Klaus-Dieter Pawlik

SOLUTIONS MANUAL FOR CHANGE MANAGEMENT

Fifth Edition

Solutions Manual for Guide to Energy Management, Fifth Edition

This page intentionally left blank

Solutions Manual for Guide to Energy Management, Fifth Edition

Klaus-Dieter E. Pawlik

Solutions manual for Guide to Energy Management, Fifth Edition By Klaus-Dieter E. Pawlik

©2006 by The Fairmont Press. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Published by The Fairmont Press, Inc. 700 Indian Trail Lilburn, GA 30047 tel: 770-925-9388; fax: 770-381-9865 http://www.fairmontpress.com

Distributed by Taylor & Francis Ltd. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487 tel: 800-272-7737; fax: 800-374-3401 Email: orders@crcpress.com

Distributed by Taylor & Francis Ltd. 23-25 Blades Court Deodar Road London SW15 2NU United Kingdom Email: uk.tandf@thomsonpublishingservices.co.uk

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-88173-497-7 (The Fairmont Press, Inc.) ISBN 0-8493-3906-5 (Taylor & Francis Ltd.)

While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors or omissions.

Table of Contents

Chapter 1:	Introduction to Energy Management	1
Chapter 2:	The Energy Audit Process: An Overview	15
Chapter 3:	Understanding Energy Bill	21
Chapter 4:	Economic Analysis and Life Cycle Costing	37
Chapter 5:	Lighting	53
Chapter 6:	Heating, Ventilating, and Air Conditioning	69
Chapter 7:	Combustion Processes and the Use of Industrial Wastes	83
Chapter 8:	Steam Generation and Distribution	103
Chapter 9:	Control Systems and Computers	111
Chapter 10:	Maintenance	119
Chapter 11:	Insulation	127
Chapter 12:	Process Energy Management	141
Chapter 13:	Renewable Energy Sources and Water	149
Management	Supplemental	159

This page intentionally left blank

Chapter 1

Introduction to Energy Management

Problem: For your university or organization, list some energy man-

agement projects that might be good "first ones," or early

selections.

Solution: Early projects should have a rapid payback, a high prob-

ability of success, and few negative consequences (increasing/decreasing the air-conditioning/heat, or reducing

lighting levels).

Examples:

Switching to a more efficient light source (especially in conditioned areas where one not only saves with the reduced power consumption of the lamps but also from reduced refrigeration or air-conditioning load).

Repairing steam leaks. Small steam leaks become large leaks over time.

Insulating hot fluid pipes and tanks.

Install high efficiency motors.

And many more

Again for your university or organization, assume you are starting a program and are defining goals. What are some potential first-year goals?

Solution:

Goals should be tough but achievable, measurable, and specific.

Examples:

Total energy per unit of production will drop by 10 percent for the first and an additional 5 percent the second.

Within 2 years all energy consumers of 5 million British thermal units per hour (Btuh) or larger will be separately metered for monitoring purposes.

Each plant in the division will have an active energy management program by the end of the first year.

All plants will have contingency plans for gas curtailments of varying duration by the end of the first year.

All boilers of 50,000 lbm/hour or larger will be examined for waste heat recovery potential the first year.

Perform the following energy conversions and calculations:

- a) A spherical balloon with a diameter of ten feet is filled with natural gas. How much energy is contained in that quantity of natural gas?
- b) How many Btu are in 200 therms of natural gas? How many Btu in 500 gallons of 92 fuel oil?
- c) An oil tanker is carrying 20,000 barrels of #2 fuel oil. If each gallon of fuel oil will generate 550 kWh of electric energy in a power plant, how many kWh can be generated from the oil in the tanker?
- d) How much coal is required at a power plant with a heat rate of 10,000 Btu/kWh to run a 6 kW electric resistance heater constantly for 1 week (16 8 hours)?
- e) A large city has a population which is served by a single electric utility which burns coal to generate electrical energy. If there are 500,000 utility customers using an average of 12,000 kWh per year, how many tons of coal must be burned in the power plants if the heat rate is 10,500 Btu/kWh?
- f) Consider an electric heater with a 4,500 watt heating element. Assuming that the water heater is 98% efficient, how long will it take to heat 50 gallons of water from 70 degree F to 140 degree F?

