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SOLUTIONS TO CHAPTER 2

Background
2.1 The DFT of a sequence z(n) of length N may be expressed in matrix form as follows
X =Wx
where x = [z(0), z(1), ..., (N — 1)]T is a vector containing the signal values and X is a

vector containing the DFT coefficients X (k),

(a) Find the matrix W.
(b) What properties does the matrix W have?
(¢) What is the inverse of W?

Solution

(a) The DFT of a sequence z(n) of length N is

N-1 . N-1
X(k)= Z z(n)e IV = Z z(n)Wx
n=0 n=0

where Wy = e~# % . If we define
E(N—1
wil = [1, Wk, W, .. wkY]
then X (k) is the inner product

X(k)=wi -x
Arranging the DFT coefficients in a vector we have,
X(0) wilx
X(1) wilx
= : = 1 = Wx
[ X(N-1) wi_ix J
where
wil 1 1 1 e 1
wh 1 Wy Wi Wit
W = = .
Wi_1 1 Wy wEND Ly (D

(b) The matrix W is symmetric and nonsingular. In addition, due to the orthogonality of the
complex exponentials,

N-1
—j2m(k— N ;o k=1
Wf-wlr_Ze iF l):{ 0 k£l
n=0

it follows that W is orthogonal.
(c) Due to the orthogonality of W, the inverse is

- H
W= LW
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2.2 Prove or disprove each of the following statements

(a) The product of two upper triangular matrices is upper triangular.

(b) The product of two Toeplitz matrices is Toeplitz.

(c) The product of two centrosymmetric matrices is centrosymmetric.

Solution
(a) With
aip a2 Ain
az1  G22 QA2n
A= .
Ani ap2 Apn

it follows that if A is upper triangular then a;; = 0 for all 7 < j. If B is also upper triangular,
then the (7, j)th element of the product C = AB is

n
cij = g @i - brj
k=1
For i < j we have

j—1 n
Cyj = E Qg - by + E ik bij
k=1 k=j

The first summation is equal to zero since by; = 0 for k = 1,...,j — 1, and the second term
is equal to zero since ay, = 0 for & = j,...,n. Therefore, ¢;; = 0 for ¢ < j and C is upper
triangular.

The product of two Toeplitz matrices is not necessarily Toeplitz. This may be easily demonstrated
by example. Let A be the following 3 x 3 Toeplitz matrix,

apg -1 Q-2
A = ay ap a_q
as ay ag

and let B be the Toeplitz matrix

0 0 1
B=|0 00
1 00
The product, AB, is
a.g 0 ag
AB=|a_, 0 a
agp 0 az

which is not Toeplitz.

If A and B are centrosymmetric matrices, then
A=JAJ ; B=JBJ

and
AB = (J7AJ)(I7BJ)
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Since JJ¥ =1, then
AB = J¥ABJ

which means that AB is centrosymmetric.
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2.3 Find the minimum norm solution to the following set of underdetermined linear equations,

x1

10 2 -1 z2 | |1
-1 1 0 1 z3 | |1

Solution
With

102 -1
A“[—llo 1}

since the rows of A are linearly independent, then the minimum norm solution is unique and given by
xo = AT(AAH) b
With

and
_ 3 2
(AAT) 1211“4[2 6}

it follows that the minimum norm solution is

-1
1 32717 8
0 2 6 1171 10
1

L

X =13

N O
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2.4 Consider the set of inconsistent linear equations Ax = b given by

10 1
01 [ 1 } =1
11| L™

(a) Find the least squares solution to these equations.
(b) Find the projection matrix Py.

(c) Find the best approximation b = Pyb to b.

(d) Consider the matrix
Pr=1-Py

Find the vector b+ = P4b and show that it is orthogonal to b. What does the matrix

Pj represent?

