https://selldocx.com/products
/solution-manual-the-physics-of-energy-by-robert-l-jaffe-1e-nan

Problems

Problems

2.1

2.2

2.3

Estimate the kinetic energy of the ocean liner Queen
Mary 2, with mass (displacement) 76 000 tons, mov-
ing at a cruising speed of 26 knots. Compare with the
change in potential energy of the Queen Mary 2 when
lited by a three foot tide.

The knot is a nautical unit of speed, 1 knot = 0.5144 m/s, so
26 knots = 13.4 m/s. The Queen Mary 2’s kinetic energy is then
1
Ein= 2™2= 05(76 x 106 kg) (13.4m/s)2 =6.82GJ .

The change in potential energy when lifted by a three foot tide is

)
(g.3048:m

V = mgh = (76 x 10° kg)(9.81 m/s?)(3 ft) =663 MJ
1ft '

or about 10% of the kinetic energy.

[T] A mass m moves under the influence of a force
derived from the potential V(x) = Vo coshax, where
the properties of cosh x and other hyperbolic functions
are given in Appendix B.4.2. What is the force on
the mass? What is the frequency of small oscillations
about the origin? As the magnitude of the oscillations
grows, does their frequency increase, decrease, or stay
the same?

The force on the mass is F(x) = =dV/dx = =Voa sinh ax,

+
with sinh x = ,(e* - ¢™). For small x, the exponential function
is approximated using a Taylor expansion by

2
d=1+y+ Y I,
Y.

S0 coshy = 1+y%2+. .. and sinh y = y+y*/6+...... For small oscil-
lations, i.e. when ax « 1, so we only need keep the first term in the
expansion of sinh ax, the force is F(x) = —Voa® x. The equation of
motion for small oscillations is

mx = —Voazx,

which is the equ%tionfor a harmonic oscillator (see eq. (2.10)) with
frequency w=a Vo/m.

This frequency is independent of magnitude of oscillations. If,
however, the amplitude of the oscillation becomes large compared
to 1/a, then the non-linear terms in the expansion of sinh x cannot

be ignored and the equation of motion becomes

mx = —Voa ax + _11
6‘3X3+

All of the terms in the expansion have the same sign, so as the
amplitude of oscillations increases, the magnitude of the force
increases compared to just a simple harmonic oscillator and the
frequency of the oscillations increases.

[T] An object of mass m is held near the ori-
gin by a spring, F = -kx. What is its poten-
tial energy? Show that x(t) = (xo, yo, Zo)cOS Wt is
a possible classical motion for the mass. What is
the energy of this solution? Is this the most gen-
eral motion? If not, give an example of another
solution.

According to eq. (2.18), the force is the negative gradient of the
potential energy. Setting F = —-kx = -VV, the solution is

V(X) - 2kx2 +C,

2.4

2.5

which can be checked by differentiating with respect to each coor-
dinate. We set the integration constant C = 0 so that the potential
energy is zero atx = 0.

The equation of motion is mx = F = —kx, and suggested
solution can be written x(t) = xo cos wt, where Xxo = (X0, Yo, Zo).
Differentiating twice with respect to w see X = -w? X, which
satisfies the equation of motion if w = 'k/m.

1
The total energy is the sum of kinetic, Exn =om™?, and
potential, V(x).

1 1
E:—mez T 2kx2

1 =
_ o oszwt 1

T mwy o iy wt+2_ c ~ 2kxo

2 x's

where we have used mw? =k and sin? + cos? =1.
This solution is not the most general since it requires the oscil-
lator to be maximally stretched att = 0. It is easy to show that

X(t) = Xo cos w(t — to ) is a solution for any to. Using the identity
cos(0 - @) = cos 0 cos @ + sin O sin @, it is clear that this solution'is a
sum of sine and cosine functions.

Estimate the potential energy of the international space
station (mass 370 000 kg) relative to Earth’s surface
when in orbit at a height of 350 km. Compute the veloc-
ity of the space station in a circular orbit and compare

the kinetic and potential energy.

