFTI = f(t)=Li@t+1)"V2 4=204t+1)"* =

Fr)=2(=3)At+1)732 4= —4/(4t +1)*2 50 f(2) = —4/9%/? = — %.

cCOSTTXL - T

42. g(f) =0sind = ¢ () =0cosh+sinf-1 = g¢"(0) =60(—sinbh) +cosf-1+ cos =2cosf — Osinb,
s0 g (m/6) = 2cos(m/6) — (/6) sin(w/6) = 2 (V3/2) — (1/6)(1/2) = V/3 — 7/12.
3.5+ =1 = 62°4+6y°Y =0 = o =-2%° =

o Y (xt) — 2 (5y'y) 5aty? [y — a(—2°/y°)] . 52 [(y° + 2°)/y°] 5zt
y == (45)? =- Y10 =- Yo Ty

M4 fo)=2-2)"" = fl@)=2-2?% = f@)=22-22 = @)=2-32-2)"* =

- n —(n n!
FO()=23-4(2—2) 7 In general, ) (z) =234+ (2 =) = ptis.
. secx  secO 1
4. rlll%lfsinx_ 1—sin0 170_1
3 3 cos® 2 1 32 1 1
46. lim ¢ = imt _COBS t= lim cos® 2t - — —— = lim cos” 2t T = ==
t—0tan32t ¢t—0 sin32t t—0 8sm 2t tﬂog i sin 2¢ 813 8
(2t) Y

4. y =4sin®z = y =4 2sinzcosz. At(%,1),y =8-1- ¥3 — 2./3, s0 an equation of the tangent line

2
isyf1:2\/§(mf%),0ry:2\/§x+lf7r\/§/3.

(22 +1)2 C(z2+1)%

z? -1 , (@ +1)(22) — (2° —1)(22) 4z

By=—— = =
Y 2211 Y

At(0,—1),y" = 0, so an equation of the tangent lineis y + 1 = 0(z — 0), ory = —1.

2cosx

9. y=+/1+4sinz = o =2Li(1+4sinz) V? dcosz=——
Y Y 2( ) V1+4sinz

2 . L
At (0,1),y' = i = 2, 50 an equation of the tangent line is y — 1 = 2(x — 0), ory = 2z + 1.
The slope of the normal line is —%, so an equation of the normal lineis y — 1 = —%(m —0),ory = —%m + 1.
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50.

51.

52.

53.

54,

55.

CHAPTER2 REVIEW O
2 dday+y* =13 = 2o +4(zy +y-D)+29 =0 = z+2xy +2y+yy =0 =
2y +yy' = —z2—-2y = Y(2rty)=—-z-2y = y =

—2-2 4
! _ _ = . . . _ é
At (2,1),y' = i1 - 5 so an equation of the tangent lineisy — 1 = —¢

The slope of the normal line is %, so an equation of the normal lineisy — 1 =
@ fx)=zv/b—2 =

fl@)== %(5—1)“/2(—1) tvh-e= w%* Vo z\/iéi N 2%* 22(\/55—2

—r+10—-2z 10— 3zx
25—z 25—z

(b) At (1,2): f'(1) = 1. () 10

So an equation of the tangent lineisy —2 = Z(z — 1) ory = T + 1. ) (4,4)
—-10 10
At (4,4): f'(4)=-2=-1
So an equation of the tangent lineisy —4 = —1(x —4) ory = —x + 8. f(x)
-10
(d) 4.5 The graphs look reasonable, since f' is positive where f has tangents with
f .. . . . .
positive slope, and f’ is negative where f has tangents with negative slope.
-
s
-1 { \} 45
—-2.5
(@) f(z) =4z —tanz = f'(z)=4—-sec’z = f’(z)=—2secx(secx tanz) = —2 sec’>x tanz.
(b) 5 We can see that our answers are reasonable, since the graph of f’ is 0 where
\ f\ f f has a horizontal tangent, and the graph of f’ is positive where f has
-z T - ) z tangents with positive slope and negative where f has tangents with
f ”\\‘ negative slope. The same correspondence holds between the graphs of f’
L Z
5 and f".

y=sinz+cosr = 3y =coszx—sint=0 <& coszx=sinrand0<z<21r & x:%or%,sothepoints
are (%,v/2) and (32, —/2).
22 4+2° =1 = 2x+4yy’ =0 = ¢ =-2/(2y)=1 & x = —2y. Since the points lie on the ellipse,

wehave (—2y)> +2° =1 = 6y°=1 = y= :I:%. The points are (—%, %) and (%, —ﬁ).

y=f(x)=ax* +br+c = f'(x)=2azx+b Weknow that f'(—1) = 6 and f'(5) = —2,50 —2a + b = 6 and

209

10a + b = —2. Subtracting the first equation from the second gives 12a = -8 = a = —%. Substituting —% for @ in the

first equation gives b = &2, Now f(1) =4 = 4=a+b+csoc=4+2— 2 =0andhence, f(z) = —22° + Lz
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210 O CHAPTER2 DERIVATIVES

56. If y = f(z) = xi—l—l’ then f'(z) = (@ +({r)(—&)l)_2x(1) = @ _: ER When x = a, the equation of the tangent line is

a1
a+1 (a+1)2

a 1
- - (1-
il P A S

20a+1)? —ala+1)=1-a < 2a*+4a+2—-ad*—-a—-14+a=0 & a®*+4a+1=0.

. . . . -4+ /42 —4(1)(1 —4+ /12
The quadratic formula gives the roots of this equation as a = 20 HA) = j; =—24+/3,

y— (z — a). This line passes through (1, 2) when 2 —

so there are two such tangent lines. Since
6

. 2+V3 243 —1FV3 (
f(_Qi\/g)_—2i\/§+1_—1i«/§.—lﬂFx/§ _ﬁl

_2+2V3FV3-3 -1£v3 1F¥V3 al/ L2

1-3 -2 2

the lines touch the curve at A(72 +4/3, 1*—2‘/5) ~ (—0.27,-0.37)

and B(—2 V3, Lﬁ) ~ (~3.73,1.37).

