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Chapter 1 Solutions

1.1 Part (c) is false. The predicted value of Y when X = 2is Y = 100 4 15(2) = 130, not 110.
Parts (a), (b), and (d) are true.

1.2 A residual plot does not help assess (c¢) the condition of independence of the residuals. It does
help assess (a) linearity, (b) constant variance, and (d) zero mean.

1.3 The slope is given in the output under the heading Coef for the predictor WingLength. The
estimate is 1 = 0.4674.

1.4 The slope is given in the output under the heading Coef for the predictor Year. The estimate
is B1 = 0.01251.

1.5 The intercept is given in the output under the heading Coef for the Constant. The estimate
is By = 1.3655.

1.6 The intercept is given in the output under the heading Coef for the Constant. The estimate
is Bp = —16.47.

1.7 As wing length increases by 1 mm, the weight increases by 0.4674 g, on average.
1.8 As year increases by 1, the length of the winning long jump increases by 0.01251 m, on average.

1.9 The regression standard error is given in the output as S = 1.39959. We can also compute
this from the information given in the Error row of the Analysis of Variance:

Oc = \/SSE = \/223'31 1.959 = 1.39959

n—2 116 —2

A typical deviation of a sparrow weight from the line predicted by its wing length might be about
1.4 grams.

1.10 The regression standard error is given in the output as S = 0.259522. We can also compute
this from the information given in the Error row of the Analysis of Variance:

E 1.751
Oc = \/SS = \/ [CE v 0.06735 = 0.2595

n—2 \[28—2

A typical deviation of a winning Olympic long jump length from the line predicted by its year
might be about 0.26 meters.

1.11 The degrees of freedom for the regression standard error are n — 2 = 116 — 2 = 114. The
value also appears in the DF column of the Analysis of Variance section of the output.
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The degrees of freedom for the regression standard error are n — 2 = 28 — 2 = 26. The value

also appears in the DF column of the Analysis of Variance section of the output.

1.13

1.14

1.15

1.16

1.17

1.18

1.19

The predicted value is g3 = 25 + 7(10) = 95. The residual is y; — g1 = 100 — 95 = 5.
The predicted value is §; = 78 — 0.5(30) = 63. The residual is y; — 1 = 60 — 63 = —3.

a. Computer output gives the fitted regression model as Width = 37.72 — 0.01756Y ear

. As Year increases by 1, Width decreases by 0.01756 mm, on average.

. Plugging 1966 into the fitted regression equation, we get 37.72 — 0.01756(1966) = 3.197 mm.

a. The computer output gives the fitted regression model as Eégs = —8.98+7.33Lantern.

. As lantern size increases by 1 mm, the predicted number of eggs laid increases by 7.3 on

average.

. Plugging 14 into the fitted regression equation, we get —8.98 + 7.33(14) = 93.6 eggs.

a. The computer output gives the fitted regression equation as M aach’];Strength =
36.16 + 4.705Attractive.

. As Attractive increases by 1, MaxGripStrength increases by 4.7 kg, on average.

. Plugging 3 into the fitted equation from part (a) we get a predicted M aach’];Strength =

36.16 4 4.705(3) = 50.3 kg.

a. The computer output gives the fitted regression equation as M aajGri];Strength =93+
29.0SHR.

. As SHR increases by 1, MaxGripStrength increases by 29 kg, on average.

. Plugging 1.5 into the fitted equation from part (a) we get a predicted M amGri];Strength =

9.3 +29.0(1.5) = 52.8 kg.

a. The scatterplot shows a moderate positive association between Calories and Sugar.
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b. Based on regression output, the prediction equation is Calories = 87.43 + 2.48S5ugar.

c. For every additional gram of sugar in a serving of cereal, the expected calories increase by
2.48 calories.

1.20  a. There is a clear, linear, and strong relationship between list price and sale price, as the
plot indicates.
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b. The regression summary is given below.
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Coefficients:
Estimate Std. Error t value Pr(>[tl)
(Intercept) -1.448e+02 5.236e+02 -0.277 0.782
ListPrice 9.431e-01 3.201e-03 294.578 <2e-16 **x*

Signif. codes: O **x 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 8019 on 927 degrees of freedom
Multiple R-squared: 0.9894,Adjusted R-squared: 0.9894

This shows us that the regression equation is SalePrice = —144.8 + 0.943 List Price.

