Chapter 1

1. Students who lean to "yes" on this may say that money allows the purchase of the goods and services required to lead a happy life. Hopefully, they use a very broad definition of goods and services. Students who lean to "no" on this may riff on some variation of the money cannot buy happiness idea. Also they may bring in that other measures like wealth and consumption should be consulted in determining happiness.

2.	Assets_		<u>Liabilities</u>
	House	\$450,000	Mortgage \$150,000
	Car	25,000	Car loan 5,000
	Stocks	100,000	
	Checkin	ig account $2,000$	
	Total as	sets \$577,000	Total liabilities \$155,000

Net Worth = \$577,000 - \$155,000 = \$422,000

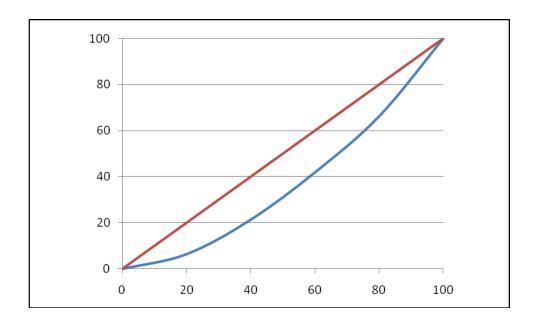
The \$2,000 in the checking account is the only money she has (students may have forgotten why the balances in checking accounts are considered part of the money supply).

After saving \$5,000 by investing in stocks:

<u>Assets</u>		<u>Liabilities</u>	
House	\$450,000	Mortgage	\$150,000
Car	25,000	Car loan	5,000
Stocks	105,000		
Checking acco	ount $2,000$		
Total assets	\$582,000	Total liabilities	\$155,000

Net Worth = \$582,000 - \$155,000 = \$427,000

After using the \$5,000 to pay off the car loan:

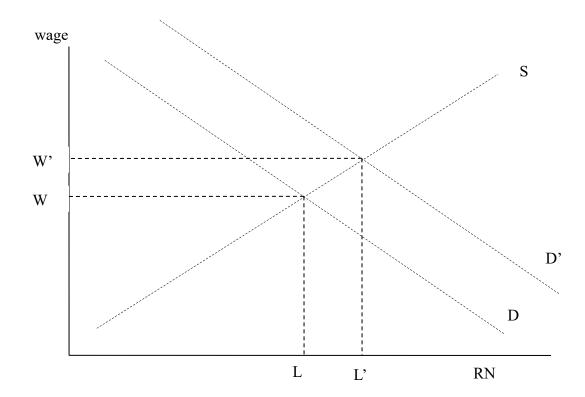

Assets_		<u>Liabilities</u>
House	\$450,000	Mortgage \$150,000
Car	25,000	
Stocks	100,000	
Checking acco	ount $2,000$	
Total assets	\$577,000	Total liabilities \$150,000

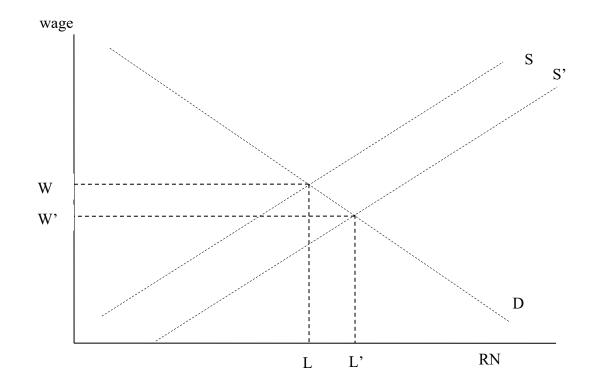
Net Worth = \$577,000 - \$150,000 = \$427,000