57. f(z) = (x —a)(z—b)(z—c) = fl(x)=(x—-b)(xz—c)+ (z—a)(z—c)+ (z—a)(x—0).
Sof’(x) (z—=b)(z—c)+(x—a)(xr—c)+ (z—a)(z —b) 1 n 1 n 1

(z) (z—a)(z—b)(z—c) r—a xT—b z—c

58. (a) cos2r = cos®’x —sin’xz = —2sin2z = —2cosxsinz — 2sinzcosz & sin2z = 2sinzcosz

(b) sin(xz + a) =sinz cosa + cosx sina = cos(z + a) = cosz cosa — sinz sina.
59. @) S(z) = f(x) +9(x) = S'@)=Ff(2)+d@) = FO=fD+g1)=3+1=4

(b) Pa) = [(@)ga) = P'@)=f(2)g(@)+g(a) [ (@) =
P/(2) = [(2)g'(2) + 92 (2) = 1(4) + 1(2) =4 +2 =6

=

_ fl») 'y = 9@) ['(@) = f(2) g'(x)
© Q(x) = 9(2) = Q'() [9(2)]2

_9W -y _33)-21) _9-2_7

Q'(1)

[g(1)]2 32 9 9
(d C(x) = fg(x)) = C'(x)=f(g9(x)d'(x) = C'(2)=[f(9(2)g(2)=/f(1)-4=3-4=12

60.

,.\
)
N
e
—~
8
N
Il
By
—~
8
N
Q
—~
8
N
!
—~
8
N
Il
~
—~
8
N
Q\
8
N
+

g9(x) f'(z) =

P/(2) = f2)9'(2) +9(2) /') = ) (E8) + W ($2) = @) + @)(-1) =2-4= -2
0 Q@ =18~ g -4 '(T;(;){z(m) i@
(g IR F () = f@) () _ (D=1 _ 6 _ 3
R 70 R R A

© C@) = f(g(x)) = C'(2) = f(g(@)g (@) =
C'(2) = f'(9(2)g' @) = f'(4)g'(2) = (£2)(2) = (3)(2) = 6
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61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72

73.

CHAPTER2 REVEEW O 21
f@)=22g(z) = f'(x) =2 (2) + g(x)(20) = zlag(x) +29(x)]
f@) =g@®) = (@)= g(?)2) = 22g(2?)
f@) =[g@) = f'(x)=2g()] ¢'()=29)d ()
f@) = a9 = [(@) = ac" g(a®) +a%g (@) (ba 1) = aa® ~g(a’) + ba® TP g (a)
f@) = glg@) = ['(@)=g(9()g ()
f(@) =sin(g(x) = f(x) = cos(g(x)) - g'(z)
@) = gsing) = f(2) = ¢(sin) - cosx

flz) = g(tan\/g) =

, , d ) ) d q (tan\/:;) sec® vV

f(:r)zg(tan\/g)~£(tan\/:;)=g(tan\/5)~sec \/EE(\/E): W

_ @)
"= 7@y + o)
W(z) = [f () + 9(@)] [f(z) ¢'(z) + g(z) f'(z)] — f(z) (=) [f'(z) + g’ (2)]

[f () + g(x)]?
_ @' (@) + f(@) g(@) f'(2) + f(x) g(x) ¢ (2) + [9(2)]* ['(x) — f(x) g(2) ['(x) = f(2) g(=) ¢'(x)
[f () + g(=)]?
_ @ [9@)* + ¢ (@) [f ()]
[f () + g(x))?

h(z) = f@) W (z) = f'(@)g(x) — flx)g'(x) _ f'(z)g(z) — f(z) g (2)

2/f(@)/9(z) [g(x))* 2[g(x)]*/2\/f ()

Using the Chain Rule repeatedly, h(z) = f(g(sin4z)) =

W(z) = f'(g(sin4z)) - d%, (g(sindz)) = f(g(sin4z)) - ' (sin 4) - % (sin4z) = f'(g(sin4z))g’ (sin 4z) (cos 4) (4).
@z=vP+32 = oit)=2"=[1/2V2+322)]2t = AN+ =

AV + 282 — Pt(Pt VR + 212 b2c?

j— / j— j—
a(t) =v'(t) = B2 + 2 {2 - (b2 + c22)%/?

(b) v(t) > 0 for ¢t > 0, so the particle always moves in the positive direction.
@y=t>—12t+3 = vt)=y =3t>-12 = a(t) =2'(t) =6t
(b) v(t) = 3(t> — 4) > 0 when t > 2, s0 it moves upward when ¢ > 2 and downward when 0 < ¢ < 2.

(c) Distance upward = y(3) — y(2) = =6 — (—13) =7,
Distance downward = y(0) — y(2) = 3 — (—13) = 16. Total distance = 7 4 16 = 23.
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74.

75.

76.

1.

78.

79.

80.

Ll CHAPTER2 DERIVATIVES
(d) 20 (e) The particle is speeding up when v and @ have the same sign, that is,
y a when ¢ > 2. The particle is slowing down when v and a have opposite
v signs; that is, when 0 < t < 2.
0 7 3
—15
@@V =31mr’h = dV/dh = 3mr® [r constant]

b))V = %71'7’2’1 = dV/dr = %WTh [k constant]
The linear density p is the rate of change of mass m with respect to length z.

m:x(lJr\/;):ermS/Q = p:dm/dx:1+% :1:,sothelineardensitywhenx:4is1+%\/Zzzlkg/m.

(a) C(x) = 920 + 2z — 0.0222 + 0.00007z> = C’'(z) = 2 — 0.04z + 0.000212>

(b) C’(100) = 2 — 4 + 2.1 = $0.10/unit. This value represents the rate at which costs are increasing as the hundredth unit is

produced, and is the approximate cost of producing the 101st unit.

(¢) The cost of producing the 101st item is C(101) — C(100) = 990.10107 — 990 = $0.10107, slightly larger than C"’(100).