Solution

(a) Since the columns of A are linearly independent, the least squares solution is unique and given

by
xo = (ATA)"1AFDb
With

it follows that

and, therefore,

X =

o=
|

Wi
-
— N

(b) The projection matrix is

Py =

Il il
(1T Wi
1
] |

Wi

|

—
N
| P
[ —
o =
_= o
=
——
—
O
| I
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(c) The best approximation to b is

~ 2 -1 1][1 1
b=Psb=3%| -1 2 1 1] =11
1 1 2 2
(d) The matrix Py is
1 1 -1
PY=I-P,=1] 1 1 -1
-1 -1 1
and
2
bt =Pxb=1| 2
—2
The inner product between b and bt is
R 2
<b, bt>=1[11 2] g =0

Therefore, b is orthogonal to bt. The matrix Pj; is a projection matrix that projects a vector
onto the space that is orthogonal to the space spanned by the columns of A.
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2.5 Consider the problem of trying to model a sequence z(n) as the sum of a constant plus a
complex exponential of frequency wy,

Z(n)=c+ae/™ ; n=0,1,... N-1
where ¢ and a are unknown. We may express the problem of finding the values for ¢ and a

as one of solving a set of overdetermined linear equations

1 1 z(0)
1 eiwo

o
[ I
8
it
~—

1 ef(N-Dwo z(N -1)

(a) Find the least squares solution for ¢ and a.
(b) If N is even and wy = 27k/N for some integer k, find the least squares solution for ¢

and a.
Solution
(a) Assuming that wq # 0,27, ..., the columns of the matrix
1 1
1 elwo

A =
i ej(N;l)WD
are linearly independent, and the least squares solution for ¢ and a is given by

{ s } = (AHA) 1A x

Since
N-1 Ve
N Z Ejnwr) N 1 — el¥wo
APA = =0 - Lo e
T N-1 T 1 emitvwo
YN Loe™e oy
1 — e Iwo
n=0
Therefore, the inverse of (A7 A) is
N 1 — gfNwo
1 T —ew
(AHA) ! = } 1= et
1 —cos Nwy 1 — g 3Nwo
N2 - € N
1 — coswy 1~ e—jwo
and we have
) N-1
1 — giNwo
_ z(n
{ . J ) . N e ; (n)
a | 1~ cos Nuwy 1 — e=dNwo N-1
N2 2 TV e e
1 — coswy R N Z z(n)e Imwo

n=0
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which becomes

— e/Nwo = —jnwg
NZ z(n) — T Z z(n)e
e
] N2 - 1 —cos Nujo N-1 1 6__ij0 N-1
1- —jnwo _ Z " 7 ’
COS Wy NZO x(n)e 7o Tpp—— z(n)
n== n=0

(b) If wo = 27k/N and k # 0, then

1—eiNwo ] g=iNwo

1—efwo 1 — g dwo

and
1 — cos Nwy

1 —coswy
n=0

{ ¢ J ) % le(n)mnwo

n=0

Therefore, we have

1o |
;
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2.6 It is known that the sum of the squares of n from n = 1 to N — 1 has a closed form expression

of the following form
N-1

Z n?=ay+a N+ asN? + agN*®

n=0
Given that a third-order polynomial is uniquely determined in terms of the values of the
polynomial at four distinct points, derive a closed form expression for this sum by setting up
a set of linear equations and solving these equations for ag, ay, as, a3. Compare your solution
to that given in Table 2.3.

Solution
Assuming that
N-1
Z n? = ag +a1N+a2N2+a3N3
n=0
we may evaluate this sum for N = 1,2, 3,4 and write down the following set of four equations in four
unknowns
{ 11 1 1 { ag ] 0
1 2 4 8 ap || 1
1 3 9 27 ag | | 5
1 4 16 64 as 14
Solving these equations for ag, a1, and ag, we find
agp 0
ay i 1/6
a2 - - 1/2
as 1/3

11

which gives the following closed-form expression for the sum,
N-1
1 1 1 1
2 2 3
E =-N N*+ = N 2N -1
n 6 3 3 N G N( 1)( )

n=0
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2.7 Show that a projection matrix P 4 has the following two properties,

