SOLUTIONS TO CHAPTER 2

Background

2.1 The DFT of a sequence x(n) of length N may be expressed in matrix form as follows

$$X = Wx$$

where $\mathbf{x} = [x(0), \ x(1), \ \dots, x(N-1)]^T$ is a vector containing the signal values and \mathbf{X} is a vector containing the DFT coefficients X(k),

- (a) Find the matrix **W**.
- (b) What properties does the matrix **W** have?
- (c) What is the inverse of **W**?

Solution

(a) The DFT of a sequence x(n) of length N is

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk} = \sum_{n=0}^{N-1} x(n)W_N^{nk}$$

where $W_N \equiv e^{-j\frac{2\pi}{N}}$. If we define

$$\mathbf{w}_{k}^{H} = [1, W_{N}^{k}, W_{N}^{2k}, \dots, W_{N}^{k(N-1)}]$$

then X(k) is the inner product

$$X(k) = \mathbf{w}_k^H \cdot \mathbf{x}$$

Arranging the DFT coefficients in a vector we have,

$$\mathbf{X} = \begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} \mathbf{w}_0^H \mathbf{x} \\ \mathbf{w}_1^H \mathbf{x} \\ \vdots \\ \mathbf{w}_{N-1}^H \mathbf{x} \end{bmatrix} = \mathbf{W}\mathbf{x}$$

where

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_{0}^{H} \\ \mathbf{w}_{1}^{H} \\ \vdots \\ \mathbf{w}_{N-1}^{H} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)^{2}} \end{bmatrix}$$

(b) The matrix \mathbf{W} is symmetric and nonsingular. In addition, due to the orthogonality of the complex exponentials,

$$\mathbf{w}_{k}^{H} \cdot \mathbf{w}_{l} = \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}(k-l)} = \begin{cases} N & ; & k=l \\ 0 & ; & k \neq l \end{cases}$$

it follows that **W** is orthogonal.

(c) Due to the orthogonality of **W**, the inverse is

$$\mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^H$$

- 2.2 Prove or disprove each of the following statements
 - (a) The product of two upper triangular matrices is upper triangular.
 - (b) The product of two Toeplitz matrices is Toeplitz.
 - (c) The product of two centrosymmetric matrices is centrosymmetric.

Solution

(a) With

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

it follows that if **A** is upper triangular then $a_{ij} = 0$ for all i < j. If **B** is also upper triangular, then the (i, j)th element of the product $\mathbf{C} = \mathbf{A}\mathbf{B}$ is

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

For i < j we have

$$c_{ij} = \sum_{k=1}^{j-1} a_{ik} \cdot b_{kj} + \sum_{k=i}^{n} a_{ik} \cdot b_{kj}$$

The first summation is equal to zero since $b_{kj} = 0$ for k = 1, ..., j - 1, and the second term is equal to zero since $a_{ik} = 0$ for k = j, ..., n. Therefore, $c_{ij} = 0$ for i < j and **C** is upper triangular.

(b) The product of two Toeplitz matrices is *not* necessarily Toeplitz. This may be easily demonstrated by example. Let \mathbf{A} be the following 3×3 Toeplitz matrix,

$$\mathbf{A} = \left[\begin{array}{ccc} a_0 & a_{-1} & a_{-2} \\ a_1 & a_0 & a_{-1} \\ a_2 & a_1 & a_0 \end{array} \right]$$

and let B be the Toeplitz matrix

$$\mathbf{B} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

The product, AB, is

$$\mathbf{AB} = \left[\begin{array}{ccc} a_{-2} & 0 & a_0 \\ a_{-1} & 0 & a_1 \\ a_0 & 0 & a_2 \end{array} \right]$$

which is not Toeplitz.

(c) If **A** and **B** are centrosymmetric matrices, then

$$A = J^H A J$$
 ; $B = J^H B J$

and

$$\mathbf{A}\mathbf{B} = (\mathbf{J}^H \mathbf{A} \mathbf{J})(\mathbf{J}^H \mathbf{B} \mathbf{J})$$

Since
$$\mathbf{JJ}^{H} = \mathbf{I}$$
, then

$$AB = J^H ABJ$$

which means that $\mathbf{A}\mathbf{B}$ is centrosymmetric.

2.3 Find the minimum norm solution to the following set of underdetermined linear equations,

$$\begin{bmatrix} 1 & 0 & 2 & -1 \\ -1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Solution

With

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 0 & 2 & -1 \\ -1 & 1 & 0 & 1 \end{array} \right]$$

since the rows of A are linearly independent, then the minimum norm solution is unique and given by

$$\mathbf{x}_0 = \mathbf{A}^H (\mathbf{A} \mathbf{A}^H)^{-1} \mathbf{b}$$

With

$$\mathbf{A}\mathbf{A}^H = \left[\begin{array}{cc} 6 & -2 \\ -2 & 3 \end{array} \right]$$

and

$$(\mathbf{A}\mathbf{A}^H)^{-1} = \frac{1}{14} \left[\begin{array}{cc} 3 & 2\\ 2 & 6 \end{array} \right]$$

it follows that the minimum norm solution is

$$\mathbf{x} = \frac{1}{14} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -3 \\ 8 \\ 10 \\ 3 \end{bmatrix}$$

2.4 Consider the set of inconsistent linear equations Ax = b given by

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- (a) Find the least squares solution to these equations.
- (b) Find the projection matrix \mathbf{P}_A .
- (c) Find the best approximation $\hat{\mathbf{b}} = \mathbf{P}_A \mathbf{b}$ to \mathbf{b} .
- (d) Consider the matrix

$$\mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{P}_{A}$$

Find the vector $\mathbf{b}^{\perp} = \mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{b}$ and show that it is orthogonal to $\hat{\mathbf{b}}$. What does the matrix \mathbf{P}_{A}^{\perp} represent?