. Each increase of a dollar to the list price corresponds to a $0.94 increase in sales price.

a. The prediction equation is Calories = 87.43 + 2.48S5ugar, so when Sugar = 10, the
predicted Calories is Calories = 87.43 + 2.48(10) = 112.23 calories.

. For Cheerios, Calories = 87.43 + 2.48(1) = 89.91, so the residual is 110 — 89.91 = 20.09

calories.

. Although there is a somewhat positive association, there is still quite a bit of scatter away

from the line.
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a. The prediction equation is Sale/ﬁr/ic\e = —144.840.943 List Price, so when List Price =
99, 500, the predicted SalePrice is SalePrice = —144.8 4+ 0.943(99, 500) = 93, 683.7 dollars.
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b. For the house at 1317 Prince St, SalePrice = 93,683.7, so the residual is 95,000—93, 683.7 =
1316.3 dollars.

c. The relationship between list price and sales price is very strong and linear for the sample of
houses from Grinnell, Iowa.
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1.23 a. The scatterplot with the least squares line illustrates a very good fit and does not suggest
any outliers or influential points.
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b. A histogram of the residuals shows a nice bell-shaped pattern centered at zero. Thus, the
histogram does not reveal any problems with the conditions for this simple linear model.
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¢. A normal probability plot shows a clear linear pattern. Thus, the residuals appear to follow
a normal distribution.
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B
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1.24 a. The scatterplot with the least squares line illustrates a good fit. There is one point that
is higher than expected in 1968.

9.0

b. A histogram of the residuals shows a mostly nice bell-shaped pattern centered at zero. There
is one larger residual that might cause one to worry.

Frequency
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¢. A normal probability plot shows a clear linear pattern. Once again there is one residual that
is larger and does not fit the pattern.
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1.25 a. The scatterplot shows a weak downward trend; homes farther away from the bike trail
tend to sell for less. The scatter about the trend line is great for homes near the trail and
much smaller for homes far away from the trail.
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b. The equation of the best-fit line is AdjéOO? = 388.204 — 54.427Distance. Each mile farther

from a trail reduces, on average, the selling price by about 54,000 dollars.

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept)
Distance

Residual standard error: 92.13 on 102 degrees of freedom

388.204
-54.427

14.052 27.626

9.659

< 2e-16 *x*x
-5.635 1.56e-07 **x*

Multiple R-squared: 0.2374,Adjusted R-squared: 0.2299

F-statistic: 31.75 on 1 and 102 DF,

p-value: 1.562e-07

c. The regression standard error is 92.13. If model conditions are met, then the average deviation
from the line is about 92,000 dollars.
because of the lack of consistent scatter about the line.

Such a simple interpretation is compromised here
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d. The model conditions are violated here because of the lack of consistent scatter about the
line, as mentioned in part (a).

1.26 a. The scatterplot shows a fairly strong, positive, linear trend between SquareFeet and
Adj2007.
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b. The equation of the simple linear regression line is:
Adj2007 = 72.973 + 162.526SquareFeet.

Each additional thousand squarefeet of floorspace is associated with an approximate added
$162,000 in selling price.

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 72.973 15.541 4.695 8.32e-06 *x*x*
squarefeet 162.526 9.351 17.381 < 2e-16 *%*

Signif. codes: O ***x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 53 on 102 degrees of freedom
Multiple R-squared: 0.7476,Adjusted R-squared: 0.7451
F-statistic: 302.1 on 1 and 102 DF, p-value: < 2.2e-16

¢. The regression standard error for this model is 53,000; on average, the line predicts selling
price to within about 53,000 dollars of reality.

d. There is a slight nonconstancy of variance, as evidenced by the residual-versus-fit plot; larger
homes are associated with larger residuals from the line.
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1.27  a. The scatterplot shows that as Time increases, Voltage goes down sharply. However,
the decrease shows a nonlinear (curved) pattern.