1. It is idempotent, P4 = P 4.

2. It is Hermitian.

Solution
Given a matrix A, the projection matrix P, is

Ps=A(AYA)TAH

Therefore,

g
o
Il

A(AHA)‘IAHA(AHA)flAH
AAFA)TIAH =P,

and it follows that P4 is idempotent. Also,
H =140 HAN-11H A H
P :{A(A A)lA ] = A[(ATA)1)"A
Since AA¥ is Hermitian, then so is its inverse,

[(A7A)7]" = (a7 A)~
and
PH = A(ATA)1AH

Thus, P4 is Hermitian.
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2.8 Let A > 0 and B > 0 be positive definite matrices. Prove or disprove the following statements.
(a) A%>0.
(b) A=t >o0.
(c) A+B>0.

Solution

(a) Let v, be an eigenvector and )4 the corresponding eigenvalue of A. Since
A?vy = A(Avy) = MAvy = Ay,

then vy is an eigenvector of A% and A2 is the corresponding eigenvalue. If A > 0, then A\, > 0.
Therefore, A2 > 0, and it follows that A2 > 0.

(b) If A > 0, then the eigenvalues of A are positive, A > 0. In addition, A~! exists and the
eigenvalues of A~! are )\,:1. Since A\, > 0, it follows that /\;;] > 0 and, therefore, A= > 0.

{c) Let v # 0 be an arbitrary vector. Then
vII(A+B)v =v7Av +v7Bv
If A >0and B > 0, then
vBAv>0 ; vPBv>0

Therefore,
vB(A+B)v>0

and it follows that (A + B) > 0.
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2.9 (a)

(b)

Solution

(a)

(b)

Problem Solutions

Prove that each eigenvector of a symmetric Toeplitz matrix is either symmetric or anti-
symmetric, i.e., vy = £Jvy.

What property can you state about the eigenvalues of a Hermitian Toeplitz matrix?

If A is a symmetric Toeplitz matrix, then
JTAT=A
where J is the exchange matrix. If vy is an eigenvector of A with eigenvalue Ay, then
Avy = AV
and, using the identity above, we have
JTAIv, = Apvy

Since J is unitary, JTJ = I, if we multiply both sides of this equation on the left by J, it follows
that
AJVk, = )\kJVk

Therefore, if vy is an eigenvector with eigenvalue A, then Jvy is also an eigenvector with the
same eigenvalue. Consequently, if the eigenvalue )y, is distinct, then v, and Jv, must be equal
to within a constant,

vi = cJvg

However, since the exchange matrix reverses the order of the elements of the vector vy, the only
possible values for this constant are ¢ = 1. Therefore,

VE = +Jvg

and the eigenvector vy, is either symmetric or anti-symmetric.

Now let us consider the case in which the eigenvalue )\ is not distinct. We will assume that the
multiplicity is two. The following discussion may be easily generalized to higher multiplicities.
In this case, v and Jvj, span a two-dimensional space, and any two linearly independent vectors
in this space may be selected as the eigenvectors. Therefore, we may choose

Vi, = Vi +Jvg
and
ng =Vi — J Vi
as the two eigenvectors. Note that Vi, is symmetric and Vi, is anti-symmetric. This completes

the proof.

In the casc of Hermitian Toeplitz matrices, the eigenvectors are either Hermitian or anti-Hermitian,
ie.,
Vi = :tv,’;
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2.10

(a) Find the eigenvalues and eigenvectors of the real 2 x 2 symmetric Toeplitz matrix

=il

(b) Find the eigenvalues and eigenvectors of the 2 x 2 Hermitian matrix
a b*

Solution

(a) The eigenvalues are the roots of the characteristic equation
det(A M) = (a—- X2 -b2 =0
Expanding the quadratic in A we have
N =2ah+(@® =) =[A~(a+b)][A-(a—b)] =0