Solution

(a) Since the columns of ${\bf A}$ are linearly independent, the least squares solution is unique and given by

$$\mathbf{x}_0 = (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{b}$$

With

$$\mathbf{A}^H \mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right] = \left[\begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

it follows that

$$(\mathbf{A}^H \mathbf{A})^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

and, therefore,

$$\mathbf{x}_{0} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(b) The projection matrix is

$$\mathbf{P}_{A} = \mathbf{A}(\mathbf{A}^{H}\mathbf{A})^{-1}\mathbf{A}^{H} = \frac{1}{3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

(c) The best approximation to **b** is

$$\widehat{\mathbf{b}} = \mathbf{P}_A \mathbf{b} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

(d) The matrix $\mathbf{P}_{\mathbf{A}}^{\perp}$ is

$$\mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{P}_{A} = \frac{1}{3} \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

and

$$\mathbf{b}^{\perp} = \mathbf{P}_{\mathbf{A}}^{\perp} \mathbf{b} = \frac{1}{3} \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix}$$

The inner product between $\hat{\mathbf{b}}$ and \mathbf{b}^{\perp} is

$$\langle \widehat{\mathbf{b}}, \ \mathbf{b}^{\perp} \rangle = \frac{1}{9} \begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix} = 0$$

Therefore, $\hat{\mathbf{b}}$ is orthogonal to \mathbf{b}^{\perp} . The matrix $\mathbf{P}_{\mathbf{A}}^{\perp}$ is a projection matrix that projects a vector onto the space that is orthogonal to the space spanned by the columns of \mathbf{A} .

2.5 Consider the problem of trying to model a sequence x(n) as the sum of a constant plus a complex exponential of frequency ω_0 ,

$$\widehat{x}(n) = c + ae^{jn\omega_0} \quad ; \quad n = 0, 1, \dots, N - 1$$

where c and a are unknown. We may express the problem of finding the values for c and a as one of solving a set of overdetermined linear equations

$$\begin{bmatrix} 1 & 1 \\ 1 & e^{j\omega_0} \\ \vdots & \vdots \\ 1 & e^{j(N-1)\omega_0} \end{bmatrix} \begin{bmatrix} c \\ a \end{bmatrix} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$

- (a) Find the least squares solution for c and a.
- (b) If N is even and $\omega_0 = 2\pi k/N$ for some integer k, find the least squares solution for c and a.

Solution

(a) Assuming that $\omega_0 \neq 0, 2\pi, \ldots$, the columns of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & e^{j\omega_0} \\ \vdots & \vdots \\ 1 & e^{j(N-1)\omega_0} \end{bmatrix}$$

are linearly independent, and the least squares solution for c and a is given by

$$\left[\begin{array}{c} c \\ a \end{array}\right] = (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{x}$$

Since

$$\mathbf{A}^H\mathbf{A} = \left[egin{array}{ccc} N & \sum\limits_{n=0}^{N-1} e^{jn\omega_0} \ \sum\limits_{n=0}^{N-1} e^{-jn\omega_0} & N \end{array}
ight] = \left[egin{array}{ccc} N & rac{1-e^{jN\omega_0}}{1-e^{j\omega_0}} \ rac{1-e^{-jN\omega_0}}{1-e^{-j\omega_0}} & N \end{array}
ight]$$

Therefore, the inverse of $(\mathbf{A}^H \mathbf{A})$ is

$$(\mathbf{A}^{H}\mathbf{A})^{-1} = \frac{1}{N^{2} - \frac{1 - \cos N\omega_{0}}{1 - \cos \omega_{0}}} \begin{bmatrix} N & -\frac{1 - e^{jN\omega_{0}}}{1 - e^{j\omega_{0}}} \\ -\frac{1 - e^{-jN\omega_{0}}}{1 - e^{-j\omega_{0}}} & N \end{bmatrix}$$

and we have

$$\begin{bmatrix} c \\ a \end{bmatrix} = \frac{1}{N^2 - \frac{1 - \cos N\omega_0}{1 - \cos \omega_0}} \begin{bmatrix} N & -\frac{1 - e^{jN\omega_0}}{1 - e^{jN\omega_0}} \\ -\frac{1 - e^{-jN\omega_0}}{1 - e^{-j\omega_0}} & N \end{bmatrix} \begin{bmatrix} \sum_{n=0}^{N-1} x(n) \\ \sum_{n=0}^{N-1} x(n) \\ \sum_{n=0}^{N-1} x(n) e^{-jn\omega_0} \end{bmatrix}$$

which becomes

$$\begin{bmatrix} c \\ a \end{bmatrix} = \frac{1}{N^2 - \frac{1 - \cos N\omega_0}{1 - \cos \omega_0}} \begin{bmatrix} N \sum_{n=0}^{N-1} x(n) - \frac{1 - e^{jN\omega_0}}{1 - e^{j\omega_0}} \sum_{n=0}^{N-1} x(n) e^{-jn\omega_0} \\ N \sum_{n=0}^{N-1} x(n) e^{-jn\omega_0} - \frac{1 - e^{-jN\omega_0}}{1 - e^{-j\omega_0}} \sum_{n=0}^{N-1} x(n) \end{bmatrix}$$