From eq. (2.20), the potential energy relative to the surface is

V(h) = Mo . Mo
Ro+h R
= (6.67 x 107" N m2kg?) (3.7 x 10° kg) (6 x 10% kg)x
( )

4 1
' = - =121TU.
637x10°m  637x10°+35%10° m

In a circular orbit, the gravitational force is equal to the mass
times the centripetal acceleration,

2
- =G fm
r 2
Solving for velocity,
— o
- “OM. -1 24
v Mo (667 x 1? )6 x 510 m/s = 7.7 km/s.
r (6.37 x 10° + 3.5 x 10°)

The kinetic energy is equal to
-1 -1
Ein= 2™2-9 (3.7x10°kg) (7.7 x 10° m/s)? =11 TJ.

Thus, the kinetic energy is 9.1 times the potential energy relative to
Earth’s surface.

[T] Relate eq. (2.20) to eq. (2.9) and compute g in terms
of G, Mg, Rg as described in the text.

The potential yielding the 12 force law is V(r) = -GMm/r. In
the approximation that the gravitational force is constant, the
potential is V(z) = mgz, where z = r — Rg is the height from Earth’s
surface, Rg is Earth’s radius and z <« Rg. By definition,

V(z) - V(0) = =M 1 + Moy,
Rg+z Rg

Use a series expansion for 1/(Rg + z), (see eq. (B.63)),

1 1
Re+z

giving

V(z)-v()= Mem

R @
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Comparing this to V(z) = mgz, and setting V(0) = 0, we get to
leading order in z/Rg,

_ % _ 6.67%x10_44 Mo Kgo. (5.97x10,4 g)
g= "Rz = 637 Nioy K
6 m)
9.81 m/s?.

Make a rough estimate of the maximum hydropower
available from rainfall in the US state of Col-

orado. Look up the average yearly rainfall and aver-
age elevation of Colorado and estimate the poten-

tial energy (with respect to sea level) of all the
water that falls on Colorado over a year. How
does this compare with the US yearly total energy
consumption?

Colorado has an average yearly precipitation of ~0.4 m. Sup-
pose this is typical of the whole state of Colorado. Colorado has a
mean elevation of approximately 2 070 m and a total surface area
of 270 000 km?. All the precipitation falling on the state in one year
then has a total potential energy of

(1000 kg/m®)(0.4 m)(2.7 x 10" m?)
x (9.8 m/s?)(2070m) 22x10® J 22EJ.

mgh = pVgh

This is about 2% of the total energy consumed in the US each year.
Choose your favorite local mountain. Estimate how
much energy it takes to hike to the top of the mountain
(ignoring all the local ups and downs of a typical trail).
How does your result compare to a typical day’s food
energy intake of 10 MJ, taking into account the fact that
human muscles are not 100% efficient at converting
energy into work?

Mount Washington is the tallest mountain in the State of New
Hampshire? The peak of Mount Washington is at 1 917 meters
(6288 feet) above sea level. A typical route, however, begins at
about 600 meters above sea level, so the elevation gain is roughly
1 300 m. For a hiker of 80 kg (including food, water, extra clothing,
etc.), the potential energy gain on the hike is

V=mgh (80kg) 9.8 m/s(1300m) 1MJ.  (245)

At 20-30% muscle efficiency, this represents about one third to one
half of the useful energy output from the typical hiker's 10 MJ/day
food energy intake. This is computed just from the elevation gain,
without including local ups and downs of the trail, horizontal dis-
tance covered, or the hike down. So don't feel bad about consuming
a lot of high-calorie trail food next time you are on a strenuous
hike!

Use any means at your disposal (including the inter-
net) to justify estimates of the following (an order-
of-magnitude estimate is sufficient): (a) The kinetic
energy of the Moon in its motion around Earth. (b)
The kinetic energy of a raindrop before it hits the
ground. (c) The potential energy of the water in Lake
Powell (relative to the level of the Colorado river
directly beneath the dam). (d) Energy needed for you
to power a bicycle 15km at 15 km/h on flat terrain.
(e) The energy lost to air resistance by an Olympic
athlete running a 100 m race. (f) The gravitational
potential energy of a climber at the top of Mount
Everest.