Voltage

Time

b. The residual versus fits plot shows a clear curved pattern.
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c. After creating a new variable, logV oltage, the scatterplot with Time (below) is much more
linear.
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d. Fitting the regression line with technology gives the output

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.189945 0.004637 472.3 <2e-16 **x
Time -2.059065 0.008154 -252.5 <2e-16 *xx*

This yields the prediction equation logV/OTtage = 2.19 — 2.059Ttme.
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e. The plot of residuals versus fitted values for the model to predict logV oltage shows a strik-
ing curved pattern in the residuals. The original (transformed) data have a mostly linear
relationship, but some curvature remains after the dominant linear trend is removed. Using
the regression model will give predictions that are too high in the middle and too low at the

1.28

extremes of the Time range.
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a. The scatterplot is below. There is clearly a reasonably strong, negative trend to this
data. As the years go on, in general, the FExtent of the sea ice is decreasing. This trend is
not, however, linear. There is curvature to it that suggests that as time goes on the amount

of decrease is increasing.
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b. The residuals versus fits graph which follows also shows the curvature. In fact, it is somewhat
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easier to see in this plot. Given this amount of curvature, we should not fit a linear model to
this data.
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c. The scatterplot is below. While there is still some curvature, it is much less than in the
scatterplot from part (a).
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d. The residuals versus fits graph (given below) also shows that there is less curvature in this
relationship.
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e. The scatterplot and residual plot are given below. In this case there seems to be a decent
linear relationship. Very little curvature is evident in either plot.

500

° .
e o .
. L L]
400
. ® .
o. .
3 300 . L]
- L L
E . « °*° .
$ 200 ¢ e
@
. o,
100 e % e
@
.
0
0 10 20 30 40
baseyear
200 .
150
100 *
B
3 L] .
®
:g Bl oo . L .
-4 . * o . .
0 . . o
e b .
.
50 o * * .
L ] . kst L]
. .
-100 b4 .
100 200 300 400 500
Fitted Value

f. The most linear model is the one with the cube of Extent. The data is sufficiently linear that
this model would be appropriate.
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1.29  a. The scatterplot of WetFrass versus Mass shows clear curvature with more variability
in the amount of wet frass for the larger caterpillars.
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b. The scatterplot of LogW et F'rass versus LogM ass shows a strong positive association between
the transformed variables, with intermittent periods of increased variability.
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¢. The log transformed variables show a more linear pattern. The fitted regression line for these

variables is
LogW/e?F’rass = —0.739 + 1.0564LogM ass

d. Here is a plot for the relationship with different symbols/colors for the five Instar groups.
There is curvature within the Instars, especially for the larger caterpillars in each group, but
the linear model provides a good summary of the overall pattern for each Instar.
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e. Here is a plot for the relationship with different symbols/colors for the free-growth and no-
free-growth periods. Yes, the overall pattern is definitely more linear when the caterpillars
are in a free-growth period.
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1.30 a. The scatterplot of Nassim versus Mass shows clear curvature (perhaps quadratic) with
more variability in nitrogen assimilation for the larger caterpillars.
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b. The scatterplot of LogNassim versus LogM ass shows a strong positive association between
the transformed variables, slightly curved but much more linear than the untransformed

variables. There are a couple of intermittent periods of increased variability.
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¢. The log transformed variables show a more linear pattern. The fitted regression line for these

variables is

Logmssim = —1.89+0.371LogMass

d. Here is a plot for the relationship with different symbols/colors for the five Instar groups.
There appears to be some curvature within some of the Instars, especially for Instars 3, 4,
and 5. However, the linear model provides a good summary of the overall pattern for the first

two or three Instars.
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e. Here is a plot for the relationship with different symbols/colors for the free-growth and no-
free-growth periods. Yes, the overall pattern is definitely more linear when the caterpillar is
in a free-growth period. The curvature for Instars 3, 4, and 5 is coming from the points
when the caterpillars are NOT in a free-growth period.
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1.31 a. The scatterplot of Mass versus Intake shows a nonlinear pattern—perhaps even two
very different lines.
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b. The scatterplot of LogMass versus LogIntake shows a more consistent positive association
between the transformed variables with a slightly curved pattern that increases less steeply
for larger values of LogIntake.
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c. No, the association for the transformed variables is somewhat more linear, but the linear
model does not appear like it would provide a good fit in either situation.