(b) If $\omega_0 = 2\pi k/N$ and $k \neq 0$, then

$$\frac{1 - e^{jN\omega_0}}{1 - e^{j\omega_0}} = \frac{1 - e^{-jN\omega_0}}{1 - e^{-j\omega_0}} = 0$$

and

$$\frac{1 - \cos N\omega_0}{1 - \cos \omega_0} = 0$$

Therefore, we have

$$\begin{bmatrix} c \\ a \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{n=0}^{N-1} x(n) \\ \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-jn\omega_0} \end{bmatrix}$$

2.6 It is known that the sum of the squares of n from n = 1 to N-1 has a closed form expression of the following form

$$\sum_{n=0}^{N-1} n^2 = a_0 + a_1 N + a_2 N^2 + a_3 N^3$$

Given that a third-order polynomial is uniquely determined in terms of the values of the polynomial at four distinct points, derive a closed form expression for this sum by setting up a set of linear equations and solving these equations for a_0, a_1, a_2, a_3 . Compare your solution to that given in Table 2.3.

Solution

Assuming that

$$\sum_{n=0}^{N-1} n^2 = a_0 + a_1 N + a_2 N^2 + a_3 N^3$$

we may evaluate this sum for N = 1, 2, 3, 4 and write down the following set of four equations in four unknowns

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 5 \\ 14 \end{bmatrix}$$

Solving these equations for a_0 , a_1 , and a_2 , we find

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/6 \\ -1/2 \\ 1/3 \end{bmatrix}$$

which gives the following closed-form expression for the sum,

$$\sum_{n=0}^{N-1} n^2 = \frac{1}{6}N - \frac{1}{2}N^2 + \frac{1}{3}N^3 = \frac{1}{6}N(N-1)(2N-1)$$

- 2.7 Show that a projection matrix P_A has the following two properties,
 - 1. It is idempotent, $\mathbf{P}_A^2 = \mathbf{P}_A$.
 - 2. It is Hermitian.

Solution

Given a matrix A, the projection matrix P_A is

$$\mathbf{P}_A = \mathbf{A}(\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H$$

Therefore,

$$\mathbf{P}_A^2 = \mathbf{A}(\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{A}(\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H$$
$$= \mathbf{A}(\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H = \mathbf{P}_A$$

and it follows that \mathbf{P}_A is idempotent. Also,

$$\mathbf{P}_A^H = \left[\mathbf{A} (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \right]^H = \mathbf{A} \left[(\mathbf{A}^H \mathbf{A})^{-1} \right]^H \mathbf{A}^H$$

Since $\mathbf{A}\mathbf{A}^H$ is Hermitian, then so is its inverse,

$$\left[(\mathbf{A}^H \mathbf{A})^{-1} \right]^H = (\mathbf{A}^H \mathbf{A})^{-1}$$

and

$$\mathbf{P}_A^H = \mathbf{A}(\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H$$

Thus, \mathbf{P}_A is Hermitian.

2.8 Let A > 0 and B > 0 be positive definite matrices. Prove or disprove the following statements.

- (a) $A^2 > 0$.
- (b) $A^{-1} > 0$.
- (c) A + B > 0.

Solution

(a) Let \mathbf{v}_k be an eigenvector and λ_k the corresponding eigenvalue of $\mathbf{A}.$ Since

$$\mathbf{A}^2 \mathbf{v}_k = \mathbf{A}(\mathbf{A}\mathbf{v}_k) = \lambda_k \mathbf{A}\mathbf{v}_k = \lambda_k^2 \mathbf{v}_k$$

then \mathbf{v}_k is an eigenvector of \mathbf{A}^2 and λ_k^2 is the corresponding eigenvalue. If $\mathbf{A} > 0$, then $\lambda_k > 0$. Therefore, $\lambda_k^2 > 0$, and it follows that $\mathbf{A}^2 > 0$.

- (b) If $\mathbf{A} > 0$, then the eigenvalues of \mathbf{A} are positive, $\lambda_k > 0$. In addition, \mathbf{A}^{-1} exists and the eigenvalues of \mathbf{A}^{-1} are λ_k^{-1} . Since $\lambda_k > 0$, it follows that $\lambda_k^{-1} > 0$ and, therefore, $\mathbf{A}^{-1} > 0$.
- (c) Let $\mathbf{v} \neq \mathbf{0}$ be an arbitrary vector. Then

$$\mathbf{v}^H(\mathbf{A} + \mathbf{B})\mathbf{v} = \mathbf{v}^H\mathbf{A}\mathbf{v} + \mathbf{v}^H\mathbf{B}\mathbf{v}$$

If A > 0 and B > 0, then

$$\mathbf{v}^H \mathbf{A} \mathbf{v} > 0 \quad ; \quad \mathbf{v}^H \mathbf{B} \mathbf{v} > 0$$

Therefore,

$$\mathbf{v}^H(\mathbf{A} + \mathbf{B})\mathbf{v} > 0$$

and it follows that $(\mathbf{A} + \mathbf{B}) > 0$.

Problem Solutions

2.9 (a) Prove that each eigenvector of a symmetric Toeplitz matrix is either symmetric or antisymmetric, i.e., $\mathbf{v}_k = \pm \mathbf{J} \mathbf{v}_k$.

(b) What property can you state about the eigenvalues of a Hermitian Toeplitz matrix?