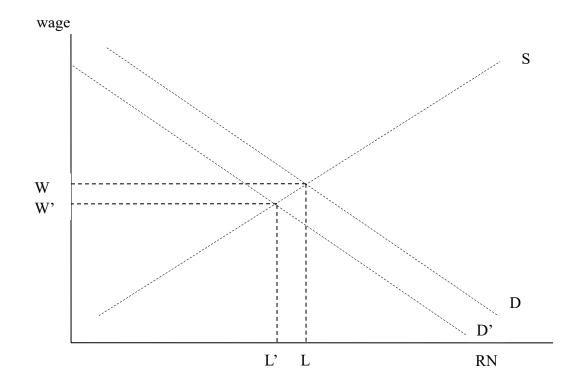
3. Students should order the numbers from smallest to largest, compute total income, divide into five quintiles and compute the income in each quintile.

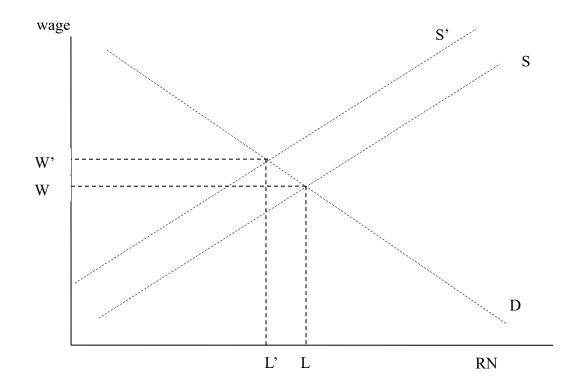
		Income by Quintile
Lowest	15000	
Quintile	25000	
	35000	75000
Second	45000	
Quintile	60000	
	70000	175000
Third	75000	
Quintile	80000	
	85000	240000
Fourth	90000	
Quintile	95000	
	100000	285000
Highest	110000	
Quintile	135000	
	150000	395000
Total		
Income	1170000	

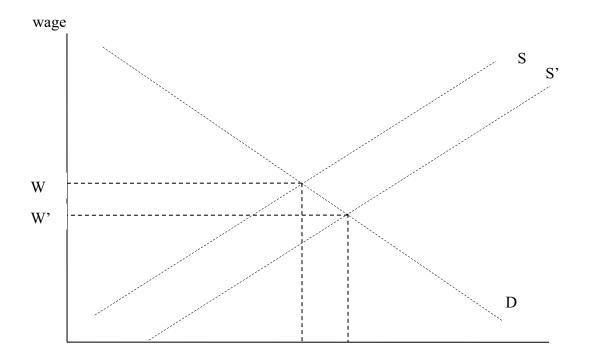
Quintile Income as Percentage Cumulative of Total Distribution Lowest 6.41% Quintile 6.41% Second Quintile 14.96% 21.37% Third Quintile 20.51% 41.88% Fourth Quintile 24.36% 66.24% Highest Quintile 100.00% 33.76%


Computation of Gini coefficient:


		Formula	Area Under Lorenz Curve
Lowest Quintile	6.41	"1/2*20*6.41"	64.10
Second Quintile	21.37	"1/2*20*(6.41+21.37)"	277.80
Third Quintile	41.88	"0.5*20*(21.37+"41.88")	632.50
Fourth Quintile	66.24	".5*20*(41.88+66.24)"	1,081.20
Highest Quintile	100.00	".5*20*(66.24+100)"	1,662.40
		Total Area under Lorenz Curve	3,718.00
	Area under 45 degree line	".5*100*100"	5,000.00
	Gini coefficient	" 1 - (Area under Lorenz Curve)/(Area under 45 degree line)	0.2564


4. Their computation should be done like question 3 except they make use of real data. The real data starts with the percentage in each quintile.


Chapter 2


- 1. A plausible story can emphasize either worker or employer actions. In the case of surpluses either workers offer to work for less or employers make lower wage offers. In the case of shortages, either employers raise their wage offers or workers demand higher wages. In equilibrium, every worker can find a job at the going wage and every employer can fill a vacancy at the going wage. No one has any reason to raise or lower wage offers.
- 2. A.