2.9

2.10

(@) The moon orbits the earth about once a month and has an orbital
radius of about 380 000 km, so its speed is v = 2TR/T

0.91 km/s. The moon has a mass of 7.3 x 10 kg, so this
corresponds to a kinetic energy of

Ekin = -1 28
in o2 _ 0.5(7.3%x1022 kg)(0.91x103 m/s)2  3.0x10*° J.

(b) Large raindrops are about 5 mm in diameter and fall at ~9 m/s,
so they have a kinetic energy of

-1 (747'rp)(_d)3 ,
Exin 2 3 2V
)

0.5(1000 kg/ms) (2.5 %107 m)*)(9 m/s)?

~3mJ.

(c) Lake Powell has a volume of approximately 33 km® and the
Glen Canyon Dam has a height of Z = 220 m. Treating the lake
as a box of area A and volume V = ZA, its potential energy is

Iz
V=pgA dzz=pgAZ?2 = (1/2)pgVZ
0
~ (0.5)(1000 kg/m®)(9.8 m/s?)(33 x 10° m* )(220 m)
~36PJ.
The cross sectional area of a person on a bike is around 0.5 m?

with a drag coefficient around 1. The energy output is mostly to
counteract air resistance. The energy lost is

C

=0.5(1.2kg/my (0.5m2)

1
ZpaierAVZd )

x (42 m/s)(15%x 10° m) 79kJ.

Assuming an efficiency of ~25% for the human body, around
340 kJ will will have to be expended

Assume the runner has a cross-sectional area of approximately
0.5m?* and a drag coefficient around 1. Good runners finish in
around 10 s, so they have a speed of 10 m/s. The total energy
lost to air resistance will be (1/2)cq parAvid ~ 3 kJ.

Estimate that a climber and gear have a mass of approximately
90 kg. The top of Mt. Everest is 8 848 m above sea level, so the
climber will have

(90 kg)(9.8 M/s?)(8.9x 10°m) 7.8 MJ

(e

=

=

mgh
of gravitational potential energy with respect to sea level.

Verify the claim that conversion of the potential energy
at the top of a 15 m hill to kinetic energy would
increase the speed of the Toyota Camry from 62 to
74 mph.

A Camry has a mass of 1800 kg, so it gains 265 kJ of kinetic
energy when its elevation falls by 15 m. Conservation of energy
requires that

1

2mv2 +mgh=constant.
Using this, the final velocity if it starts at 62 mihr is
—

vi = v?+2gh=232.6m/s =73 mihr.
1

Consider a collision between two objects of differ-
ent masses M, m moving in one dimension with ini-
tial speeds V, —v. In the center-of-mass frame, the
total momentum is zero before and after the colli-
sion. In an elastic collision both energy and momen-
tum are conserved. Compute the velocities of the two
objects after an elastic collision in the center-of-mass
frame. Show that in the limit where m/M — 0, the
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more massive object remains at rest in the center-of-
mass frame (V = 0 before and after the collision),
and the less massive object simply bounces off the
more massive object (like a tennis ball off a concrete
wall).

In the center-of-mass frame the objects have velocities V'=

V+ua ‘= v+ ere —u is fl locity of the center-of-mass
vievb'ecrI govm the %‘ri‘éﬂaﬁra%e. lf%é’ ?o?al ¥nomentum [¢) 816 two
objects in the center-of-mass vanishes: pot = M(V+u)+m(-v+u) =
0, which determines the center-of-mass velocity

mv - MV

U= m+M

and

m
V=V+u= o (v+V)

vV=-v+u=-

+
M (v+V)

are the objects’ velocities before the collision in the center-of-
mass. If energy and momentum are both conserved in the collision,
the objects’ must reverse their center-of-mass velocities after the
collision,

m
V ==V =-T " (v+V)
f m+M
vf =-v = (v+V).
m+M

In the limitm/M — 0, V' — 0 and V' — 0, the heavier object
. f,
begins and remains at rest, while V=V o= (v +V), the lighter

object bounces off.
As we explain in §34.2.1, the density of air decreases

with altitude roughly as p ~ poe™!, where z is the
height above the Earth’s sufaceandH 8.5 km near
the surface. Compute the ratio of air resistance losses
for an airplane traveling at 750 km/h at an altitude of
12000 m compared to an altitude of 2000 m. What hap-
pens to this ratio as the speed of the airplane changes?
How do automobile air resistance losses at 2000 m
compare to losses at sea level?