If z = edge length, then V = 2®* = dV/dt = 32*dz/dt =10 = dzx/dt =10/(3z%)and S = 62°> =

dS/dt = (12z) dz/dt = 12z[10/(32”)] = 40/x. When = = 30, dS/dt = 22 = 2 cm® /min.

Given dV/dt = 2, find dh/dt when h = 5.V = %ﬂ?“zh and, from similar

2
triangles,%:i = V:z(?)h) h= 3T h3, s0

10 3\10) " 100"
10
gV _9madh dh_ 20 a0 8
Codt 1007 di dt — 97h?  9r(5)% 9w
when h = 5. Yy
Given dh/dt = 5 and dz/dt = 15, find dz/dt. 2*> = 2* + h* =
dz . dx dh dz 1 - n 3
h=45+3(5)=60andz = 15(3) =45 = z= /452 + 602 = 75, T
dz 1
0 = %[15(45) + 5(60)] = 13 ft/s.
We are given dz/dt = 30 ft/s. By similar triangles y__4_ =
4 dy 4 dz 120 — v 4
Yy=——2,80 — = —— — = —— &~ 7.7 ft/s. .’ d
VoAT T dt 241 dt 24T , =
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81. We are given df/dt = —0.25 rad/h. tan 8 = 400/z =

z=400cotf = dw = —400csc? 6 ﬁ When 6 = Z,
dr 2 _ 0
Zr = —400(2)(~0.25) = 400 fi/h. : . I
—2z
82. =V25—22 = fl(z)= ——m—= = —x(25 —2?)" /2 b) 53
So the linear approximation to f(z) near 3
is f(@) = f3)+ ['(3)(w —3) =4 — 2(z —3). L
f
1 4.5

(¢) For the required accuracy, we want v/25 — 22 — 0.1 < 4 — 3(2 — 3) and

4 — 3(z —3) < /25 — 22 + 0.1. From the graph, it appears that these both
hold for 2.24 < z < 3.66.

83. (a) f(x) = YT+3z=(1+32)" = f(z) = (1+3z) /3, so the linearization of f at a = 0 is
L(z) = f(0) + f/(0)(x —0) =12 + 1723z = 1 + 2. Thus, YT+ 3z ~ 1 +2 =

¥1.03 = {/1+3(0.01) ~ 1 + (0.01) = 1.01.

(b) The linear approximation is /1 + 3z ~ 1 + x, so for the required accuracy L5

we want /1 + 3z — 0.1 < 1+ z < /1 + 3z + 0.1. From the graph,

it appears that this is true when —0.235 < =z < 0.401. f+ol -0l

—0.4 0.5
0.6

8. y=a—-22"+1 = dy= (32" —4z)dz. Whenz = 2and dz = 0.2, dy = [3(2)> — 4(2)](0.2) = 0.8.

85. A = z? +%7r(%a:)2 = (l—l—%)mz = dA= (2+ %)l‘dl‘. When x = 60

%
and dz = 0.1, dA = (2 + $)60(0.1) = 12 + 37, so the maximum error is
approximately 12 + 37” ~ 16.7 cm®. .
271 d X
i = |—=2a'" =17(1)"* =1
86 lim —— {dmx ]171 7(1) 7
V1 -2 1 1 1
7. lim Y20 TN =2 {i {‘/5] = —g 3/ ===
h—=0 h dx =16 =16 4(V16) 32
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88. lim COSQ;O'B* icos@ *—sinzf—ﬁ
“oon/s O0—7/3 |df o=njs 32

8. lim VI+tanz —+/1+sinz fim (VI+tanz — /1 +sinz)(v1+tanz + /1 +sinz)
T 250 3 ) 3 (\/1+tanz+\/1+sinx)
~ i (1+tanz) — (1 +sinz) 5 sinz (1/cosx — 1) cosz

m
z—0 x3(\/1+tanx+\/l+sinx) z—0 x3(\/1+tanx+\/1+sinx) cosx

. sinz (1 — cos ) 1+ cosz
m .
2=0 73 (y/1+tanz 4+ /1 +sinz ) cosz 1+ cosz

i sinz - sin® z
20 g3 (y/T+tanz + /1 + sinz ) cosz (1 + cos x)

3
= <lim 5 ) lim 1.
=0 T +—0 (y/I+tanz + /1 +sinz ) cosz (1 4 cos z)

=13. 1 :1

(Vi+vi)-1-(1+1) 4

90. Differentiating the first given equation implicitly with respect to  and using the Chain Rule, we obtain f(g(z)) == =

fg@)g@) =1 = 4 = m Using the second given equation to expand the denominator of this expression
ives g'(x) = 1 But the first given equation states that f(g(z)) = =z, so ¢'(z) = L
S I = T TGP given g g 509'() = 75

91. diac [f(2z)] =2 = f'(2z)-2=2 = f'(2z) = 12% Lett =2z Then f'(t) = %(%t)z =1t’,s0 f'(z) = %

92. Let (b, ¢) be on the curve, that is, b*/® + ¢*/® = a*/® Now 2/ + y*/3 = 0?3 = 2o71/3 4 2y71/3 % =0, so

dy  y'® y\L/3 o . - o
T LB (—) , 0 at (b, ¢) the slope of the tangent line is —(c/b) /3 and an equation of the tangent line is
x x x

y—c=—(c/b)3(@—b)ory = —(c/b)3x + (c + b*3c!/?). Setting y = 0, we find that the z-intercept is
b33 4 b = bH3(*% 4+ b%/3) = b'/3a?/? and setting & = 0 we find that the y-intercept is

¢+ b33 = 01/3(02/3 + b2/3) = ¢'/3a?/3. So the length of the tangent line between these two points is

\/(b1/3a2/3)2 + (Cl/3a2/3)2 — \/b2/3a4/3 + ¢2/3g4/3 = \/(52/3 + 02/3)a4/3
= va2/3a%/3 = v/a? = a = constant
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[J PROBLEMS PLUS