1.32  a. The scatterplot of Intake versus Mass shows substantial curvature with increasing
variability in Intake as Mass increases.
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b. The scatterplot of LogIntake versus LogMass shows a more consistent positive association
between the transformed variables, although there a several places that show increased vari-
ability and decreased values in LogIntake for relatively specific larger values of LogMass.
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c. The log transformed variables show a more linear pattern. The fitted regression line for these

variables is -
LogIntake = 0.169 + 0.417LogM ass

d. Here is a plot for the relationship with different symbols/colors for the five Instar groups.
There appears to be some curvature within some of the Instars, especially for Instars 3, 4,
and 5. However, the linear model provides a good summary of the overall pattern for the first
two or three Instars.
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1.33 a. The scatterplot shows a strong positive linear association between Price and Year. The
first four points do not fit the overall linear pattern well, but the cost of mailing a letter must
be greater than 0 cents!
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b. Here is some output for fitting @E model after eliminating the first four observations. This
shows the least squares line is Price = —1647.17 + 0.841Y ear.

Predictor Coef SE Coef T P
Constant -1647.17 46.86 -35.15 0.000
Year 0.84098 0.02357 35.68 0.000

c. A plot of Price versus Year with the regression line after the first few points are omitted
follows. The regression line appears to provide a very good fit. The first two prices are above
the regression line and then the next five prices are below the regression line, but this regular
pattern is not present for the rest of the points. The overall trend is clearly linear.
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Several plots of residuals are shown as follows. The normal probability plot is linear with
only one unusually large point in the top right corner, but the normality condition appears
to be reasonable. The histogram of the residuals is roughly symmetric and centered around
zero, with the exception of the one unusually large residual. The plot of the residuals against
the fitted values illustrates the regular pattern for the first seven points, but then shows the
unstructured pattern. The conditions appear to be reasonably well met for these data.
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. The largest residual is for the first year, 1958, where the stamp price was 4 cents and the

predicted price based on the fitted model is Price = —1647.17 + 0.841(1958) = —0.49 to give
a residual of 4 —(—0.49) = 4.49 (or a residual of 4.53 using software and more decimal places).
Also using software, the standardized residual for 1958 is 2.95, which is somewhat unusually
large.

a. Scatterplots for the relationship between Enrollment and Y ear are shown below for the
spring and fall semesters. The overall trend for mathematics enrollments in the fall is very
weak and slightly decreases over time. In the spring, the association is positive and moderate.
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b. No, the overall association is negative, but weak. The following scatterplot shows the least
squares line of Spring = 351.1 — 0.3266F'all, with an unusual point in the upper right.
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c. The third observation from 2003 has an unusually high fall enrollment of 343 and a spring
enrollment of 288.

d. After removing the 2003 data, the association between fall and spring math enrollments
looks much stronger. The least squares line without AYear = 2003 (shown as follows) is
Spring = 548 — 1.0483Fall. The substantial changes in both the intercept and slope of the
least squares line indicate that the enrollments in 2003 should be tagged as influential.
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1.35 a. The scatterplot shown below displays a weak positive linear relationship between the
initial seedling height and the height in 1996.
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b. Here is some output for fitting the model for height in 1996 based on height in 1990. This
shows that the least squares line is Hgt96 = 241.3 + 2.250H ¢gt90.

The regression equation is Hgt96 = 241 + 2.25 Hgt90

Predictor Coef SE Coef T P
Constant 241.285 8.621 27.99 0.000
Hgt9o0 2.2504 0.4311 5.22 0.000

¢. The preceding scatterplot and some residual plots that follow show that there is considerable
variation around the least squares line, with a regression standard error of 69.0173. The
normal probability plot is roughly linear, with one unusually small residual, but otherwise
the normality condition is met. Overall, the conditions for the linear model are met, and the
linear model provides a reasonable fit.
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1.36 a. The scatterplot shown below displays a
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initial seedling height and the height in 1997.
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weak positive linear relationship between the

b. Here is some output for fitting the model for height in 1997 based on height in 1990. This
shows that the least squares line is Hgt97 = 307.44 + 2.3224H gt90.