Therefore, the eigenvalues are A\; = a + b and Ay = a — b. The eigenvectors, on the other hand,
are solutions to the equation
AVk = )\kvk

For the first eigenvector, v, we have

b el ]=er ]

o[}

Similarly, the eigenvector v, is found to be

o[ 4]

a b*
=[5 7]

the eigenvalues are the roots of the characteristic equation

which gives v1; = w19, or

(b) With

det(A —AI) = (a— A2 —1[p|>=0

or,

M —2ax+a®+ b= [A-(a+ BH][A=(a=1p])] =0
Thus, A\; =a+|b| and Ay =a — |b].
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The eigenvector that has eigenvalue \; is the solution to
a b vin | V11
w0

which gives v1o = !—b—lvu, or

e b/libl }

T [ o }

Similarly, for va we have
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2.11 Establish Property 5 on p. 45.

Solution

15

Let B be an n x n matrix with eigenvalues Ay and eigenvectors vi. With
A=B+adl
note that

Av, = Bvip+avg
Aeve + avy = (A + a)vg

Therefore, A and B have the same eigenvectors, and the eigenvalues of A are A\; + a.
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2.12 A necessary and sufficient condition for a Hermitian matrix A to be positive definite is that
there exists a non-singular matrix W such that

A =WHIw

(a) Prove this result.
(b) Find a factorization of the form A = WH#W for the matrix

N

Solution

(a) If A >0, then A may be factored as follows

A =VAVH
where A = diag{X1,..., Ay} with \; > 0. Therefore, A may be factored as follows
A = A1/2A1/2

1/2

where A2 = diag{/\;/zj ...,Ax"} > 0. Thus, we may write

A = (VA1/2) (Al/sz) _ <A1/2VH)H (A1/2VH> — WHEW

where W = A2V > 0 is nonsingular.
Conversely, suppose that A may be factored as

A=WIw
where W is a nonsingular matrix. Then W may be factored as follows
W =VAVH
where A is a diagonal matrix and V is a unitary matrix. Thus,
A =WHW = (VAVT (VAVH) = VA2V

Since the diagonal terms of A2 are positive, then A > 0.

(b) The eigenvalues of A are A\; = 3 and A2 = 1, and the normalized cigenvectors are

w-[4] 5 Bl

Therefore,
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=[]

(a) Find the eigenvalues and eigenvectors of A.

2.13 Consider the 2 x 2 matrix

(b) Are the eigenvectors unique? Are they linearly independent? Are they orthogonal?
(c) Diagonalize A, i.e., find V and D such that

VAAV =D
where D is a diagonal matrix.

Solution

(a) The cigenvalues are the roots of the characteristic equation
det(A - M) =AM +1=0
which are A = £j. The eigenvector corresponding to the eigenvalue \; = j satisfies the equation
0 1 vy v
EElEIEN

which implies that vy = jv;. Therefore, the normalized eigenvector is

2]
vi=—| .
1 \/5 j
Similarly for the eigenvector corresponding to the eigenvalue Ay = —j we have
w7l
2 — \/é _]

(b) The eigenvectors are unique, linearly independent, and orthogonal,
(vi, vo) =vivy, =0

(c) With V the matrix of normalized eigenvectors,
1 1 1
V=—|" )
V2 [ Joi ]
we have

where
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2.14 Find the eigenvalues and eigenvectors of the matrix
1 -1

Solution

The eigenvalues of a matrix A are the roots of the characteristic equation
det(A—AI) =0
For the given matrix, we have
det(A — A) = det( I )
= 1-MNE-2+2=X-51+6=(A-3)(A-2)
Therefore, the eigenvalues are A\; = 3 and A = 2. The eigenvectors are found by solving the equations

vi:)\ivi ) 2‘:112

5 i ][] ]

V11 — V12 = Juyy

For A\; = 3 we have
The first equation is

or
v12 = —2vyg

o[
.