1. Let a be the z-coordinate of Q. Since the derivative of y = 1 — 2% is 3’ = —2u, the slope at Q is —2a. But since the triangle

is equilateral, E/m = \/5/ 1, so the slope at @ is —+/3. Therefore, we must have that —2¢ = —v/3 = a= @

2
Thus, the point () has coordinates (§7 1-— (@) > = (%, i) and by symmetry, P has coordinates (—@, i)

2.y=2-324+4 = y =323, andy=3(2>—-2) = ¢ =6zx—3. y=30-x 3
The slopes of the tangents of the two curves are equal when 322 — 3 = 6z — 3;
that is, when x = 0 or 2. At x = 0, both tangents have slope —3, but the curves do 2.6)
-4 5
not intersect. At x = 2, both tangents have slope 9 and the curves intersect at Common
tangent line
(2, 6). So there is a common tangent line at (2,6), y = 9z — 12.

y=x*-3x+4 —20
3. y We must show that r (in the figure) is halfway between p and g, that is,
y=ax*+bx+c
r = (p + q)/2. For the parabola y = ax” + bz + ¢, the slope of the tangent line is

given by ¢y’ = 2az + b. An equation of the tangent line at z = p is

N P y — (ap?® 4+ bp + ¢) = (2ap + b)(x — p). Solving for y gives us
i /4 *
\/ y = (2ap + b)x — 2ap® — bp + (ap® + bp + ¢)
or y = (2ap +b)x + ¢ — ap® m

Similarly, an equation of the tangent line at z = g is
y=(2aq +b)x+c—ag® (2
We can eliminate y and solve for x by subtracting equation (1) from equation (2).
[(2aq + b) — (2ap + b)]x — ag® +ap® = 0
(2aq — 2ap)z = aqg® — ap?

2a(q — p)z = a(¢® — p?)

s atpla—p) _p+a
2a(q —p) 2

Thus, the z-coordinate of the point of intersection of the two tangent lines, namely r, is (p + ¢)/2.

4. We could differentiate and then simplify or we can simplify and then differentiate. The latter seems to be the simpler method.

sin? x cos? x _ sin? x sinx cos? x cosT sin® x cos® x
l4+cotx 1+4+tanz 14 €T sinx 14 sinr cosx sinx+cosx cosz +sinx
sinx COS T
. 3 3 . . 2 . 2
sin® z + cos® x (sinz 4 cos z)(sin  — sinx cosz + cos® )

[factor sum of cubes] =

sinx + cosx sinx + cosx

=sin?2 — sinz cosx +cos’z =1 —sinz cosz =1 — %(ZSiIl:B cosz)=1-— %sin2x

d sin® x cos? x d .
Thus, o (l—i—cotx + 1+tanm> = o (1 — 551112:5) = —%COSQI'Q = —cos2zx.
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5. Using f'(a) = lim M, we recognize the given expression, f(z) = tlim secz—ﬂ’ as g'(z)
T—a T —a —z —

with g(z) = secz. Now f'(§) = g" (%), so we will find g"(z). ¢'(z) = secxtanz =

s
4

g" (z) = seczsec® x + tan x sec ¥ tan x = sec z(sec’ z + tan® z), so ¢’ (3) = \/5(\/52 +12)=v2(2+1) =3V2.

— .‘3/ —
6. Using f'(0) = lin}) L{;(O), we see that for the given equation, lin}) Vartb-2 _ 1—52, we have f(x) = Vax + b,
T— X — T— x

f(0)=2,and f'(0) = 3. Now f(0) =2 & Vb=2 < b=8.Alsof/(z)=2%(axz+b) %% a,s0
o= < %(8)72/3@:% & 2(3)a=35 & a=5.

.

7. We use mathematical induction. Let S,, be the statement that sin® x 4 cos* ) = 4" cos(4x + n7/2).

el

S1 is true because
d . 4 4 . 3 3 . . . 2 2
o (sin® z + cos® x) = 4sin” x cosz — 4 cos® x sinx = 4sinx cosz (sm T — Ccos a:) T
T

= —4sinz cosx cos2x = —2sin 2z cos2 = — sin 4z = sin(—4x)

= cos(3 — (—4x)) = cos(5 +4x) = 41 cos(4z +n%) whenn =1

k
Now assume S is true, that is, — (s.in4 x + cos* ;r) =41 cos (43& + k‘z). Then
dzk 2
drFtt d [d*

Sy (sin*z + cos® z) = o w(sin4 x+costz)| = 4 [4F 7" cos(4a + kZ)]

= —4F1 sin(4:1: + k%) . d%c (495 + k%) = —4F sin(4x + k%)

=4Fsin(—4z — k%) = 4" cos(% — (—4z — k%)) =4"cos(dz + (k+1) %)

which shows that Sy is true.

mn

d . _ S Lo .
Therefore, p (sin® z 4 cos* ) = 4" cos (437 + n%) for every positive integer n, by mathematical induction.
Another proof: First write

sin® z + cos* z = (sin® z + cos® z)® — 2sin’z cos’ =1 — 2 sin? 22 =1 — 1(1 — cosdz) = 2 + X cosda

v . 4 4y d" (3 1 I T\ ne1 ( 7r)
Then we have T (sin® z 4 cos® x) = T (4+4cos4x> =1 4 cos(4x+n2) =4""" cos 4m+n2 .

o qim L@ =@ _ | f@)—fla) Va+Va

T T AT Vi ve
=lim—f($)_f(a)~lim(\/;+\/g):f'(a)-(\/a—l-\/a):Z\/af'(a)

TrT—a Tr—a r—a

~ i {f(fb")*f(a) . (\/E—s—\/E)]

r—a Tr—a

9. We must find a value x¢ such that the normal lines to the parabola y = x2 at & = £ intersect at a point one unit from the

. 1 .
points (:I::):o, :1:(2)) The normals to y = x? at & = 4 have slopes — o and pass through (ixo, :1:(2)) respectively, so the
Zo
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1

. 1 . .
normals have the equations y — 25 = —=— (x — o) and y — 23 = (x + 20). The common y-intercept is 23 + 5

21‘0 2_1‘()

We want to find the value of zg for which the distance from (O, x2 + %) to (mo, x%) equals 1. The square of the distance is
(zo — O)2 + [x% — (;r% + %)}2 =22+ i =1 & x9= :I:@. For these values of xo, the y-intercept is 3 + % = %, S0
the center of the circle is at (0, 5).

