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Chapter 2 Project
The Lunar Module

The Lunar Module (LM) was a small spacecraft that detached from the Apollo Command
Module and was designed to land on the Moon. Fast and accurate computations were
needed to bring the LM from an orbiting speed of about 5500 ft/s to a speed slow enough
to land it within a few feet of a designated target on the Moon’s surface. The LM carried
a 70-1b computer to assist in guiding it successfully to its target. The approach to the
target was split into three phases, each of which followed a reference trajectory specified
by NASA engineers. The position and velocity of the LM were monitored by sensors that
tracked its deviation from the preassigned path at each moment. Whenever the LM
strayed from the reference trajectory, control thrusters were fired to reposition it. In other
words, the LM’s position and velocity were adjusted by changing its acceleration.

The reference trajectory for each phase was specified by the engineers to have the form

rref(f) = Ry + Vit + lArt2+ lJrz3+ LSrt“ (1)
2 6 24

The variable rrr represents the intended position of the LM at time ¢ before the end of the
landing phase. The engineers specified the end of the landing phase to take place at 7 = 0,
so that during the phase, ¢ was always negative. Note that the LM was landing in three
dimensions, so there were actually three equations like (1). Since each of those equations
had this same form, we will work in one dimension, assuming, for example, that »
represents the distance of the LM above the surface of the Moon.

If the LM follows the reference trajectory, what is the reference velocity vrer(¢)?
What is the reference acceleration arei(¢)?

The rate of change of acceleration is called jerk. Find the reference jerk Jret(?).
The rate of change of jerk is called snap. Find the reference snap Sret(?).
Evaluate rief(?), viet(f), aref(t), Jref(?), and Srer(f) when ¢ = 0.
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The reference trajectory given in equation (1) is a fourth-degree polynomial, the lowest
degree polynomial that has enough free parameters to satisfy all the mission criteria. Now
we see that the parameters Rr= rwef(0), V7= viet(0), A7 = aret(0), J7 = Jref(0), ST = Sret(0).
The five parameters in equation (1) are referred to as the target parameters since they
provide the path the LM should follow.

But small variations in propulsion, mass, and countless other variables caused the LM to
deviate from the predetermined path. To correct the LM’s position and velocity, NASA
engineers applied a force to the LM using rocket thrusters. That is, they changed the
acceleration. (Remember Newton’s second law, ' = ma.) Engineers modeled the actual
trajectory of the LM by
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Ht)=Rr + Vit + L Ly Ly (2)
2 6 24

We know the target parameters for position, velocity, and acceleration. We need to find
the actual parameters for jerk and snap to know the proper force (acceleration) to apply.

6. Find the actual velocity v = v(¢) of the LM.

7. Find the actual acceleration a = a(¢) of the LM.

8. Use equation (2) and the actual velocity found in Problem 6 to express J4 and Sy
in terms of Rz, Vr, Ar, r(t), and v(¢).

9. Use the results of Problems 7 and 8 to express the actual acceleration a = a(f) in
terms of Rr, Vr, Ar, r(f), and w(¢).

The result found in Problem 9 provides the acceleration (force) required to keep the LM
in its reference trajectory.

10. When riding in an elevator, the sensation one feels just before the elevator stops at
a floor is a jerk. Would you want jerk to be small or large in an elevator? Explain.
Would you want jerk to be small or large on a roller coaster ride? Explain. How
would you explain snap?



Solutions for Chapter 2 Project

The reference trajectory is necessary to solve many of the parts of this Project and is

given in the problem set-up: r o (t) =R +V 1+ % A712 + %J’II3 + %STI". By definition,

t <0 until the LM lands at = 0. Note, for parts 1-4, each answer is simply the derivative
with respect to ¢ of the previous polynomial form.

A

1 1
Vs (t)=V, + ATt+5JTt2 +€STt3

a,, (1)=4, +JTt+%STt2
S (1) =T + 8,

S ref (t) =S T
When we evaluate each of these functions at # = 0 (the moment of LM landing), for
each quantity, all terms except for the constant terms (the first terms listed) equal 0.

So the so-called “target parameters” are given by, (0) =Ry, v,y (0) =V,
a,,(0)=4,,J,,(0)=J,,and S, (0) =S,

Note that parts 6— 9 require reference to the actual trajectory,

r(t)=R, +Vt Jr%ATz‘2 +%JAz‘3 +%SAZ‘4 . The only difference between this and the

reference trajectory is the subscripts on the jerk and snap parameters.
The actual velocity is simply the derivative of the actual trajectory with respect to :

v(t)=V, + At +%JAt2 +%SAt3 :

Likewise, the actual acceleration is the derivative of the actual velocity with respect
tot: a(t)= 4, +JAt+%SAt2.

While this looks overly complicated, in fact you can think of the actual trajectory,

given above as r(¢)=R, +V,t + %ATt2 - %JAﬁ + iSAt4 , and the actual velocity,

given in part 6 as v(¢)=V, + A1+ %J e +%S £, as linear equations in the variables

J,and S, . Here, we will consider the setting as a snapshot in time; that is, we will
assess the situation for a specific value of 7, rather than as a variable. Two simple

steps will make this system more manageable. First, multiply through (¢) by 24, and
multiply v(¢) by 6 to temporarily remove all fractions. The equations result in

24r(1)=24R, + 24V, t +124,1° +4J . + S 1" and 6v(1) =6V, +6A4,1+3J 1* +S 1.



Next, we shuffle terms around with simple addition and subtraction to isolate J ,and
S, on the left, with all other terms on the right. We obtain
4,8 + 8,1 =24r(t)—24R, —24V,1 —12A4,¢* ,and 3J 1’ +S,1° = 6v(t)— 6V, — 64,1 .

This system can now be solved for J,and §,using substitution or elimination, but

Kramer’s Rule is probably more efficient. Kramer’s Rule requires the determinant of
the matrix made up of the coefficients of the left side of the equation:

48
3 7
24r(t)—24R, —24V,t —124,8> t*

6v(t)— 6V, —64,t £
t°. This is an algebra-level skill, if a bit messy. The result is

ov(t
= 24r(t) 23R, 18V, 64, v( ) . Similar manipulations, dividing ¢°into the

= (45)) - (t*)(3t*) =¢°. The value of J ,is the determinant of the matrix

divided by the result from the coefficient matrix,

J
4 £ £ £ t 12
48 24r(t)—24R,. —24V.t —124.¢*
determinant of the matrix | (1) r ’ "1, result in
3t 6v(1)— 6V, —64,1
24v(t) 48V, 124, T2r(f) T2R
Si= £ " t3T+ tzT_ ¢t " t“T'

9. From answer 7,a(t)= 4, +J t +%S t°. But answer 8 provided us with terms for J,

and S, . Plugging these forms into the expression for a (t) gives us the actual
acceleration for the LM, independent of the actual jerk and snap. After simplifying
12 12R, 6V,

Z(t)+ 2T_|_ T+6V(t)'

t t t t

algebra, a(t)= 4, —

10. Answers will vary.