Solution

(a) If A is a symmetric Toeplitz matrix, then

$$\mathbf{J}^T \mathbf{A} \mathbf{J} = \mathbf{A}$$

where **J** is the exchange matrix. If \mathbf{v}_k is an eigenvector of **A** with eigenvalue λ_k , then

$$\mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k$$

and, using the identity above, we have

$$\mathbf{J}^T \mathbf{A} \mathbf{J} \mathbf{v}_k = \lambda_k \mathbf{v}_k$$

Since **J** is unitary, $\mathbf{J}^T \mathbf{J} = \mathbf{I}$, if we multiply both sides of this equation on the left by **J**, it follows that

$$\mathbf{AJv}_k = \lambda_k \mathbf{Jv}_k$$

Therefore, if \mathbf{v}_k is an eigenvector with eigenvalue λ_k , then $\mathbf{J}\mathbf{v}_k$ is also an eigenvector with the same eigenvalue. Consequently, if the eigenvalue λ_k is distinct, then \mathbf{v}_k and $\mathbf{J}\mathbf{v}_k$ must be equal to within a constant,

$$\mathbf{v}_k = c \mathbf{J} \mathbf{v}_k$$

However, since the exchange matrix reverses the order of the elements of the vector \mathbf{v}_k , the only possible values for this constant are $c = \pm 1$. Therefore,

$$\mathbf{v}_k = \pm \mathbf{J} \mathbf{v}_k$$

and the eigenvector \mathbf{v}_k is either symmetric or anti-symmetric.

Now let us consider the case in which the eigenvalue λ_k is not distinct. We will assume that the multiplicity is two. The following discussion may be easily generalized to higher multiplicities. In this case, \mathbf{v}_k and $\mathbf{J}\mathbf{v}_k$ span a two-dimensional space, and any two linearly independent vectors in this space may be selected as the eigenvectors. Therefore, we may choose

$$\widetilde{\mathbf{v}}_{k_1} = \mathbf{v}_k + \mathbf{J}\mathbf{v}_k$$

and

$$\widetilde{\mathbf{v}}_{k_2} = \mathbf{v}_k - \mathbf{J}\mathbf{v}_k$$

as the two eigenvectors. Note that $\widetilde{\mathbf{v}}_{k_1}$ is symmetric and $\widetilde{\mathbf{v}}_{k_2}$ is anti-symmetric. This completes the proof.

(b) In the case of Hermitian Toeplitz matrices, the eigenvectors are either Hermitian or anti-Hermitian, i.e.,

$$\mathbf{v}_k = \pm \mathbf{v}_k^*$$

2.10 (a) Find the eigenvalues and eigenvectors of the real 2×2 symmetric Toeplitz matrix

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & a \end{array} \right]$$

(b) Find the eigenvalues and eigenvectors of the 2×2 Hermitian matrix

$$\mathbf{A} = \left[\begin{array}{cc} a & b^* \\ b & a \end{array} \right]$$

Solution

(a) The eigenvalues are the roots of the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (a - \lambda)^2 - b^2 = 0$$

Expanding the quadratic in λ we have

$$\lambda^2 - 2a\lambda + (a^2 - b^2) = [\lambda - (a+b)][\lambda - (a-b)] = 0$$

Therefore, the eigenvalues are $\lambda_1 = a + b$ and $\lambda_2 = a - b$. The eigenvectors, on the other hand, are solutions to the equation

$$\mathbf{A}\mathbf{v}_k = \lambda_k \mathbf{v}_k$$

For the first eigenvector, \mathbf{v}_1 , we have

$$\left[\begin{array}{cc} a & b \\ b & a \end{array}\right] \left[\begin{array}{c} v_{11} \\ v_{12} \end{array}\right] = (a+b) \left[\begin{array}{c} v_{11} \\ v_{12} \end{array}\right]$$

which gives $v_{11} = v_{12}$, or

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

Similarly, the eigenvector \mathbf{v}_2 is found to be

$$\mathbf{v}_2 = \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

(b) With

$$\mathbf{A} = \left[\begin{array}{cc} a & b^* \\ b & a \end{array} \right]$$

the eigenvalues are the roots of the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (a - \lambda)^2 - |b|^2 = 0$$

or,

$$\lambda^2 - 2a\lambda + a^2 + |b|^2 = [\lambda - (a+|b|)][\lambda - (a-|b|)] = 0$$

Thus, $\lambda_1 = a + |b|$ and $\lambda_2 = a - |b|$.

The eigenvector that has eigenvalue λ_1 is the solution to

$$\left[\begin{array}{cc} a & b^* \\ b & a \end{array}\right] \left[\begin{array}{c} v_{11} \\ v_{12} \end{array}\right] = (a + |b|) \left[\begin{array}{c} v_{11} \\ v_{12} \end{array}\right]$$

which gives $v_{12} = \frac{b}{|b|}v_{11}$, or

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ b/|b| \end{array} \right]$$

Similarly, for \mathbf{v}_2 we have

$$\mathbf{v_2} = \left[\begin{array}{c} 1 \\ -b/|b| \end{array} \right]$$

2.11 Establish Property 5 on p. 45.

Solution

Let **B** be an $n \times n$ matrix with eigenvalues λ_k and eigenvectors \mathbf{v}_k . With

$$\mathbf{A} = \mathbf{B} + \alpha \mathbf{I}$$

note that

$$\mathbf{A}\mathbf{v}_k = \mathbf{B}\mathbf{v}_k + \alpha\mathbf{v}_k$$
$$= \lambda_k\mathbf{v}_k + \alpha\mathbf{v}_k = (\lambda_k + \alpha)\mathbf{v}_k$$

Therefore, **A** and **B** have the same eigenvectors, and the eigenvalues of **A** are $\lambda_i + \alpha$.