The regression equation is Hgt97 = 307 + 2.32 Hgt90

Predictor Coef SE Coef T P
Constant 307.439 9.841 31.24 0.000
Hgt9o0 2.3224 0.4920 4.72 0.000

. The preceding scatterplot and some residual plots that follow show that there is considerable

variation around the least squares line, with a regression standard error of 78.79. The normal
probability plot is roughly linear, with very slight curvature in the tails. Overall, the normality
and constant variance conditions for the linear model are met, and the linear model provides

a reasonable fit.
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Residual Plots for hgt97
Normal Probability Plot Versus Fits
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1.37  a. Yes, there is only one year of growth between the heights in 1996 and 1997, so the linear
relationship should be much stronger than the relationship between the initial seedling height
and the height in 1997.

b. Here is some output for fitting the model for height in 1997 based on height in 1996. This
shows that the least squares line is H¢t97 = 40.6 + 1.10H gt96.

The regression equation is Hgt97 = 40.6 + 1.10 Hgt96

Predictor Coef SE Coef T P
Constant 40.591 2.524 16.08 0.000
Hgt96 1.09606 0.00873 125.49 0.000

c. Yes, there is a strong, positive, linear relationship between the heights in 1996 and 1997. The
regression standard error is 18.4653, and the heights are tightly clustered around the least
squares line.

0 100 200 300 400 500
Hgt96

1.38 Following is some output for fitting the model for ProteinProp based on Calcium.
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The regression equation is Proteinp = 2.07 + 0.175 Calcium
Predictor Coef SE Coef T P
Constant 2.06586 0.08876 23.28 0.000
Calcium 0.17514 0.01107 15.82 0.000

S = 0.119866 R-Sq = 83.6% R-Sq(adj) = 83.3Y%
a. In the output, we see that the least squares line is Prot%Prop = 2.0659 4 0.1751Calcium.

b. In the output, we see that the regression standard error is g, = 0.119866.

c. A scatterplot with the regression line is shown as follows. The regression line does not
provide a good fit. The overall pattern shows some curvature and a more complex model
would probably work better.

1.24
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Calcium

d. The linearity condition is not met. The plot of the residuals against the fitted value shows
a very clear pattern, which indicates that a more complicated model might be needed. The
normal probability plot shows some slight departures from linear trend in the tails, but the
overall pattern is linear, so the normality condition does seem reasonable. The histogram of
the residuals is very roughly symmetric and centered at zero. The plot of residual against
order shows a very clear pattern, which indicates that the residuals are not independent of

time order.
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Residual Plots for Proteinp
Normal Probability Plot Versus Fits
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1.39 a. The scatterplot below shows a strong positive association between Cassim and Intake.
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b. Here is some output for fitting ﬁlle model to predict Cassim based on Intake. This shows
that the least squares line is C'assim = 0.00379 4 0.0639Intake.

The regression equation is Cassim = 0.00379 + 0.0639 Intake

Predictor Coef SE Coef T P
Constant 0.003787 0.001317 2.88 0.004
Intake 0.0639029 0.0004908 130.21 0.000

c. No, the conditions for inference are not met. The plot of residuals against fitted values shows
that the variance is not constant, rather it increases for larger values of C'assim. The normal
probability plot shows clear departures from a linear trend, indicating a lack of normality,
which is also reflected in the histogram of the residuals that is skewed to the left.
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Residual Plots for Cassim
Normal Probability Plot Versus Fits
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1.40 a. The scatterplot that follows shows a positive association between Nassim and WetFrass
that is strong for small values of WetF'rass, but less strong with much more variability for
larger values of WetFrass.

Nassim
o
o
w

WetFrass

b. Here is some output for ﬁtggg the model for Nassim based on WetFrass. This shows that
the least squares line is Nassim = 0.00606 + 0.0154WetFrass.

The regression equation is Nassim = 0.00606 + 0.0154 WetFrass

Predictor Coef SE Coef T P
Constant 0.0060618 0.0006913 8.77 0.000
WetFrass 0.0153991 0.0006830 22.55 0.000

c. No, the conditions for inference are not met. The plot of residuals against fitted values shows
that the variance is not constant, rather it increases for larger predicted values of Nassim.
The normal probability plot shows clear departures from a linear trend, indicating a lack of
normality. This is also reflected in the histogram of the residuals, which is not bell-shaped.
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Also, the plot of residuals versus data order shows a regular, repeating pattern of increasing
values followed by one big decrease.