Therefore, the eigenvector is

Repeating for Ao = 2 we find
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2.15 Consider the following 3 x 3 symmetric matrix

1 -1 0
A= —1 2 -1
0 -1 1

(a) Find the eigenvalues and eigenvectors of A.

(b) Find the determinant of A.

(¢) Find the spectral decomposition of A.

(d) What are the eigenvalues of A + I and how are the eigenvectors related to those of A?

Solution

(a) The eigenvalues are found from the roots of the characteristic equation,
det(A —AI) =0

The roots are A = 3,1,0. Given the eigenvalues, the eigenvectors are found by solving the
equations Av; = \;v; for i = 1,2,3. The eigenvectors (unnormalized) are

1 1 1
V= [vl;v2;v3] =] -2 0 1
1 -1 1

(b) The determinant is equal to the product of the eigenvalues,

3
det A =] =0

=1

(c) The spectral decomposition for A is

3
A= E /\iVinH
i=1

where v; are the normalized eigenvectors of A. Since A3 = 0, this decomposition becomes

1 1
A = 3.(H _2][14 1]+4 0of[1 0 —1]
1 -1

i

1 -2 1 10 -1
51 -2 4 =2 |+ 00 0
1 -2 1 -1 0

(d) If the eigenvalues of A are );, then the eigenvalues of A + I are A; + 1, and the eigenvectors are
the same. Therefore, the eigenvalues of A +1 are A = 4,2, 1.
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2.16 Suppose that an n x n matrix A has eigenvalues A1,..., A\, and eigenvectors vi, ..., v,.

(a) What are the eigenvalues and eigenvectors of A2?

(b) What are the eigenvalues and eigenvectors of A~17

Solution

(a) With v; an eigenvector of A with eigenvalue ),, note that
A?v; = A(Av;) = N(Av;) = Ay,

Therefore, the eigenvectors of A? are the same as those for A, and the eigenvalues are A2,

(b) Since
AVZ‘ = )\va
then, assuming that A~! exists,
Vo= AiA_‘lVi
or )
A7 v, = Zv;
A

Therefore, A~1 has the same eigenvectors as A, and the eigenvalues are 1/A;.
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2.17 Find a matrix whose eigenvalues are A\; = 1 and Xy = 4 with eigenvectors vi = [3,1]7 and
Vg = [2, 1]T.

Solution
From the given information, we have

Let

Then we have

and

Subtracting these two equations gives

Also, we have

Therefore,
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2.18 Gerschgorin’s circle theorem states that every eigenvalue of a matrix A lies in at least one
of the circles Ci,...,Cy in the complex plane where C; has center at the diagonal entry ag;
and its radius is r; = 3, ; ;).

1. Prove this theorem by using the eigenvalue equation Ax = Ax to write

()\ - aii)xi = Z A35L 5
JFi

and then use the triangle inequality,

E aijxj

J#i

<> aijzj)

J#

2. Use this theorem to establish the bound on Ay, given in Property 7.
3. The matrix

(VR NN
N W
SO

is said to be diagonally dominant since |a;;| > r;. Use Gerschgorin’s circle theorem to
show that this matrix is nonsingular.

Solution

1. Let x = [xl, Ce xN]T be an cigenvector, and A the corresponding eigenvalue for the matrix A.
Assume that z; is the largest component of x, i.e, |z;| > |x;| for all j # i. With Ax = Xx, it

follows that
N
Z ;5 T5 = )\LIZZ'
j=1

or,

(A — a”)m, = Zaijzj

J#i
Therefore,

IA = ai| = Zaw% < layl

3 g

Zi
X

Since |z;| > |z;| for all j # 4, then the ratios |z;/z;| are less than or equal to one, and A lies in
the 7th circle defined by
[Ai — @il <7

ri = lag]

J#i

where
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2. From Gerschgorin’s circle theorem, for each eigenvalue, ), there is an ¢ such that