2.12 A necessary and sufficient condition for a Hermitian matrix A to be positive definite is that there exists a non-singular matrix W such that

$$A = W^H W$$

- (a) Prove this result.
- (b) Find a factorization of the form $\mathbf{A} = \mathbf{W}^H \mathbf{W}$ for the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

Solution

(a) If A > 0, then A may be factored as follows

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$$

where $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_N\}$ with $\lambda_i > 0$. Therefore, Λ may be factored as follows

$$\Lambda = \Lambda^{1/2} \Lambda^{1/2}$$

where $\Lambda^{1/2} = \operatorname{diag}\{\lambda_1^{1/2}, \dots, \lambda_N^{1/2}\} > 0$. Thus, we may write

$$\mathbf{A} = \left(\mathbf{V}\boldsymbol{\Lambda}^{1/2}\right)\left(\boldsymbol{\Lambda}^{1/2}\mathbf{V}^H\right) = \left(\boldsymbol{\Lambda}^{1/2}\mathbf{V}^H\right)^H\left(\boldsymbol{\Lambda}^{1/2}\mathbf{V}^H\right) = \mathbf{W}^H\mathbf{W}$$

where $\mathbf{W} = \mathbf{\Lambda}^{1/2} \mathbf{V}^H > 0$ is nonsingular.

Conversely, suppose that A may be factored as

$$A = W^H W$$

where W is a nonsingular matrix. Then W may be factored as follows

$$\mathbf{W} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$$

where Λ is a diagonal matrix and V is a unitary matrix. Thus,

$$\mathbf{A} = \mathbf{W}^H \mathbf{W} = (\mathbf{V} \mathbf{\Lambda} \mathbf{V}^H)^H (\mathbf{V} \mathbf{\Lambda} \mathbf{V}^H) = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^H$$

Since the diagonal terms of Λ^2 are positive, then $\Lambda > 0$.

(b) The eigenvalues of **A** are $\lambda_1 = 3$ and $\lambda_2 = 1$, and the normalized eigenvectors are

$$\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad ; \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Therefore,

$$\mathbf{W}^H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & \sqrt{3} \\ 1 & -\sqrt{3} \end{bmatrix}$$

2.13 Consider the 2×2 matrix

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Are the eigenvectors unique? Are they linearly independent? Are they orthogonal?
- (c) Diagonalize A, i.e., find V and D such that

$$V^H AV = D$$

where \mathbf{D} is a diagonal matrix.

Solution

(a) The eigenvalues are the roots of the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \lambda^2 + 1 = 0$$

which are $\lambda = \pm j$. The eigenvector corresponding to the eigenvalue $\lambda_1 = j$ satisfies the equation

$$\left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = j \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right]$$

which implies that $v_2 = jv_1$. Therefore, the normalized eigenvector is

$$\mathbf{v}_1 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1\\ j \end{array} \right]$$

Similarly for the eigenvector corresponding to the eigenvalue $\lambda_2=-j$ we have

$$\mathbf{v}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ -j \end{array} \right]$$

(b) The eigenvectors are unique, linearly independent, and orthogonal,

$$\langle \mathbf{v}_1, \ \mathbf{v}_2 \rangle = \mathbf{v}_1^H \mathbf{v}_2 = 0$$

(c) With V the matrix of normalized eigenvectors,

$$\mathbf{V} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1\\ j & -j \end{array} \right]$$

we have

$$V^H A V = D$$

where

$$\mathbf{D} = \left[\begin{array}{cc} j & 0 \\ 0 & -j \end{array} \right]$$

2.14 Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array} \right]$$

Solution

The eigenvalues of a matrix ${\bf A}$ are the roots of the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

For the given matrix, we have

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} 1 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)(4 - \lambda) + 2 = \lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2)$$

Therefore, the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$. The eigenvectors are found by solving the equations

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i \quad ; \quad i = 1, 2$$

For $\lambda_1 = 3$ we have

$$\left[\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array}\right] \left[\begin{array}{c} v_{11} \\ v_{12} \end{array}\right] = 3 \left[\begin{array}{c} v_{11} \\ v_{12} \end{array}\right]$$

The first equation is

$$v_{11} - v_{12} = 3v_{11}$$

or

$$v_{12} = -2v_{11}$$

Therefore, the eigenvector is

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ -2 \end{array} \right]$$

Repeating for $\lambda_2 = 2$ we find

$$\mathbf{v}_2 = \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

2.15 Consider the following 3×3 symmetric matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array} \right]$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Find the determinant of A.
- (c) Find the spectral decomposition of A.
- (d) What are the eigenvalues of A + I and how are the eigenvectors related to those of A?

Solution

(a) The eigenvalues are found from the roots of the characteristic equation,

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

The roots are $\lambda = 3, 1, 0$. Given the eigenvalues, the eigenvectors are found by solving the equations $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for i = 1, 2, 3. The eigenvectors (unnormalized) are

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

(b) The determinant is equal to the product of the eigenvalues,

$$\det \mathbf{A} = \prod_{i=1}^{3} \lambda_i = 0$$

(c) The spectral decomposition for **A** is

$$\mathbf{A} = \sum_{i=1}^{3} \lambda_i \mathbf{v}_i \mathbf{v}_i^H$$

where \mathbf{v}_i are the normalized eigenvectors of A. Since $\lambda_3 = 0$, this decomposition becomes

$$\mathbf{A} = 3 \cdot \left(\frac{1}{6}\right) \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

(d) If the eigenvalues of **A** are λ_i , then the eigenvalues of **A** + **I** are λ_i + 1, and the eigenvectors are the same. Therefore, the eigenvalues of **A** + **I** are $\lambda = 4, 2, 1$.