Another solution: Let the center of the circle be (0, a). Then the equation of the circle is z2 + (y — a)® = 1.

Solving with the equation of the parabola, y = 2, we get 2®> + (2 —a)’ =1 & 2?4 2* —2a2’ +a’>=1 &

x* 4+ (1 — 2a)2® + a® — 1 = 0. The parabola and the circle will be tangent to each other when this quadratic equation in 2
has equal roots; that is, when the discriminant is 0. Thus, (1 — 2a)? —4(a®* - 1) =0 <

1—4a+4a®> —4a*>+4=0 < 4a=5,s0a = 3. The center of the circle is (0, 5).

See the figure. The parabolas y = 422 and = = ¢ + 232 intersect each other ' .

at right angles at the point (a, b) if and only if (a, b) satisfies both equations ,

and the tangent lines at (a, b) are perpendicular. y = 42> = ¢’ =8z o > >

andz =c+2y° = 1=4yy = y/:%,soat(a,b)wemust >+2y’

have 8a = 1 = 8a=—4b = b= —2a. Since (a,b) is on both parabolas, we have (1) b = 4a” and (2)

1/(4b)
a = c + 2b%. Substituting —2a for bin (1) givesus —2a = 4a®> = 4a* +2a=0 = 2a(2a+1)=0 = a=0o0r

=

a=—
If a = 0, then b = 0 and ¢ = 0, and the tangent lines at (0,0) are y = 0 and = 0.
Ifa=—%,thenb=—2(—%) =1land —3 =c+2(1)°> = c¢= -2, and the tangent lines at (—3,1) are

y—1l=—-4(x+3) [ory=—-4z—1]andy—1=3(z+3) [ory=z+ 3]

See the figure. Clearly, the line y = 2 is tangent to both circles at the point 4
(0,2). We’ll look for a tangent line L through the points (a, b) and (¢, d), and if
Pt (y-3P=1
such a line exists, then its reflection through the y-axis is another such line. The e G d)
slope of L is the same at (a, b) and (c, d). Find those slopes: 2 +¢*> =4 = ., 2 ,
x*+y' =4 (a, b)
/ / T a 2 2 0
2c4+2yy =0 = y:—a [:—Z} and x -|—(y—3) =1 = /\J\ X
L
242y —3)y =0 = y=-———" |=--_|
z+2(y—3)y y 73 1-3
. . a a a?
Now an equation for L can be written using either point-slope pair, so we gety — b = 3 (xr—a) {or Y =— Em + > + b}
c c c? a c
andy —d = fm(xfc) {ory = *m$+ 13 +d}. The slopes are equal, so 3= "4-3 &
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be . . . 2 2 9 2 2 be\”
d—3:E.Smce(c,d)lsasolutlonofm +(y—3)*=1,wehavec’ + (d—3)* =1,s0¢" + - =1 =

24t =a> = Fa®+b¥)=a® = 4 =a® [since (a,b)isasolutionof 2®> +3> =4] = a=2c

be b b a? 2

Nowd—-3=— = d:3+—c,s0d:3—|——.They-interceptsareequal,so—+b:C——I—d &
a 2c 2 b d—3
a? (a/2)2 b a? b 2 2 2 2
?+b_l7/—2+(3+§> =2 |:?+b %4-34- (2b) & 20+ 20 =a“"+6b+b ==
2, 32 2 b_ 10 , 2 4 _ 32 4
@* b =60 & 4=6b < b=Z ltfllwsthatd =347 =0’ =4-b =4-5=3 = a= 32,

andc2:1—(d—3)2:1—(%)2:% = c:%ﬁ.Thus,Lhasequationy—%:—% (m—é\/ﬁ) o

y—2= —2v/2 2 (z— —\/_) & y=—2v2x + 6. Its reflection has equation y = 2v/2 x + 6.
In summary, there are three lines tangent to both circles: y = 2 touches at (0, 2), L touches at (3 V2, 2)and (2 V2, ),
and its reflection through the y-axis touches at (f 4.7, 3) and (f 22, 10)

' +a2®+2 2P+ 1)+2 2P (x+1) 2

12. = = =
f(@) 1+x r+1 r+1 a:—i—l

o+ 2(x+ 1)1

(46)(z) = (x*5)48) L 2 [(z + 1) ! (49 The forty-sixth derivative of any forty-fifth degree polynomial is 0, so
y y Torty gree polyn
(2**)*® = 0. Thus, f“ (z) = 2 [(—=1)(=2)(=3) - -- (—46) (z + 1) *T] = 2(46!)(z + 1)~*" and 9 (3) = 2(46!)(4)~*"

or (461)2793,

13. We can assume without loss of generality that @ = 0 at time ¢ = 0, so that # = 127t rad. [The angular velocity of the wheel
is 360 rpm = 360 - (27 rad)/(60 s) = 127 rad/s.] Then the position of A as a function of time is

_ . . . .y _ 40sinf sinf 1 .
A-(4Ocos@,4081n9)—(40C05127rt,4051n127rt),sosma——1'2m =0 — 3 = 351n127rt.

