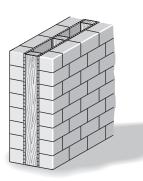
1-1. The floor of a heavy storage warehouse building is made of 6-in.-thick stone concrete. If the floor is a slab having a length of 15 ft and width of 10 ft, determine the resultant force caused by the dead load and the live load.

SOLUTION

From Table 1-3

Trishot is politically by the interview of the profit of t $DL = [12 \text{ lb/ft}^2 \cdot \text{in.}(6 \text{ in.})] (15 \text{ ft})(10 \text{ ft}) = 10,800 \text{ lb}$


From Table 1-4

 $LL = (250 \text{ lb/ft}^2)(15 \text{ ft})(10 \text{ ft}) = 37,500 \text{ lb}$

Total load

 $F = 48,300 \, \text{lb} = 48.3 \, \text{k}$

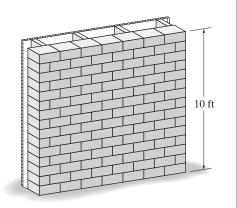
1–2. The wall is 12-ft high and consists of 2×4 studs. On each side is acoustical fiberboard and 4-in. clay brick. Determine the average load in lb/ft of length of wall that the wall exerts on the floor.

SOLUTION

 2×4 wood studs: $(4 \text{ lb/ft}^2)(12 \text{ ft})$ $= 48 \, lb/ft$

 $(2)(1 lb/ft^2)(12 ft) = 24 lb/ft$ fiberboard:

 $(2)(39 \text{ lb/ft}^2)(12 \text{ ft}) = 936 \text{ lb/ft}$ Clay brick:


Ans.

Ans. and is provided and a first print the work and is not permitted.

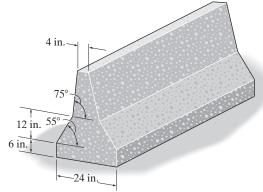
And is provided and a first print the work and is not permitted.

The sale of any parties into print the work and is not permitted. sale of any part of the integrity of the work and is not be rhitted.

1–3. A building wall consists of 12-in. clay brick and $\frac{1}{2}$ -in. fiberboard on one side. If the wall is 10 ft high, determine the load in pounds per foot that it exerts on the floor.

SOLUTION

From Table 1-3

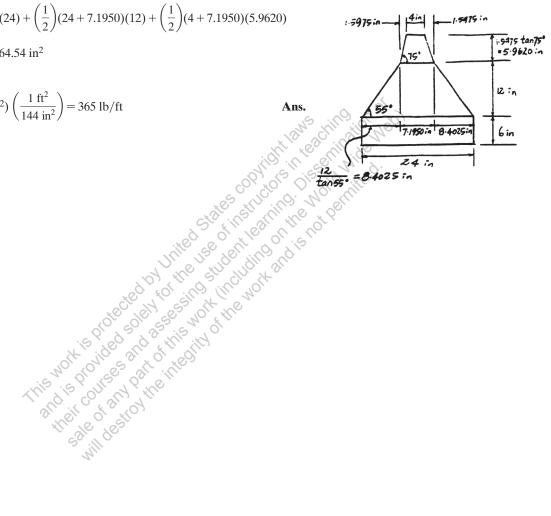

12 in. clay brick: $(115 \text{ lb/ft}^2)(10 \text{ ft}) = 1150 \text{ lb/ft}$

Ans.

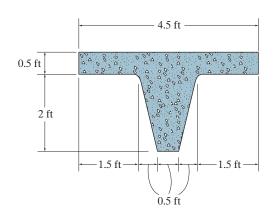
Ans. and is provided and of the original of the hort of the integral of the hort of the $(0.75 \text{ lb/ft}^2)(10 \text{ ft}) = 7.5 \text{ lb/ft}$ 1/2 in. fiberboard:

sale of any part of the integrity of the more and is not permitted.

*1-4. The "New Jersey" barrier is commonly used during highway construction. Determine its weight per foot of length if it is made from plain stone concrete.


SOLUTION

Cross-sectional area = $6(24) + \left(\frac{1}{2}\right)(24 + 7.1950)(12) + \left(\frac{1}{2}\right)(4 + 7.1950)(5.9620)$


 $= 364.54 \text{ in}^2$

Use Table 1–2

 $w = 144 \text{ lb/ft}^3 (364.54 \text{ in}^2) \left(\frac{1 \text{ ft}^2}{144 \text{ in}^2} \right) = 365 \text{ lb/ft}$

1-5. The precast floor beam is made from concrete having a specific weight of 150 lb/ft³. If it is to be used for a floor in an office of an office building, calculate its dead and live loadings per foot length of beam.

SOLUTION

Dead load:

$$DL = 150 \text{ lb/ft}^3 \left[4.5(0.5) + 2(1.5) - 2\left(\frac{1}{2}\right)(0.5)(2) \right] \text{ft}^2 = 638 \text{ lb/ft}$$

Ans.

From Table 1-4 Live load:

Ans.

Ans.

Ans.

Ans.

This not is provided and assessing student learning. His artiful assessing student learning. His artiful assessing student learning. His provided and assessing student learning. and is provided solethor the intedity of the work and is not permitted.

And is provided solethor the intedity of the work and is not permitted. $LL = (50 \text{ lb/ft}^2)(4.5 \text{ ft}) = 225 \text{ lb/ft}$