- **2.16** Suppose that an $n \times n$ matrix **A** has eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
 - (a) What are the eigenvalues and eigenvectors of A^2 ?
 - (b) What are the eigenvalues and eigenvectors of A^{-1} ?

Solution

(a) With \mathbf{v}_i an eigenvector of \mathbf{A} with eigenvalue λ_i , note that

$$\mathbf{A}^2 \mathbf{v}_i = \mathbf{A}(\mathbf{A}\mathbf{v}_i) = \lambda_i(\mathbf{A}\mathbf{v}_i) = \lambda_i^2 \mathbf{v}_i$$

Therefore, the eigenvectors of \mathbf{A}^2 are the same as those for \mathbf{A} , and the eigenvalues are λ_i^2 .

(b) Since

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

then, assuming that A^{-1} exists,

$$\mathbf{v}_i = \lambda_i \mathbf{A}^{-1} \mathbf{v}_i$$

or

$$\mathbf{A}^{-1}\mathbf{v}_i = \frac{1}{\lambda_i}\mathbf{v}_i$$

Therefore, \mathbf{A}^{-1} has the same eigenvectors as \mathbf{A} , and the eigenvalues are $1/\lambda_i$.

2.17 Find a matrix whose eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 4$ with eigenvectors $\mathbf{v}_1 = [3, 1]^T$ and $\mathbf{v}_2 = [2, 1]^T$.

Solution

From the given information, we have

$$\mathbf{A} \left[\begin{array}{c} 3 \\ 1 \end{array} \right] = \left[\begin{array}{c} 3 \\ 1 \end{array} \right] \quad ; \quad \mathbf{A} \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} 8 \\ 4 \end{array} \right]$$

Let

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \ \mathbf{a}_2 \end{bmatrix}$$

Then we have

$$3\mathbf{a}_1 + \mathbf{a}_2 = \left[\begin{array}{c} 3 \\ 1 \end{array} \right]$$

and

$$2\mathbf{a}_1 + \mathbf{a}_2 = \left[\begin{array}{c} 8 \\ 4 \end{array} \right]$$

Subtracting these two equations gives

$$\mathbf{a}_1 = \left[\begin{array}{c} -5 \\ -3 \end{array} \right]$$

Also, we have

$$\mathbf{a}_2 = \left[\begin{array}{c} 8 \\ 4 \end{array} \right] - 2\mathbf{a}_1 = \left[\begin{array}{c} 18 \\ 10 \end{array} \right]$$

Therefore,

$$\mathbf{A} = \left[\begin{array}{cc} -5 & 18 \\ -3 & 10 \end{array} \right]$$

- **2.18** Gerschgorin's circle theorem states that every eigenvalue of a matrix **A** lies in at least one of the circles C_1, \ldots, C_N in the complex plane where C_i has center at the diagonal entry a_{ii} and its radius is $r_i = \sum_{j \neq i} |a_{ij}|$.
 - 1. Prove this theorem by using the eigenvalue equation $Ax = \lambda x$ to write

$$(\lambda - a_{ii})x_i = \sum_{j \neq i} a_{ij}x_j$$

and then use the triangle inequality,

$$\left| \sum_{j \neq i} a_{ij} x_j \right| \le \sum_{j \neq i} |a_{ij} x_j|$$

- 2. Use this theorem to establish the bound on λ_{max} given in Property 7.
- 3. The matrix

$$\left[\begin{array}{ccc} 4 & 1 & 2 \\ 2 & 3 & 0 \\ 3 & 2 & 6 \end{array}\right]$$

is said to be diagonally dominant since $|a_{ii}| > r_i$. Use Gerschgorin's circle theorem to show that this matrix is nonsingular.

Solution

1. Let $\mathbf{x} = \begin{bmatrix} x_1, \dots, x_N \end{bmatrix}^T$ be an eigenvector, and λ the corresponding eigenvalue for the matrix \mathbf{A} . Assume that x_i is the largest component of \mathbf{x} , i.e, $|x_i| \geq |x_j|$ for all $j \neq i$. With $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, it follows that

$$\sum_{j=1}^{N} a_{ij} x_j = \lambda x_i$$

or,

$$(\lambda - a_{ii})x_i = \sum_{j \neq i} a_{ij}x_j$$

Therefore,

$$|\lambda - a_{ii}| = \left| \sum_{j \neq i} a_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} |a_{ij}| \left| \frac{x_j}{x_i} \right|$$

Since $|x_i| \ge |x_j|$ for all $j \ne i$, then the ratios $|x_j/x_i|$ are less than or equal to one, and λ lies in the *i*th circle defined by

$$|\lambda_i - a_{ii}| \le r_i$$

where

$$r_i = \sum_{j \neq i} |a_{ij}|$$

2. From Gerschgorin's circle theorem, for each eigenvalue, λ , there is an i such that

$$|\lambda - a_{ii}| \le \sum_{j \not i} |a_{ij}|$$

Since

$$|\lambda| - |a_{ii}| \le |\lambda - a_{ii}|$$

then

$$|\lambda| \le \sum_{i=1}^{n} |a_{ij}|$$

Therefore,

$$|\lambda_{\max}| \le \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

3. Let A be a matrix that is diagonally dominant,

$$|a_{ii}| > r_i$$

Assume that one of the eigenvalues is zero (A is singular). From Gerschgorin's circle theorem, we know that, for each eigenvalue,

$$|\lambda - a_{ii}| \le r_i$$

However, if $\lambda_k = 0$, then

$$|\lambda_k - a_{ii}| = |a_{ii}| \le r_i$$

for some i. Therefore, **A** is not diagonally dominant, which contradicts the hypothesis. Thus, if **A** is diagonally dominant, then it cannot have any zero eigenvalues and must, therefore, be nonsingular.