A= ail <D lay]
v

Since
(Al = lai] <X — aql
then
n
A<Dy
j=1
Therefore,

!Amax! < mlaxz laij!
=1

3. Let A be a matrix that is diagonally dominant,
lai| > 7

Assume that one of the eigenvalues is zero (A is singular). From Gerschgorin’s circle theorem,
we know that, for each eigenvalue,
A —au| <7y
However, if A\ = 0, then
[Ae = @il = |ag] <

for some i. Therefore, A is not diagonally dominant, which contradicts the hypothesis. Thus,
if A is diagonally dominant, then it cannot have any zero eigenvalues and must, therefore, be
nonsingular.
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2.19 Consider the following quadratic function of two variables z; and zs,

f(z1,22) = 322 4+ 323 + 42120 + 8

Find the values of z; and z that minimize f(21, z3) subject to the constraint that z; +2z9 = 1
and determine the minimum value of f(z1, 22).

Solution
To minimize the function

fz1,22) =327 + 325 + 42120+ 8

subject to the constraint
Z1+20=1

we may use Lagrange multipliers as follows. If we define the objective function Q(z1, z2) as follows
Q(z1,20) = 325 + 325 + 42120 + 84+ A1 — 2, — )

then the values for z; and z; that minimize f(z1, z2) may be found by solving the equations

5;;@(21,22) = 6z1+420—A=0
a

%Q(Zl;zz) = 6z +4z—A=0
5}\*@(21;2’2) = l-zn-2=0

Writing the first two equations in matrix form we have

6 4 z21 - 1
Sella]=l]
Solving for 2z; and z, we find

sleala el -sl

Plugging these values into the third equation above, we may solve for the Lagrange multiplier, ), as

follows,

l—z—z=1-%-%=1-

10 =0

S

or
A=5

Given A we may explicitly evaluate z; and 2z,
z1=1/2 ; 2=1/2
Substituting these values into f(z1, 2z2) we find that the minimum value of the function is

min|f(z1,2)] = 10.5
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SOLUTIONS TO CHAPTER 3
Discrete Time Random Processes

3.1 Let x be a random variable with mean m, and variance 0323. Let z; fori=1,2,...,N be N
independent measurements of the random variable z.

(a) With m, the sample mean defined by

1 N

i=1
determine whether or not the sample variance
2 1 N Y
0 =% ;(M — Mg

is unbiased, i.e., is E{52} = 02?7
(b) If z is a Gaussian random variable, find the variance of the sample variance, E{(52 —
E{02})%}.

Solution

(a) The expected value of the sample variance is
L LN LN ) 1 X L& )
R EO U S S B P (R 5 ot

i=1 j=1 i=1 j=1

Expanding the square we have

X 9 XN LA
E{52} = ]—V;ZE {(xz —mg)? — TV_Z(:C’ = mg)(Tj = me) + 5 ZZ(:):z —mg)(zj — mgg)}

Since the measurements are assumed to be independent, then

2 . . g
Ux ? =7

E{(x: = ma) (25 — my) } = { 0

and the expression for 52 becomes

N
~ 1 Z 2 1
E{Uﬁ}:*]v {ai——]\?aiﬁ-mNoi}:og(l——ﬁ):o
i=1

Therefore, although the sample variance is biased, it is asymptotically unbiased.
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(b) Finding the variance of the sample variance directly is very tedious. A simpler way is as follows.

With
1 Y 2

it is well-known that

~ N ~ 2
NO'% “‘Z Ty — My
o2 o

&z i==1

is a Chi-square random variable with n — 1 degrees of freedom, which has a variance of 2(n — 1).

Therefore,

Var <N82> =2(N-1)

2
0%

and, consequently, we have
— 4
Var (02) =22z

N2(N_ 1)
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3.2 Let z(n) be a stationary random process with zero mean and autocorrelation r, (k). We form

the process, y(n), as follows

y(n) = z(n) + f(n)
where f(n) is a known deterministic sequence. Find the mean m,(n) and the autocorrelation
ry(k,1) of the process y(n).