Solution:

a) V =
$$4/3$$
 (PI) P
= $4/3 \times 3.14 \times 5^3$
 523.33 ft³

E = $V \times 1,000 \text{ Btu/cubic foot of natural gas}$ = $523.33 \text{ ft}^3 \text{ X } 1,000 \text{ Btu/ft}^3$ = 523,333 Btu

b) E = 200 therms × 100, 000 Btu/therm of natural gas = 20,000,000 Btu E = 500 gallons × 140,000 Btu/gallon of #2 fuel oil 70,000,000 Btu

c) E = $20,000 \text{ barrels} \times 42 \text{ gal./barrel} \times 550 \text{ kWh/gal.}$ 4.6E+08 kWh

d) V = 10,000 Btu/kWh × 6 kW × 168 h/25,000,000 Btu/ton coal = **0.40** tons of coal

e) V = 500,000 cus. × 12,000 kWh/cus. × 10,500 Btu/kWh × I ton/25,000,000 Btu = 2,520,000 tons of coal

f) E = $50 \text{ gal.} \times 8.34 \text{ lbm/gal.} \times (140\text{F} - 70\text{F}) \times 1 \text{ Btu/F/lbm}$

= 29,190 Btu

= 29,190 Btu/3,412 Btu/kWh

= 8.56 kWh

= 8.56 kWh/4.5 kW/0.98

= 1.94 h

If you were a member of the upper level management in charge of implementing an energy management program at your university or organization, what actions would you take to reward participating individuals and to reinforce commitment to energy management?

Solution:

The following actions should be taken to reward individuals and reinforce commitment to energy management:

Develop goals and a way of tracking their progress.

Develop an energy accounting system with a performance measure such as Btu/sq. ft or Btu/unit.

Assign energy costs to a cost center, profit center, an investment center or some other department that has an individual responsibility for cost or profit.

Reward (with a monetary bonus) all employees who control cost or profit relative to the level of cost or profit. At the risk of being repetitive, note that the level of cost or profit should include energy costs.

A person takes a shower for ten minutes. The water flow rate is three gallons per minute, the temperature of the shower water is 110 degrees E Assuming that cold water is at 65 degrees F, and that hot water from a 70% efficient gas water heater is at 140 degrees F, how many cubic feet of natural gas does it take to provide the hot water for the shower?

Solution:

```
E = 10 \text{ min} \times 3 \text{ gal./min} \times 8.34 \text{ lbm/gal} \times (110 \text{ F} - 65 \text{ F}) \times 1 \text{ Btu/lbm/F} = 11,259 \text{ Btu}
```

V = 11,259 Btu × 1 cubic foot/1,000 Btu/0.70 = 16.08 cubic feet of natural gas

An office building uses 1 Million kWh of electric energy and 3,000 gallons of #2 fuel oil per year. The building has 45,000 square feet of conditioned space. Determine the Energy Use Index (EUI) and compare it to the average EUI of an office building.

Solution:

E(elect.) = $1,000,000 \text{ kWh/yr.} \times 3,412 \text{ Btu/kWh}$ = 3,412,000,000 Btu/yr.

 $E(#2 \text{ fuel}) = 3,000 \text{ gal./yr.} \times 140,000 \text{ Btu/gal.}$ = 420,000,000 Btu/yr.

E = 3,832,000,000 Btu/yr.

EUI = 3,832,000,000 Btu/yr./45,000 sq. ft

= 85,156 Btu/sq. ft/yr. which is less than the average office building

Problem: The office building in Problem 1.6 pays \$65,000 a year for

electric energy and \$3,300 a year for fuel oil. Determine the Energy Cost Index (ECI) for the building and compare it

to the ECI for an average building.

Solution: ECI = (\$65,000 + \$3,300)/45,000 sq. ft

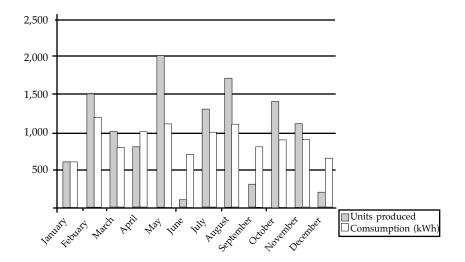
= \$1.52/sq. ft/yr.