Residual Plots for Nassim
Normal Probability Plot Versus Fits
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1.41 a. The scatterplot below shows that stem diameter and gall diameter in 2003 are positively
associated, but the association is weak.
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b. The scatterplots below show that wall thickness in 2003 has a stronger linear relationship
with gall diameter than with stem diameter.
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c. Here is some output for fitting the model for predicting Wall03 based on Gdiam03. It shows

that the least squares line is Wall03 = —1.0521 + 0.36821Gdiam03.

The regression equation is WallO3 = - 1.05 + 0.368 GdiamO3
Predictor Coef SE Coef T P
Constant -1.0521 0.4010 -2.62 0.009
Gdiam03 0.36821 0.02004 18.38 0.000

S =

1.50114

R-Sq

= 36.3%

R-Sq(adj) = 36.2%

d. The fitted value when Gdiam03 = 20.7 is Wall03 = —1.0521 + 0.36821(20.7) = 6.57, and the

residual is 6 — 6.57 = —0.57.

e. We see in the output of part (c) that the regression standard error (that estimates the mag-
nitude of a typical error) is . = 1.50.

1.42  a. The scatterplot below shows that stem diameter and gall diameter in 2004 are positively
associated, but the association is weak.
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b. The scatterplots that follow show that wall thickness in 2004 has a stronger linear relationship
with gall diameter than with stem diameter.
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c. Here is some output for fitting the model for predicting Wall04 based on Gdiam04. Tt shows
that the least squares line is Wall04 = —0.845 + 0.3632Gdiam04.

The regression equation is WallO4 = - 0.845 + 0.363 Gdiam04

Predictor Coef SE Coef T P
Constant -0.8450 0.3577 -2.36 0.018
GdiamO4 0.36317 0.01719 21.12 0.000

S = 1.60835 R-Sq = 32.2% R-Sq(adj) = 32.1%

d. The first measurement for the wall thickness is missing in 2004, so we need to use the first
observation with measurements on both variables. The fitted value when Gdiam04 = 23.1 is
Wall04 = —0.845 + 0.3632(23.1) = 7.54, and the residual is 9.4 — 7.54 = 1.86.

e. We see in the output of part (c) that the regression standard error (that estimates the mag-
nitude of a typical error) is 6 = 1.61.

1.43  a. Below you will find fitted line plots for both the 2-D and 3-D models. From these we
see that both linear fits are tight, but that 3-D is clearly a bit tighter fit. Both correlations
are high and both relationships look to be linear.
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b. The regression tables are given below. The typical size of an error when predicting with
2-D—the standard error for regression (below called the residual standard error)—is 1.183.
For 3D this value is 0.6488. So 3-D makes more precise predictions. Also the 3-D model wins
the R-squared contest: 95.37% versus 84.61%.

2D summary:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.367e-01 9.076e-01  0.371 0.713
TwoD 2.649e-04 2.135e-05 12.406 6.77e-13 **x*
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Signif. codes: O *x*x 0.001 *x 0.01 *x 0.05 . 0.1 1

Residual standard error: 1.183 on 28 degrees of freedom
Multiple R-squared: 0.8461,Adjusted R-squared: 0.8406
F-statistic: 1563.9 on 1 and 28 DF, p-value: 6.77e-13

3D summary:

Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 4.196e-01 4.671e-01  0.898 0.377
ThreeD 2.475e-06 1.031e-07 24.019 <2e-16 **x*

Signif. codes: O *x*x 0.001 *x 0.01 *x 0.05 . 0.1 1

Residual standard error: 0.6488 on 28 degrees of freedom
Multiple R-squared: 0.9537,Adjusted R-squared: 0.9521
F-statistic: 576.9 on 1 and 28 DF, p-value: < 2.2e-16

1.44  a. As pages go up, price goes up. There is a linear trend evident here, although the points
do not cluster tightly.
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b. Fitting the regression line with technology gives the output
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1.45

Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) -3.42231  10.46374 -0.327  0.746
Pages 0.14733 0.01925 7.653 2.45e-08 **x

This yields the prediction equation Price = —3.42 + 0.1473Pages.