2.19 Consider the following quadratic function of two variables z_1 and z_2 ,

$$f(z_1, z_2) = 3z_1^2 + 3z_2^2 + 4z_1z_2 + 8$$

Find the values of z_1 and z_2 that minimize $f(z_1, z_2)$ subject to the constraint that $z_1 + z_2 = 1$ and determine the minimum value of $f(z_1, z_2)$.

Solution

To minimize the function

$$f(z_1, z_2) = 3z_1^2 + 3z_2^2 + 4z_1z_2 + 8$$

subject to the constraint

$$z_1 + z_2 = 1$$

we may use Lagrange multipliers as follows. If we define the objective function $Q(z_1, z_2)$ as follows

$$Q(z_1, z_2) = 3z_1^2 + 3z_2^2 + 4z_1z_2 + 8 + \lambda(1 - z_1 - z_2)$$

then the values for z_1 and z_2 that minimize $f(z_1, z_2)$ may be found by solving the equations

$$\frac{\partial}{\partial z_1} Q(z_1, z_2) = 6z_1 + 4z_2 - \lambda = 0$$

$$\frac{\partial}{\partial z_2} Q(z_1, z_2) = 6z_2 + 4z_1 - \lambda = 0$$

$$\frac{\partial}{\partial \lambda} Q(z_1, z_2) = 1 - z_1 - z_2 = 0$$

Writing the first two equations in matrix form we have

$$\left[\begin{array}{cc} 6 & 4 \\ 4 & 6 \end{array}\right] \left[\begin{array}{c} z_1 \\ z_2 \end{array}\right] = \lambda \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$$

Solving for z_1 and z_2 we find

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \frac{\lambda}{20} \begin{bmatrix} 6 & -4 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{\lambda}{10} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Plugging these values into the third equation above, we may solve for the Lagrange multiplier, λ , as follows,

$$1 - z_1 - z_2 = 1 - \frac{\lambda}{10} - \frac{\lambda}{10} = 1 - \frac{\lambda}{5} = 0$$

or

$$\lambda = 0$$

Given λ we may explicitly evaluate z_1 and z_2 ,

$$z_1 = 1/2$$
 ; $z_2 = 1/2$

Substituting these values into $f(z_1, z_2)$ we find that the minimum value of the function is

$$\min\big[f(z_1, z_2)\big] = 10.5$$

SOLUTIONS TO CHAPTER 3 Discrete Time Random Processes

- **3.1** Let x be a random variable with mean m_x and variance σ_x^2 . Let x_i for i = 1, 2, ..., N be N independent measurements of the random variable x.
 - (a) With \widehat{m}_x the sample mean defined by

$$\widehat{m}_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

determine whether or not the sample variance

$$\hat{\sigma}_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{m}_x)^2$$

is unbiased, i.e., is $E\{\hat{\sigma}_x^2\} = \sigma_x^2$?

(b) If x is a Gaussian random variable, find the variance of the sample variance, $E\{(\widehat{\sigma}_x^2 - E\{\widehat{\sigma}_x^2\})^2\}$.

Solution

(a) The expected value of the sample variance is

$$E\{\widehat{\sigma}_x^2\} = E\left\{\frac{1}{N}\sum_{i=1}^N \left(x_i - \frac{1}{N}\sum_{j=1}^N x_j\right)^2\right\} = \frac{1}{N}\sum_{i=1}^N E\left\{\left[(x_i - m_x) - \frac{1}{N}\sum_{j=1}^N (x_j - m_x)\right]^2\right\}$$

Expanding the square we have

$$E\{\widehat{\sigma}_x^2\} = \frac{1}{N} \sum_{i=1}^N E\left\{ (x_i - m_x)^2 - \frac{2}{N} \sum_{j=1}^N (x_i - m_x)(x_j - m_x) + \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N (x_i - m_x)(x_j - m_x) \right\}$$

Since the measurements are assumed to be independent, then

$$E\{(x_i - m_x)(x_j - m_x)\} = \begin{cases} \sigma_x^2 & ; & i = j \\ 0 & ; & i \neq j \end{cases}$$

and the expression for $\hat{\sigma}_x^2$ becomes

$$E\{\widehat{\sigma}_{x}^{2}\} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \sigma_{x}^{2} - \frac{2}{N} \sigma_{x}^{2} + \frac{1}{N^{2}} N \sigma_{x}^{2} \right\} = \sigma_{x}^{2} \left(1 - \frac{1}{N}\right) = \sigma_{x}^{2} \frac{N - 1}{N}$$

Therefore, although the sample variance is biased, it is asymptotically unbiased.

(b) Finding the variance of the sample variance directly is very tedious. A simpler way is as follows. With

$$\widehat{\sigma}_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \widehat{m}_x)^2$$

it is well-known that

$$\frac{N\widehat{\sigma}_x^2}{\sigma_x^2} = \sum_{i=1}^N \left(\frac{x_i - \widehat{m}_x}{\sigma_x}\right)^2$$

is a Chi-square random variable with n-1 degrees of freedom, which has a variance of 2(n-1). Therefore,

$$\operatorname{Var}\left(\frac{N\widehat{\sigma}_x^2}{\sigma_x^2}\right) = 2(N-1)$$

and, consequently, we have

$$\operatorname{Var}\left(\widehat{\sigma_x^2}\right) = 2\frac{\sigma_x^4}{N^2}(N-1)$$

3.2 Let x(n) be a stationary random process with zero mean and autocorrelation $r_x(k)$. We form the process, y(n), as follows

$$y(n) = x(n) + f(n)$$

where f(n) is a known deterministic sequence. Find the mean $m_y(n)$ and the autocorrelation $r_y(k,l)$ of the process y(n).