(a) Differentiating the expression for sin o, we get cos « - d_a = - - 127 - cos 12nt = 4w cosf. When § = g, we have

4 s
sma——sm@—— socosa = 17 1/ do _ WCOS?’ 27 47T\/gm6.56rad/s.
cosa 11/12 V11

(b) By the Law of Cosines, |[AP|* = |OA|> + |OP|> —2|OA||OP|cos§ =

120% = 40% + |[OP]* —2-40|OP|cos® = |OP|> — (80cosf) |OP| —12,800 =0 =

|OP| = 5(80cos 6 + /6400 cos? 6 + 51,200 ) = 40 cos § + 40 v/cos? f + 8 = 40(cos § + /8 + cos? f ) cm

[since [OP| > 0]. As a check, note that |[OP| = 160 cm when 6 = 0 and [OP| = 80 /2 cm when § = %
(c) By part (b), the z-coordinate of P is given by = 40(cos 6 + /8 + cos?f ), so

dxr  dx df 2cosfsinf cos 6
— = —— =40( —sinf - ————=) - 127 = —4807sinf| 1 + ——) cm/s.
dt  do dt ( 2\/8+cos29> ( \/8+cos29> /

In particular, dz/dt = 0 cm/s when § = 0 and dz/dt = —4807 cm/s when § = &
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The equation of Ty is y — 23 = 221 (x — x1) = 2x12 — 223 or y = 2212 — 3. v
The equation of T is y = 2z2x — x3. Solving for the point of intersection, we L P, 5)

1 1771
get2z(z1 — x2) =27 —x3 = = (@1 + x2). Therefore, the coordinates

) (a, a®)
of P are (5 (1 + x2), z122). So if the point of contact of T'is (a, a”), then By 22) 5
1
Quis (3(a+21),ax1) and Q2 is (3 (a + x2), axz). Therefore, . X 0 A X
|PQ:1)? = 1(a —22)” + 2%(a — 22)* = (a — 22)*(3 +27) and »
\PP1|2 = i(ml - x2)2 +a?(xy — :1:2)2 = (z1 — 1'2)2(% + x%)
2 2 2 2

So |PQu | = (@ = z2) and similarly 1PQa| | _ (21— a) 5. Finally, PG| + |PQs| =27  n7d g

\PPi> (@1 —x2)? |PPs> (21 — x2) |PPi| ' |PPy|  x1—xo @1 — o

It seems from the figure that as P approaches the point (0, 2) from the right, z7 — oo and yr — 27. As P approaches the
point (3, 0) from the left, it appears that z — 31 and yr — oco. So we guess that z7 € (3, 00) and yr € (2, 00). Itis
more difficult to estimate the range of values for zy and yn. We might perhaps guess that zny € (0, 3),
and yny € (—00,0) or (—2,0).

In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the

, 2oy 2r 2 4 . : .
tangent line: % + yZ =1 = Em + Zyy, =0,s0y" = —55 So at the point (zo, yo) on the ellipse, an equation of the

o 4 , , 5 v
tangent line is y — yo = —§ﬂ(x — xo) or 4zox + Yyoy = 4x3 + 9y3. This can be written as :%x + % = % + % =1,
Yo

because (o, yo) lies on the ellipse. So an equation of the tangent line is % + % =1.

Therefore, the z-intercept z for the tangent line is given by W7 1 o xr = —, and the y-intercept yr is given
Zo
4
by YT 1 o oy = —
4 Yo

So as xg takes on all values in (0, 3), z7 takes on all values in (3, 00), and as yo takes on all values in (0, 2), yr takes on

1 9 Yo

all values in (2, 00). At the point (xo, yo) on the ellipse, the slope of the normal line is —————— = —<—, and its
y/ (‘T07 yO) 4 xo
equation is y — yo = %Z—O(;r — 2). So the z-intercept = for the normal line is given by 0 — yo = %%(Z‘N —x0) =
0 0
4 . .
TN = ko +x0 = %, and the y-intercept yn is given by yn — yo = g£(0 —2g) = yYyn= _ o + 90 = —%.
9 9 4 xo 4 4

So as o takes on all values in (0, 3), z takes on all values in (0, 3), and as yo takes on all values in (0, 2), yx takes on
all values in (f%, O).
. sin(3+2)? —sin9
m

li

z—0

= f(3) where f(x) = sinz?. Now f’(z) = (cosz?)(2x), so f'(3) = 6 cos 9.
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17. (a) If the two lines L, and L2 have slopes m1 and mg2 and angles of
inclination ¢, and ¢,, then m; = tan ¢, and mz = tan ¢,. The triangle

in the figure shows that ¢, + o + (180° — ¢,) = 180° and so

a = ¢y — ¢;. Therefore, using the identity for tan(x — y), we have

t —t —
tana = tan(g, — ¢,) = 2082 ~8NOL g0 tan o = 22T
1+ tan ¢, tan ¢, 14+ mima

(b) (i) The parabolas intersect when 2 = (z — 2)> = = 1.Ify = 2, theny’ = 2z, so the slope of the tangent
toy =2%at(1,1)ismy = 2(1) = 2. Ify = (z — 2)?, then 3y = 2(x — 2), so the slope of the tangent to

. — —2-2 4
y=(x—2)%at (1,1) is me = 2(1 — 2) = —2. Therefore, tan o = fl_im:nmlz =17 32) =3 and

soa =tan"'(5) ~ 53° [or 127°].
(i) 2> — y* = 3and 2* — 42 + y® + 3 = O intersect when 22 — 4z + (2> —3) +3 =0 < 22(r—-2)=0 =
x = 0 or 2, but 0 is extraneous. If x = 2, theny = +1. If2® —y> =3 then22 —2yy' =0 = ¢’ = /yand

22 —dx+ 9P +3=0 => 22442y =0 = y':2_Tx.At(2,1)theslopesarem1:2and

mo = 0,80 tana = % =-2 = a=117° At(2,-1) the slopes are m; = —2 and ma = 0,

0-(=2)

so tana =

18. > =4pr = 2yy' =4p = y =2p/y = slope of tangent at P(x1,1) is m1 = 2p/y1. The slope of FP is

me = = Y1 e so by the formula from Problem 17(a),
L —
2
e — T =P oy yi(m—p) i =2 —p) _ 4pma — 2pas +2p?
1+ (2_17) ( Y1 ) yi(z1—p) v —p)+2py1 Ty — py1 + 2p
Y1 I —p

= 2p(p—+xl) = 2 = slope of tangent at P = tan 3

Cplptr)  wm

Since 0 < «, B < 7, this proves that o = 3.