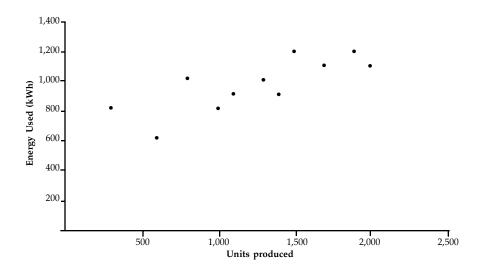
which is greater than the average building

As a new energy manager, you have been asked to predict the energy consumption for electricity for next month (February). Assuming consumption is dependent on units produced, that 1,000 units will be produced in February, and that the following data are representative, determine your estimate for February.

Given:

Month	Units produced	Consumption (kWh)	Average (kWh/uni	t)
January	600	600	1.00	
February	1,500	1,200	0.80	
March	1,000	800	0.80	
April	800	1,000	1.25	
May	2,000	1,100	0.55	
June	100	700	7.00	Vacation month
July	1,300	1,000	0.77	
August	1,700	1,100	0.65	
Septembe	r 300	800	2.67	
October	1,400	900	0.64	
Novembe	r 1,100	900	0.82	
December	200	650	3.25	1-week shutdown
January	1,900	1,200	0.63	


Solution:


First, since June and December have special circumstances, we ignore these months. We then run a regression to find the slope and intercept of the process model. We assume that with the exception of the vacation and the shutdown that nothing other then the number of units produced affects the energy used. Another method of solving this problem may assume that the weather and temperature changes also affects the energy use.

Units Month	Consumption produced	Average (kWh)	(kWh/unit)
January	600	600	1.00
February	1,500	1,200	0.80
March	1,000	800	0.80
April	800	1,000	1.25
May	2,000	1,100	0.55
July	1,300	1,000	0.77
August	1,700	1,100	0.65
September	300	800	2.67
October	1,400	900	0.64
November	1,100	900	0.82
January	1,900	1,200	0.63

From the ANOVA table, we see that if this process is modeled linearly the equation describing this is as follows:

kWh (1,000 units) =
$$623 + 0.28 \times kWh/unit produced$$

= $899 kWh$

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.795822426
R Square	0.633333333
Adjusted R Square	0.592592593
Standard Effort	118.6342028
Observations	11

ANOVA

	df	SS	MS	F	Significance F
Regression Residual	1 9	218787.9788 126666.6667	218787.9 14074.07	15.54545	0.00339167
Total	10	345454.5455			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95. 0%	Upper 95.0%
Intercept	623.1884058	93.46296795	6.667759	9.19E-05	411.7603222	834.616489	411.760322	834.6164893
X Variable 1	0,275362319	0.06993977	3.942772	0.003392	0,117373664	0.43335097	0.11737366	0.433350974

For the same data as given in Problem 1.8, what is the fixed energy consumption (at zero production, how much energy is consumed and for what is that energy used)?

Solution:

By looking at the regression run for problem 1.8 (see ANOVA table), we can see the intercept for the process in question. This intercept is probably the best estimate of the fixed energy consumption:

623 kWh.

This energy is probably used for space conditioning and security lights.

Determine the cost of fuel switching, assuming there were 2,000 cooling degree days (CDD) and 1,000 units produced in each year.

Given:

At the Gator Products Company, fuel switching caused an increase in electric consumption as follows:

	Expected energy consumption	Actual energy consumption after switching fuel		
Electric/CDD	75 million Btu	80 million Btu		
Electric/units of production	100 million Btu	115 million Btu		

The base year cost of electricity is \$15 per million Btu, while this year's cost is \$18 per million Btu.

Solution:

Cost variance = \$18/million Btu - \$15/million Btu = \$3/million Btu

Increase cost due to cost variance

- = Cost variance \times Total Actual Energy Use
- = (\$3/million Btu) × ((80 million Btu/CDD) × (2,000 CDDs) + (115 million Btu/unit) × (1,000 units))
 - = \$825,000

CDD electric variance

- = $2,000 \text{ CDD} \times (80 75) \text{ million Btu/CDD}$
- = 10,000 million Btu

Units electric variance

- = 1,000 units \times (115 100) million Btu/unit
- = 15,000 million Btu