. A plot of residuals versus fitted values for the regression of Price on Pages is shown on the

next page. The linearity condition is met, as there is no trend in the residuals. However,
there is something of a megaphone pattern here, with larger variability for large predictions
(i.e., high page and price values) than for small predictions (low page and price values). Thus,
the homoscedasticity condition is somewhat in doubt—although things don’t look too bad,
as the spread in the residuals is fairly constant when Pages is above 60.
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a. A boxplot of the Time variable shows a reasonably symmetric distribution.
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Some summary statistics for the sample of 15 game times are given in the table that follows.

‘ min ‘ Q1 ‘median ‘ mean‘ Q3 ‘ max ‘std dev‘

| 161.0 | 168.8 | 194.5 | 191.6 | 204.3 | 235.0 |

22.1 |

b. Scatterplots for each of the potential predictors with T'ime are shown below. The strongest
linear pattern among these plots is between Time and number of Runs. The next best
predictor of Time would be Pitchers. Neither Margin or Attendance show much of a linear

relationship with Time in these scatterplots.
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c. Fitting the regression line to predict Time based on Runs with technology gives the output

Coefficients

Term Coef ©SE Coef T-Value P-Value
Constant 148.0 12.0 12.34 0.000
Runs 4.18 1.08 3.87 0.002

This yields the prediction equation Time = 148.0 + 4.18 Runs. The slope indicates that for
every extra run in a game we expect the average game time to increase by about 4.2 minutes.

d. Two plots of the residuals are shown below. There is no pattern in the plot of residuals
versus fitted values; however, the normal quantile plot shows a departure from normality.
The upward curvature suggests a long right-hand tail for the distribution of the residuals.
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1.46 a. Following is the scatterplot with the CIN-MIL point highlighted. This, while quite far
away from the bulk of the data, seems to follow in the same pattern, so may not be very
influential with respect to this linear relationship.
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Scatterplot of Time vs Runs
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b. Without the potential influential point, the least squares regression line becomes Time =
147.0+4.3Runs. The previous equation (using the CIN-MIL data point) was Time = 148.0+
4.18 Runs. There is very little change to either the slope or the y-intercept so we find that
this particular point does not appear to be very influential.

c. Scatterplots for each of the potential predictors (excluding CIN-MIL) with Time are shown
below. Now there is a tossup for which variable has the strongest linear relationship with
Time. It could be Runs or Pitchers. So, while the CIN-MIL game did not have much
influence on the least squares regression equation for predicting T'vme from Runs, its presence
did suggest a stronger relationship between those two variables than otherwise would have

been there.
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1.47

a. Here is some output for fitting the model for predicting SRA based on Year. It shows
that the least squares line is SRA = —1, 732,400 + 868Y ear.

The regression equation is SRA = - 1732400 + 868 Year
Predictor Coef SE Coef T P
Constant  -1732400 439865 -3.94 0.001
Year 868.0 219.4 3.96 0.001

S = 4046.24 R-Sq = 52.8% R-Sq(adj) = 49.4Y

Using technology, we find the residuals for the two sabbatical years are —5642.7 in 2003 and
—12,201 in 2011. The scatterplot and residual plots that follow both show that these two

points are unusual. These two points lie way below the overall linear pattern for the other
points.
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To standardize each of these residuals, we can divide by the regression standard error (6. =
4046.24 in the output).

—9642.7 _ 1.39 2011 : — 12201 = —3.02

2003: = =
0035 4046.24 4046.24

or we can use the slightly different standardized residuals provided by software (—1.45 in 2003
and —3.34 in 2011). These show that the 2003 residual is not so unusual (not beyond —2),
but the 2011 residual should be considered an outlier (beyond —3).

. Here is some output for fitting the model for predicting SRA based on Year after removing

the data for the sabbatical years of 2003 and 2011. It shows that the least squares line changes
to SRA = —2,257,997 + 1131Y ear.