Solution
The mean of the process is

my(n) = B{y(n)} = E{z(n)} + f(n) = f(n)

and the autocorrelation is

ry(k,1)

I

Bly(k)y)} = B{ [s(k) + £(&)] [2() + F O] }
= Efa(t)e)} + f) (1) = ok, 1) + f(k}f
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3.3 A discrete-time random process z(n) is generated as follows,
P
z(n) = Z a(k)z(n — k) + w(n)
k=1

where w(n) is a white noise process with variance o2, Another process, z(n), is formed by
adding noise to z(n),
z(n) = z(n) + v(n)

where v(n) is white noise with a variance of o2 that is uncorrelated with w(n).
(a) Find the power spectrum of z(n).

(b) Find the power spectrum of z(n).

Solution

(a) Since @(n) is the output of an all-pole filter driven by white noise, x(n) is an AR(p) process with
a power spectrum

, o2
Pz(ejw) = [A(E;Uw)[Q

where

Ay =1- Z a(k)e= Ik

k=1
(b) The process z(n) is a sum of two random processes
z(n) = z(n) + v(n)

Since z(n) is a linear combination of values of w(n)

z(n) = Z h{k)w(n — k)
k=~o00

where h(n) is the unit sample response of the filter generating z(n), and since v(n) is uncorrelated
with w(n), then v(n) is uncorrelated with x(n), and we have

7y (k) = rp(k) + ry (k)

Therefore, ‘ 4 '
P.(7) = P,(e?) + P, (&™)
and 2 2 2 jwy (2
) J
Pz(egw) — Ty + 02 — Tw + U’ulA(e )i

[A(er)z fA(e7)?
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3.4 Suppose we are given a linear shift-invariant system having a system function
1—1z1
H(z) = —2"—
1—-32z71
3

that is excited by zero mean exponentially correlated noise z(n) with an autocorrelation

sequence
!kl

Tx(k) = (%)t

Let y(n) be the output process, y(n) = z(n) * h(n).

(a) Find the power spectrum, Py(z), of y(n).
(b) Find the autocorrelation sequence, ry(k), of y(n).
(c) Find the cross-correlation, rqy(k), between x(n) and y(n).

(d) Find the cross-power spectral density, Py,(z), which is the z transform of the cross-
correlation ry, (k).

Solution

(a) The power spectrum of z(n) is

3/4

Fale) = = D)1= 12

and the power spectrum of y(n) is

3/4
(1-3z"H(1~-32)

Py(z) = H(z)H (27" Py (2) =

(b) The autocorrelation sequence for y(n) may be easily found using the z-transform pair
1—a?

1—-az1)(1 - az)

alf

Since
8/9

(1-3271(1 - 32)

(B —
then
k) = B(HM
(¢) The cross-correlation ry, (k) between z(n) and y(n) is
Tay(k) = 14(k) x h(—k)
This may be easily computed using z-transforms as follows,

3/4 1-1z

Pwy(z) = Pw(Z)H(Z—l) = (1 — lz‘l)(l — lz) ‘ 1-1iz
2 2 3

3/4
(1~ %z‘l)(l — %z)
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Writing this in terms of 2~} and performing a partial fraction expansion gives

-1 9/10 3/10
: _ oy

(I—S2 Nz t=4) 1-1Lz1 11

ny(f’*’) = 2

Inverse z-transforming gives
ray(k) = 15(3) ulk) + 5(3) Fu(~k — 1)
(d) The cross-power spectral density, Py, (z), as computed in part (a), is

3/4
(1- %z‘l)(l - %z)

Ppy(z) =

(e) The cross-correlation, 74, (k), between z(n) and y(n) may found by computing the inverse 2-
transform of the cross-power spectral density,

3 27! 190 130
Poy(2) = 5 = +
w(2) =3 (1— %z‘l)(z‘l — %) — %z"l z71 — %

Inverse transforming gives