Solution

The mean of the process is

$$m_y(n) = E\{y(n)\} = E\{x(n)\} + f(n) = f(n)$$

and the autocorrelation is

$$r_y(k,l) = E\{y(k)y(l)\} = E\{[x(k) + f(k)][x(l) + f(l)]\}$$

= $E\{x(k)x(l)\} + f(k)f(l) = r_x(k,l) + f(k)f(l)$

3.3 A discrete-time random process x(n) is generated as follows,

$$x(n) = \sum_{k=1}^{p} a(k)x(n-k) + w(n)$$

where w(n) is a white noise process with variance σ_w^2 . Another process, z(n), is formed by adding noise to x(n),

$$z(n) = x(n) + v(n)$$

where v(n) is white noise with a variance of σ_v^2 that is uncorrelated with w(n).

- (a) Find the power spectrum of x(n).
- (b) Find the power spectrum of z(n).

Solution

(a) Since x(n) is the output of an all-pole filter driven by white noise, x(n) is an AR(p) process with a power spectrum

$$P_x(e^{j\omega}) = \frac{\sigma_w^2}{|A(e^{j\omega})|^2}$$

where

$$A(e^{j\omega}) = 1 - \sum_{k=1}^{p} a(k)e^{-jk\omega}$$

(b) The process z(n) is a sum of two random processes

$$z(n) = x(n) + v(n)$$

Since x(n) is a linear combination of values of w(n),

$$x(n) = \sum_{k=-\infty}^{n} h(k)w(n-k)$$

where h(n) is the unit sample response of the filter generating x(n), and since v(n) is uncorrelated with w(n), then v(n) is uncorrelated with x(n), and we have

$$r_z(k) = r_x(k) + r_v(k)$$

Therefore,

$$P_z(e^{j\omega}) = P_x(e^{j\omega}) + P_v(e^{j\omega})$$

and

$$P_z(e^{j\omega}) = \frac{\sigma_w^2}{|A(e^{j\omega})|^2} + \sigma_v^2 = \frac{\sigma_w^2 + \sigma_v^2 |A(e^{j\omega})|^2}{|A(e^{j\omega})|^2}$$

3.4 Suppose we are given a linear shift-invariant system having a system function

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{1}{3}z^{-1}}$$

that is excited by zero mean exponentially correlated noise x(n) with an autocorrelation sequence

$$r_x(k) = \left(\frac{1}{2}\right)^{|k|}$$

Let y(n) be the output process, y(n) = x(n) * h(n).

- (a) Find the power spectrum, $P_y(z)$, of y(n).
- (b) Find the autocorrelation sequence, $r_y(k)$, of y(n).
- (c) Find the cross-correlation, $r_{xy}(k)$, between x(n) and y(n).
- (d) Find the cross-power spectral density, $P_{xy}(z)$, which is the z transform of the cross-correlation $r_{xy}(k)$.

Solution

(a) The power spectrum of x(n) is

$$P_x(z) = \frac{3/4}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{2}z)}$$

and the power spectrum of y(n) is

$$P_y(z) = H(z)H(z^{-1})P_x(z) = \frac{3/4}{(1 - \frac{1}{3}z^{-1})(1 - \frac{1}{3}z)}$$

(b) The autocorrelation sequence for y(n) may be easily found using the z-transform pair

$$\alpha^{|k|} \longleftrightarrow \frac{1 - \alpha^2}{(1 - \alpha z^{-1})(1 - \alpha z)}$$

Since

$$(\frac{1}{3})^{|k|} \longleftrightarrow \frac{8/9}{(1 - \frac{1}{3}z^{-1})(1 - \frac{1}{3}z)}$$

then

$$r_y(k) = \frac{27}{32} (\frac{1}{3})^{|k|}$$

(c) The cross-correlation $r_{xy}(k)$ between x(n) and y(n) is

$$r_{xy}(k) = r_x(k) * h(-k)$$

This may be easily computed using z-transforms as follows,

$$P_{xy}(z) = P_x(z)H(z^{-1}) = \frac{3/4}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{2}z)} \cdot \frac{1 - \frac{1}{2}z}{1 - \frac{1}{3}z}$$
$$= \frac{3/4}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{3}z)}$$

Writing this in terms of z^{-1} and performing a partial fraction expansion gives

$$P_{xy}(z) = \frac{3}{4} \frac{z^{-1}}{(1 - \frac{1}{2}z^{-1})(z^{-1} - \frac{1}{3})} = \frac{9/10}{1 - \frac{1}{2}z^{-1}} + \frac{3/10}{z^{-1} - \frac{1}{3}}$$

Inverse z-transforming gives

$$r_{xy}(k) = \frac{9}{10} (\frac{1}{2})^k u(k) + \frac{9}{10} (3)^{-k} u(-k-1)$$

(d) The cross-power spectral density, $P_{xy}(z)$, as computed in part (a), is

$$P_{xy}(z) = \frac{3/4}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{3}z)}$$

(e) The cross-correlation, $r_{xy}(k)$, between x(n) and y(n) may found by computing the inverse z-transform of the cross-power spectral density,

$$P_{xy}(z) = \frac{3}{4} \frac{z^{-1}}{(1 - \frac{1}{2}z^{-1})(z^{-1} - \frac{1}{3})} = \frac{\frac{9}{10}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{3}{10}}{z^{-1} - \frac{1}{3}}$$

Inverse transforming gives