Air resistance losses are linearly proportional to the density
of air, so the ratio of loses at 12 000 m compared to 2000 m is

r e 1985 31%. Although the losses (dE,; /dt) are
proportional to speed cubed, the speed cancels out in the ratio of
losses at two different air densities, so the ratio is independent of
the airplane’s speed. Similarly for a car at 2000 m compared to sea
levelr ¢85  79%.

Consider an airplane with mass 70000 kg, cross-

sectional area 12 m?, and drag coefficient 0.03. Esti-
mate the energy needed to get the plane moving at
800 km/h and lift the plane to 10 000 m, and estimate
air-resistance losses for a flight of 2000 km using the
formula in the previous problem. Do a rough com-
parison of the energy used per person to do a similar
trip in an automobile, assuming that the plane car-
ries 50 passengers and the automobile carries two

people.

For simplicity, assume that acceleration occurs quickly so that air
resistance during acceleration can be neglected. The plane requires a
total kinetic energy of

= oA

1
Eqn = Mv2 - 0.5(70000 kg)(800 x 103 m/3600 s)2 =1.73 GJ,

2.13

2.14

and at 10 000 m has a potential energy of
V = mgh = (70000 kg)(9.8 m/s?)(10000 m) = 6.86 GJ.

The density of air at 10 000 m is approximately e %8 = 31% of
the density at sea level p.i-= 0.31(1.17 kg/m3)  0.36  kg/m®.
Traveling at v = 800 km/h for d = 2 000 km at 10 000 m, the plane
loses

1
Ea  “3PargapV2g  0.5(0.36 kg/ms)(0.03)

x (12 m?)(222 m/s)*(2000 x 10°m) 64 GJ.

due to air resistance. The total energy used by the plane over
the flight is approximately 15.3 GJ. This is 306 MJ/passenger or

153 kJ/passenger-km. A typical car uses around 210 MJ of mechan-
ical energy over the 340 km trip between New York and Boston.
With 2 passengers, this is 310 kJ/passenger-km, or nearly twice the
energy usage of the airplane. So, before engine efficiencies are con-

tsi.dered, automobiles use roughly twice as much energy over a long
rip.

In the American game of baseball, a pitcher throws
a baseball, which is a round sphere of diameter b =
0.075 m, a distance of 18.4 m (60.5 feet), to a batter,
who tries to hit the ball as far as he can. A baseball
has a mass close to 0.15 kg. A radar gun measures the
speed of a baseball at the time it reaches the batter at
44.7 m/s (100 mph). The drag coefficient cq of a base-
ball is about 0.3. Give a semi-quantitative estimate of
the speed of the ball when it left the pitcher's hand

by (a) assuming that the ball’'s speed is never too dif-
ferent from 100 mph to compute roughly how long it
takes to go from the pitcher to the batter, (b) using (a)
to estimate the energy lost to air resistance, and (c)
using (b) to estimate the original kinetic energy and
velocity.

The ball has an effective area of A = TR? = 0.00442 m?. For air
at sea level and 25°C, par = 1.17 kg/m®. The energy loss rate is

dE
_ -0.5(0.3)(0.00442 m,
dt = 2% pPair, 3 )
x (117 kgim®)(44.7 misf® =69 Jis.

If the ball’s speed does not differ significantly from 100 mph, it
takes (a) t = (18.4 m)/(44.7 m/s)  0.41 sec for the ball to reach
the batter. The total amount of energy lost is (b) AE =% xt

dt

8 J.
At 100 mph, the ball has a kinetic energy of

150 J.

Ewint="_ny,
2

(c) The initial kinetic energy of the ball is just the difference of this
and the energy loss,
Exini =150 J +28 J =178 J.

