
Chapter 2 Project 

The Lunar Module 

The Lunar Module (LM) was a small spacecraft that detached from the Apollo Command 
Module and was designed to land on the Moon. Fast and accurate computations were 
needed to bring the LM from an orbiting speed of about 5500 ft/s to a speed slow enough 
to land it within a few feet of a designated target on the Moon’s surface. The LM carried 
a 70-lb computer to assist in guiding it successfully to its target. The approach to the 
target was split into three phases, each of which followed a reference trajectory specified 
by NASA engineers. The position and velocity of the LM were monitored by sensors that 
tracked its deviation from the preassigned path at each moment. Whenever the LM 
strayed from the reference trajectory, control thrusters were fired to reposition it. In other 
words, the LM’s position and velocity were adjusted by changing its acceleration. 

The reference trajectory for each phase was specified by the engineers to have the form 

rref(t) = RT  + VTt + 1
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The variable rref represents the intended position of the LM at time t before the end of the 
landing phase. The engineers specified the end of the landing phase to take place at t = 0, 
so that during the phase, t was always negative. Note that the LM was landing in three 
dimensions, so there were actually three equations like (1). Since each of those equations 
had this same form, we will work in one dimension, assuming, for example, that r 
represents the distance of the LM above the surface of the Moon. 

1. If the LM follows the reference trajectory, what is the reference velocity vref(t)? 
2. What is the reference acceleration aref(t)? 
3. The rate of change of acceleration is called jerk. Find the reference jerk Jref(t). 
4. The rate of change of jerk is called snap. Find the reference snap Sref(t). 
5. Evaluate rref(t), vref(t), aref(t), Jref(t), and Sref(t) when t = 0. 

The reference trajectory given in equation (1) is a fourth-degree polynomial, the lowest 
degree polynomial that has enough free parameters to satisfy all the mission criteria. Now 
we see that the parameters RT = rref(0), VT = vref(0), AT = aref(0), JT  = Jref(0), ST  = Sref(0). 
The five parameters in equation (1) are referred to as the target parameters since they 
provide the path the LM should follow. 

But small variations in propulsion, mass, and countless other variables caused the LM to 
deviate from the predetermined path. To correct the LM’s position and velocity, NASA 
engineers applied a force to the LM using rocket thrusters. That is, they changed the 
acceleration. (Remember Newton’s second law, F = ma.) Engineers modeled the actual 
trajectory of the LM by 
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r(t) = RT  + VTt + 1
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We know the target parameters for position, velocity, and acceleration. We need to find 
the actual parameters for jerk and snap to know the proper force (acceleration) to apply. 

6. Find the actual velocity v = v(t) of the LM. 
7. Find the actual acceleration a = a(t) of the LM. 
8. Use equation (2) and the actual velocity found in Problem 6 to express JA and SA  

in terms of RT, VT, AT, r(t), and v(t). 
9. Use the results of Problems 7 and 8 to express the actual acceleration a = a(t) in 

terms of RT, VT, AT, r(t), and v(t). 

The result found in Problem 9 provides the acceleration (force) required to keep the LM 
in its reference trajectory. 

10. When riding in an elevator, the sensation one feels just before the elevator stops at 
a floor is a jerk. Would you want jerk to be small or large in an elevator? Explain. 
Would you want jerk to be small or large on a roller coaster ride? Explain. How 
would you explain snap? 

  



Solutions for Chapter 2 Project 

The reference trajectory is necessary to solve many of the parts of this Project and is 

given in the problem set-up: . By definition, 

 until the LM lands at t = 0. Note, for parts 1–4, each answer is simply the derivative 
with respect to t of the previous polynomial form. 

1. 
( ) 2 31 1

2 6ref T T T Tv t V A t J t S t= + + +
 

2. 
( ) 21

2ref T T Ta t A J t S t= + +
 

3. ( )ref T TJ t J S t= +  

4. ( )ref TS t S=  
5. When we evaluate each of these functions at t = 0 (the moment of LM landing), for 

each quantity, all terms except for the constant terms (the first terms listed) equal 0. 
So the so-called “target parameters” are given by r Rref (0) = T , v Vref (0) = T ,

a Aref (0) = T , Jref (0) = JT , and S Sref (0) = T  

Note that parts 6– 9 require reference to the actual trajectory,

( ) 2 3 41 1 1
2 6 24T T T A Ar t R V t A t J t S t= + + + + . The only difference between this and the 

reference trajectory is the subscripts on the jerk and snap parameters. 
6. The actual velocity is simply the derivative of the actual trajectory with respect to t:   

( ) 2 31 1
2 6T T A Av t V A t J t S t= + + + . 

7. Likewise, the actual acceleration is the derivative of the actual velocity with respect 

to t: ( ) 21
2T A Aa t A J t S t= + + . 

8. While this looks overly complicated, in fact you can think of the actual trajectory, 

given above as ( ) 2 3 41 1 1
2 6 24T T T A Ar t R V t A t J t S t= + + + + , and the actual velocity, 

given in part 6 as ( ) 2 31 1
2 6T T A Av t V A t J t S t= + + + , as linear equations in the variables 

AJ and AS . Here, we will consider the setting as a snapshot in time; that is, we will 
assess the situation for a specific value of t, rather than as a variable. Two simple 
steps will make this system more manageable. First, multiply through r(t) by 24, and 
multiply v(t) by 6 to temporarily remove all fractions. The equations result in 

( ) 2 3 424 24 24 12 4T T T A Ar t R V t A t J t S t= + + + +  and ( ) 2 36 6 6 3T T A Av t V A t J t S t= + + + . 



Next, we shuffle terms around with simple addition and subtraction to isolate J A and 

SA on the left, with all other terms on the right. We obtain 

( )3 4 24 24 24 24 12A A T T TJ t S t r t R V t A t+ = − − − , and ( )2 33 6 6 6A A T TJ t S t v t V A t+ = − − . 

This system can now be solved for AJ and AS using substitution or elimination, but 
Kramer’s Rule is probably more efficient. Kramer’s Rule requires the determinant of 
the matrix made up of the coefficients of the left side of the equation: 
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( )
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r t R V t A t t
v t V A t t
− − −

− −
divided by the result from the coefficient matrix,

6t . This is an algebra-level skill, if a bit messy. The result is 
( )

3 3 2 2

624 18 624 ( ) T T T
A

v tR V Ar tJ
t t t t t

= − − − − . Similar manipulations, dividing 6t into the 

determinant of the matrix ( )
( )

3 2

2

4 24 24 24 12
3 6 6 6

T T T

T T

t r t R V t A t
t v t V A t

− − −
− −

, result in 

3 3 2 4 4

48 12 7224 ( ) 72 ( )T T T
A

V A Rv t r tS
t t t t t

= + + − + . 

9. From answer 7, ( ) 21
2T A Aa t A J t S t= + + . But answer 8 provided us with terms for AJ

and AS . Plugging these forms into the expression for ( )a t  gives us the actual 

acceleration for the LM, independent of the actual jerk and snap. After simplifying 

algebra, ( ) 2 2

12 612 ( ) 6 ( )T T
T

R Vr t v ta t A
t tt t

= − + + + . 

10. Answers will vary. 