19. Since ZROQ = ZOQP = 0, the triangle QOR is isosceles, so

|QR| = |RO| = z. By the Law of Cosines, z> = 2% + r* — 2rx cos 6. Hence,

T2

o = o Notethatasy — 07,0 — 0" (since

2rzcosl =12 sox =

sin @ = y/r), and hence © — E—— Thus, as P is taken closer and closer
2cos0 2

to the z-axis, the point R approaches the midpoint of the radius AO.

f@) = JO) @ =0
20. tim L&) _ 4 J@ =0 J@ SO 220 _sz0 a-0 ___ f(0)
a0 g(z) ==0g(x) =0  a=0 g(z) —g(0) =0 g(x) =9(0) . g(x)=9(0) g'(0)
z—0 z—0 x—0
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sin(a + 2z) — 2sin(a + ) +sina

21. lim .-
— lim sina cos2x + cosa sin2x — 2sina cosx — 2cosa sinz + sina
T 250 x2
— lim sina (cos 2z — 2cosx + 1) + cosa (sin 2z — 2sin z)
B x—0 J,‘Z
1 sina (2cos’x — 1 —2cosz + 1) + cosa (2sinz cosz — 2sin )
- IEI%) 1‘2
~ lim sina (2cosz)(cosx — 1) 4+ cosa (2sinz)(cosz — 1)
T 350 x2
— lim 2(cosz — 1)[sina cosz + cosa sinz](cosz + 1)
C 250 x2(cosz + 1)
— lim —2sin® z [sin(a + x)] — 9lim sinz\’ osin(a+a) (1) sin(a+0) _ sing
=0 x?(cosz + 1) x>0\ cosz + 1 cos0+1

22. Suppose that y = ma + c is a tangent line to the ellipse. Then it intersects the ellipse at only one point, so the discriminant

2 2
of the equation % + w =1 & (b +a’m?)2® + 2mea’zs + a®c® — a®b® = 0 must be 0; that is,

0 = (2mca®)? — 4(b* + a®>m?)(a®c® — a®b?) = 4a*Pm? — 4a®b*c® + 4a*b* — 4a*Pm® + 4a*V*m?

= 4ab*(a*m? +1* — )

Therefore, a?m? + b — c2 = 0.
Now if a point (v, 8) lies on the line y = max + ¢, then ¢ = 3 — ma, so from above,

2a3 b2 — B2
2_azm+ a2 — a2

0=a’*m*>+b* — (B —ma)® = (a®> —a®)m? + 2afm +b* — 7 < m?+
a
(a) Suppose that the two tangent lines from the point («, ) to the ellipse

1 1 .
have slopes m and —. Then m and — are roots of the equation
m m

2 _ 52
22+ 2af z+b ﬂz:O.Thisimpliesthat(z—m)(z—%):O &

a? —a? a? —«a

) 1 1 . .
z“—(m+ — |z4+m| — ) =0, so equating the constant terms in the two
m m

. ‘ - B 1 .
quadratic equations, we get % = m(a) = 1, and hence b* — 3% = a® — &®. So (a, B) lies on the

X2 —yr=a?—b?

hyperbola z? — y? = a® — b°.
(b) If the two tangent lines from the point («, ) to the ellipse have slopes m X+ yr=a*+b?

1 1 . .
and ——, then m and —— are roots of the quadratic equation, and so
m m

(z—m) (z + i) = 0, and equating the constant terms as in part (a), we get
m

b2_62

a2 — o2

= —1, and hence b> — 32 = o — a?. So the point (o, 3) lies on the

circle 2% + % = a? + b2.
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23 y=a*—222 —2x = 3y =4a® — 42 — 1. The equation of the tangent line at = = a is
y — (a* — 2a® — a) = (4a® — 4a — 1)(x — a) ory = (4a® — 4a — 1)x + (—3a* + 2a*) and similarly for x = b. So if at
x = a and = b we have the same tangent line, then 4a® — 4a — 1 = 4b% — 4b — 1 and —3a* + 2a® = —3b* + 2b2. The first
equation gives a® —b* =a —b = (a—b)(a®+ ab+b?) = (a — b). Assuming a # b, we have 1 = a® + ab + b*.
The second equation gives 3(a* — b*) = 2(a® — b?) = 3(a® — b?)(a® + b?) = 2(a® — b*) which is true if a = —b.
Substituting into 1 = a® + ab + b* gives 1 = a®> —a® +a> = a = *lsothata = 1andb = —1 or vice versa. Thus,
the points (1, —2) and (—1, 0) have a common tangent line.

As long as there are only two such points, we are done. So we show that these are in fact the only two such points.

Suppose that a® — b% # 0. Then 3(a® — b*)(a® + b*) = 2(a® — b°) gives 3(a® + b*) =2 ora® +b* = 2.

2 1 1 1 2
Thus,ab:(a2+ab+b2)—(a2+bz):1—§:g,sobzg—a.Hence,cf—&—W25,509a4+1:6a2 =
4 2 2 2 2 2 _ 1 2 1 1 2 -~ .
0=9a"—6a"+1=(3a*—-1)*.S03a*-1=0 = a =3 = b =92 =30 , contradicting our assumption

that a® # b2

24. Suppose that the normal lines at the three points (al, a%) s (ag, a%), and (LL3, a%) intersect at a common point. Now if one of

the a; is O (suppose a1 = 0) then by symmetry a2 = —as, so0 a1 + a2 + az = 0. So we can assume that none of the a; is 0.