This corresponds to a velocity of

N

Ekinim

2(178 J)
(0.15kg)

Estimate the power output of an elite cyclist pedaling
a bicycle on a flat road at 14 m/s. Assume all energy
is lost to air resistance, the cross-sectional area of the
cyclist and the bicycle is 0.4 m?, and the drag coeffi-
cient is 0.75. Now estimate the power output of the
same elite cyclist pedaling a bicycle up a hill with slope

8% at 5 m/s. Compute the air resistance assuming the

m/s  49m/s 110 mph.

v=
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drag coefficient times cross-sectional area is cq A =
0.45 m? (rider is in a less aerodynamic position). Com-
pute the ratio of the power output to potential energy
gain. Assume that the mass of the rider plus bicycle is
90 kg.

On the flat road, the power output of the cyclist is equal to the
power lost due to air resistance,

1

p= (0.5)(1.2 kg/m3)(0.75)(0.4 mz2)(14 m/s)3

SPeayvs 490 W.

The power output of the cyclist on the slope is equal to the
power lost due to air resistance and due to the rate of change of
potential energy,

P=Py,  +P,.

The contribution from air resistance is

Pair = K

2PCap Vs _ (0.5)(1.2 kg/m3)(0.45 m2)(5 m/s)3 =34 W.

The contribution from gravitational potential energy

P, = mgdZ (90 kg)(9.8 m/s)(5 m/s) sin(arctan(8/100) 350 W
dt

so the total power output of the cyclist on the slope is

P =380 W.

Compare the rate of power lost to air resistance for the
following two vehicles at 60 km/h and 120 km/h: (a)
General Motors EV1 withcqs A 0.37 m?, (b) Hummer
H2withcg A 2.45m?.

(a). At 60 km/h (16.67 m/s)
aEloss T

PPN
(0.5)(1.2 kg/ms)(0.37 m2)(16.7 m/s)s = 1.03 kW
At 120 km/h, the power is 8 times as high, or 8.2 KW.
(b). The power for the Hummer H2 scales with the ¢4 A, so the H2
loses energy at a rate of (2.45/.37)(1.03 kW) = 6.8 kW at
60 km/h and (2.45/.37)(8.2 kW) = 54 kW at 120 km/h. In both
cases, the H2 loses energy at a rate 6.6 times that of the EV1.
[T] Consider an idealized cylinder of cross-sectional
area A moving along its axis through an idealized
diffuse gas of air molecules with vanishing initial
velocity. Assume that the air molecules are pointlike
and do not interact with one another. Compute the
velocity that each air molecule acquires after a col-
lision with the cylinder, assuming that the cylinder
is much more massive than the air molecules. [Hint:
assume that energy is conserved in the reference frame
of the moving cylinder and use the result of Prob-
lem 2.10.] Use this result to show that the drag coeffi-
cient of the cylinder in this idealized approximation is

c:guppg%é the cylinder is traveling at a velocity v. In the cylinder's

rest frame, the air molecules are traveling at a velocity —v per-
pendicular to the surface of the cylinder. Taking the limit that the
cylinder is infinitely more massive than the air molecules, this is
the center of mass frame. In this limit, a collision may change the
direction of the air molecule but not the speed. Since the velocity
the air molecules is perpendicular to the end of the cylinder, the

final velocity must be +v in the cylinder rest frame. Going back to

the lab frame, we add a velocity +v to everything, so that the cylin-
der once again is traveling at a velocity of +v and the air molecule
has a velocity of +2v.

To find cq , we must now compute the rate of energy loss of the
cylinder. In time dt, the front end of the cylinder passes through a
volume Avdt of air, corresponding to a mass of dm = Apvdt. This
mass is accelerated from rest to a velocity of 2v. So, the column of
air gains an energy of

1
dEqr =~ devalr - ZAPVSdt .

From conservation of energy, the cylinder loses an equal amount of
energy, so the power output due to air resistance is

()
dE - 3 _ =1
=-2Apv’ == 2% PY3

where ¢q =4.

One way to estimate the effective area (see eq. (2.31))
of an object is to measure its limiting velocity v.
falling in air. Explain how this works and find the
expression for A« as a function of m (the mass of the
object), v-, g, and the density of air. The drag coeffi-
cient of a soccer ball (radius 11 cm, mass 0.43 kg) is
cq = 0.25. What is its limiting velocity?