The regression equation is SRA = - 2257997 + 1131 Year



1-38

1.48

Chapter 1
Predictor Coef SE Coef T P
Constant -2257997 78905 -28.62 0.000
Year 1130.89 39.37 28.72 0.000
S = 674.742 R-Sq = 98.6% R-Sq(adj) = 98.4Y

This model provides a much better fit for the annual SRA contributions. The substantial
changes to both the slope and intercept of the regression line indicate that the two sabbatical
years are influential. The scatterplot and the residual plots (shown as follows) indicate a much
stronger linear pattern, with much less variation from the regression line. The regression
standard error has dropped from 4046.24 to 674.74.
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a. The following plot shows scatterplots for each of the possible response variables (M Rate
and LogMrate) with BodySize and LogBodySize. Note: With some software, you might
need to produce these scatterplots individually.

The most appropriate relationship among these for a linear model is Y = LogMrate versus
X = LogBodySize. Here is some output for fitting this model and a scatterplot with the
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regression line, Log/]\Zrate = 1.314+0.916 LogBodySize. This appears to be a good model for
summarizing the relationship between these variables

The regression equation is LogMrate = 1.31 + 0.916 LogBodySize
Predictor Coef SE Coef T P
Constant 1.30655 0.01356 96.33 0.000
LogBodySize 0.91641 0.01235 74.20 0.000

S = 0.175219 R-Sq = 94.8% R-Sq(adj) = 94.8Y%

LogMrate
o

I 0 1
LogBodySize

b. To predict the metabolic rate for a caterpillar with a body size of 1 gram, we first find
LogBodysize = logip(1) = 0, so the predicted log of the metabolic rate is

Logﬁmte = 1.30655 + 0.91641(0) = 1.30655
Since the logs in this situation are base 10, we find the predicted metabolic rate with

Mrate = 10130655 — 90 3

1.49 Here is a plot of LogMrate versus LogBodySize with different symbols/colors for the five
levels of Instar. The linear trend appears to be quite consistent across the different stages of a
caterpillar’s life.
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1.50 Here are three plots (scatterplot with fitted line, residuals versus fits plot, and normal quantile
plot of the residuals) for each of the combinations of log transformations.

log(M Ds) versus Hospitals:
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In the first two plots above, we see curvature in the opposite direction from the original data (here
the scatterplot and residual versus fits plot show concave down). Also the variability in log(M Ds)
looks larger for small numbers of hospitals and smaller for counties with more hospitals. So there
are problems with both linearity and equal variance. The normality plot looks pretty good, except
for some straying from the line for the few largest values.

M Ds versus log(Hospitals):

8000

6000
I
°

1000 2000 3000 4000
I
o

1000 2000 3000 4000

MDs
4000

o

Residual
L
o

Residuals

L

0

2000

I

o

000 o
o)
ooom

o
ooo o
o

o
o

0
I
oD
o
-2000
I

o

T T T T
10 15 20 25 0 1000 2000 3000 4000 -2 -1 0 1 2

log(Hospitals) Fitted MDs Theoretical Quantiles



Chapter 1 1-41

In the first two plots above, we see clear curvature (even more extreme than in the original scales)
and concave up patterns in both the scatterplot and residual versus fits plot. In this case the
variability in MDs gets larger as log(Hospitals) increases. There are also big problems in both
tails of the normal quantile plot. This reexpression appears to make the conditions look even worse
than in the original scale.

log(M Ds) versus log(Hospitals):
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This is the best of these three options. The scatterplot and residuals versus fits plot show no obvi-
ous curvature, although we still see a problem with decreasing variance in both plots. The normal
quantile plot is similar to the first case where we only transformed the response (log(M Ds)).

Although the log(M Ds) versus log(Hospitals) reexpressions together look like the best option
among these three, the transformation with sqrt(M Ds) presented in the original text example is
probably better, because it helps stabilize the variance as well as dealing with the curvature.

1.51 Start with any small dataset, such as the one shown below.

x| 1|23 ]4]5]|z=3
y|10[5]12|8]|20|y=11

Pick any slope, say Bl = —3, and compute the intercept with
Bo =7 — Pz =11—(=3)(3) = 20

The following table shows the predicted values using y = 20 — 3z and the residuals from the actual
y values.

g |17 |14 |11 |
y=g| -7 -9] 1]

| 5 |
‘ 15 ‘ mean residual = 0

8
0

When the intercept is chosen as Bo =7 — ﬁﬁ, the mean of the residuals will always be zero, even
when the line doesn’t follow the trend of the data.