The slope of the tangent line at (ai, af) is 2a;, so the slope of the normal line is — 5 and its equation is

(3

1 . . . .
y—aZ=— 5 (z — ai). We solve for the z-coordinate of the intersection of the normal lines from (a1, a?) and (az,a3):

a;

1 1 1 1
y=a§—2—al(r—a1)=a§—2—a2(m—a2) = x(TQ—E):a%—a% =

x <a1 — a2> = (—a1 —a2)(a1 +a2) & 2z =—-2a1a2(a1 +a2) (1). Similarly, solving for the z-coordinate of the

2a1 a2
intersections of the normal lines from (al, a%) and ((13, a%) gives x = —2a1a3(a1 +as) (2).
Equating (1) and (2) gives az(a1 + a2) = as(ar +a3) < ai(az —as) = a3 — a3 = —(az +as)(az — a3) <
a1 = —(az +a3) & a1+az+a3=0.

25. Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 x 2 grid shown. We can see that

the minimum value of r occurs when there is a line with slope % which touches the circle centered at (3, 1) and the circles

__5
(5,2) slope = —7(\
(0]

/ ‘P

centered at (0, 0) and (5, 2).

To find P, the point at which the line is tangent to the circle at (0, 0), we simultaneously solve 2> + y* = r? and
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y=-3%2 = 2P+LP=1" = =% = x:\/%r,y:—\/%r.ToﬁndQ,weeitherusesymmetryor
solve (x —3)*+ (y —1)> =r’andy — 1 = —3(z — 3). As above, we getz = 3 — \/_ y*l—&—\/_r Now the slope of

5 5
1+ET—(—ET) 1t VEItlor 2

the line PQ is 2, so mpq = 5 > : =
37\/—2_97‘7\/—2—97’ 3*\/—2—97’ 3\/@—47“ 5

5v29450r =6v29—-8r & B88r=v29 & r= %. So the minimum value of » for which any line with slope %

intersects circles with radius r centered at the lattice points on the plane is 7 = % ~ 0.093.

26. Assume the axes of the cone and the cylinder are parallel. Let H denote the initial
height of the water. When the cone has been dropping for ¢ seconds, the water level has

risen x centimeters, so the tip of the cone is z + 1¢ centimeters below the water line.

Izsgir We want to find dx/dt when = + ¢ = h (when the cone is completely submerged).
Using similar triangles, x:l_ ;= % = = %(m +1).
volume of water and cone at time¢ =  original volume of water +  volume of submerged part of cone
TR?(H + ) = TR*H + imri(z+t)
2
TR*H + nR%x = TRH + %Tr%(x +1)3
3R’ R%x = r2(x + )3
. e . . 252 dT .2 5 dx o dt
Differentiating implicitly with respect to ¢ gives us 3h° R i 3(x+t) T +3(z+1t) u =
dx r?(z 4 t)? dx r2h? r? o
i m = P N = IR 22 R g2 Thus, the water level is rising at a rate of
’f'2
Tz, om /s at the instant the cone is completely submerged.
- . r h 5h .
27. a By similar triangles, — = — = 7 = —. The volume of the cone is
_ 5 16 16
5h\*, 257 oV _ 25m, 5 dh
_1..2p _ 1 3 2
\/ V= zgmr h—§7r<ﬁ> h = 768h T 256h e Now the rate of

change of the volume is also equal to the difference of what is being added

(2 em® /min) and what is oozing out (k7rl, where 77l is the area of the cone and k&

I/

is a proportionality constant). Thus, (ilV =2 —knrl.

Equating the two expressions for % and substituting h = 10, % =-03,r= %ﬁ?) = %5, and ﬁ = 1—2
l= g V281, we get 25?2(10) (-0.3) =2— k:7r§ g V281 & 12516671-7428 =2+ % Solving for k gives us
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256 + 3757

= —————— To maintain a certain height, the rate of oozing, k7rl, must equal the rate of the liquid being poured in;
2507 /281 g g q q &P

that 1s,—V = 0. Thus, the rate at which we should pour the liquid into the container is

dt
el — 256 + 3757 o 25 5v281 _ 256 4 3757 ~ 11.204 cm*/min
2507 /281 8 8 128
28. (a) f(z) =2(x—2)(x —6) =2° — 82 + 12z = 8
f'(z) = 32® — 162 + 12. The average of the first pair of zeros is ) 8

(0+2)/2 =1. Atz = 1, the slope of the tangent line is f'(1) = —1, so an

equation of the tangent line has the form y = —1x + b. Since f(1) = 5, we

have 5= —1+4+b = b= 6 and the tangent has equation y = —z + 6. -18

Similarly, at z = # =3, y=-9z+ 18 atx = 2—;6 = 4, y = —4x. From the graph, we see that each tangent line

drawn at the average of two zeros intersects the graph of f at the third zero.
(b) ACAS gives f'(z) = (z —b)(x — )+ (x —a)(z — ¢) + (x — a)(x — b) or

f'(z) = 32% — 2(a 4+ b+ c)x + ab + ac + be. Using the Simplify command, we get

)2 )2
f’(a;b) :_(a 4b) andf(a;b) :_(a 86) (a+b—20),soanequationofthetangentlineat:c:QT—H)

_ )2
(m _— _2'_ b) _ e 3 b) (a + b — 2c). To find the z-intercept, let y = 0 and use the Solve

command. The resultis x = c.

Using Derive, we can begin by authoring the expression (z — a)(xz — b)(x — ¢). Now load the utility file
DifferentiationApplications. Next we author tangent (#1, z, (a + b)/2)—this is the command to find an
equation of the tangent line of the function in #1 whose independent variable is x at the z-value (a + b)/2. We then
simplify that expression and obtain the equation y = #4. The form in expression #4 makes it easy to see that the
x-intercept is the third zero, namely c. In a similar fashion we see that b is the x-intercept for the tangent line at (a + ¢)/2

and a is the z-intercept for the tangent line at (b + ¢)/2.

#1l: (x - a)-(x - b)-(x - ¢)

#2: LOAD(C:\Program Files\TI Education\Derive 6\Math\DifferentiationApplications.mth

a+b
#3: TANGENT[(X -a)-(x - b)-(x - c), x, ]

2

#4:
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