Because the force due to air resistance increases with velocity,
if an object is allowed to fall in air, there is some velocity at which
the upward force due to air resistance is equal in magnitude to the
downward gravitational force. When this happens, there is no net
force on the object, so the object continues falling at this velocity,
which is v.. Thus,

~
mg = oPairpeffy =

Solving for A,

2mg
Aef = 2
Pairv
The effective area of the soccer ball is Aet =cq A =cqT? =
0.0095 m? The limiting velocity is
< <

2mg 2(0.43 kg)(9.8 m/s2)
Vo = 27 mis .
PairAeft (1.2 kg/m®)(0.0095 m?)

If the vehicle used as an example in this chapter accel-
erates to 50 km/h between each stoplight, find the max-
imum distance between stoplights for which the energy
used to accelerate the vehicle exceeds the energy lost to
air resistance. (You may assume that the time for accel-
eration is negligible in this calculation.) How does the
result change if the vehicle travels at 100 km/h between
lights? Why?

The vehicle in this chapter has A = 2.7 m2, ca= 1/3, and m
= 1800 kg. The total energy lost to friction after a distance d at a
velocity v is B
1.
Elost = 2pLdA\ 2q
Setting this equal to the kinetic energy and solving for d to get the

maximum distance for which the kinetic energy exceeds the energy
lost due to airresistance,

1 1

2™2 = @AV
m 1800 kg
_ 1.67 km.
4= peiA (1.2 kgim?)(1/3)(2.7 m2) 67 km



Problems

The result is the same if the vehicle travels at 100 km/h. Both
the kinetic energy and the energy loss are proportional to v so the
distance at which they are equal is independent of the velocity.

2.19 Estimate the rotational kinetic energy in a spinning yo-
yo (a plastic toy that you can assume is a cylinder
of diameter 5.7 cm and mass 52 g, which rotates at
100 Hz). Compare to the gravitational potential energy
of the yo-yo at height of 0.75 m.

The moment of inertia for a cylinder of mass m, length z and
radius R rotating around its axis is (see Example 2.4),

1 1
Loyinder = pPTZR4 _ yinRy (2.46)

The energy of the rotating yo-yo is E =l 2102 andW=2TTV=
S0

@Sz 100 Hz) 630,

1
Ert = w2 (0.25)(0.052 kg)(0.0285 m)2 (630 s-1)2  4.2J.
(2.47)
Its gravitational potential energy at a height of 0.75 m is mgh
0.38 J, almost a factor of ten smaller than its rotational kinetic

energy at 10 Hz. (Most of the energy is imparted in the initial
“throw,” and not from gravitational potential energy.)

2.20 Verify the assertion (see Example 2.3) that Ewn =

—l9y for the Moon in a circular orbit around
Earth. [Hint: the magnitude of the centripetal
acceleration for circular motion (2.35) can be rewritten
a=v2r]

Assume throughout that Mg > mmoon, SO we may take Earth
to be at rest. For a circular orbit, the centripetal acceleration is
a = v?/r. The acceleration due to gravity is GMg/r? where Mg
is Earth’s mass, which is much greater than that of the moon. The
gravitational potential energy of the moon is V = -GMg m/r

The centripetal acceleration and gravitational acceleration are

identical, so

2

Vv GM@
—=cMe o= , SO
T 1'2 T

, (
_ T _GMg_)=-1"
Exin = 2mvy -2 T ®m V.

r 2
2.21 Estimate Earth’s kinetic energy 02f rotation (the moment

of inertia of a uniform sphere is- 5MR2).

Earth has a mass of 5.972 x 10** kg and a mean radius of
6 371 km. It rotates about its axis once per sidereal day (23.9345 h),
giving it an angular velocity of w = 21/(1 sidereal day) = 7.292 x
107 s™. Its kinetic energy of rotation is

2
B= MR (2= (02)(5.972 % 10* kg)(6 371 x 10° m)’
x (7.292 x 10 rad/s)? =2.578 x 10% J .



