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NOTE TO THE INSTRUCTOR

This booklet supplements the 3™ edition of
TRANSPORTATION ENGINEERING AND PLANNING. It
contains solutions to exercises which require
numerical calculations as well as selected
answers to questions which elicit qualitative
treatment. Solutions are not given for the
computer programming of exercises because
they can be programmed in Basic, Fortran,
Pascal, C, C++, etc. or with commands in Excel
or Lotus spreadsheet software.

Chapters 1 and 15 do not contain exercises. All
exercises in Chapter 7 are essay type, thus, no
essays are provided in this solutions manual.
The open ended questions of Chapter 7 (and of
other Chapters) intend to help the students
appreciate the wide context of transportation
engineering and planning, to develop tolerance
to ambiguity, and to hone the ability to think
critically. We consider these important elements
which need to be cultivated and we are
convinced that introductory transportation
course(s) based on this textbook are effective
means for accomplishing the task for developing
and cultivating such skills to our students.

Requiring students to conduct research and to
report on cases and issues pertinent to the
students’ locale is an excellent way to achieve
an understanding of the more elusive concepts

covered in the textbook. In line with this thesis,
the students should be encouraged to interpret
the results of quantitative exercises.

The use of computers by engineering and
planning students has become essential. A good
sense of proportion dictates (a) some computer
programming in a basic computer language such
as Fortran or C++, (b) hands-on experience
with existing traffic and transportation software,
(c) use of spreadsheets for analysis —including
basic statistical modeling— and chart-making,
and (d) use of presentation and word-processing
software for the delivery of homework and class
presentations.

Your comments on both the textbook and the
exercises are always welcome and much
appreciated. Although it is said that a perfect
manuscript tends to develop defects in the
publication process, in actuality, any errors and
omissions are the sole responsibility of the
authors.

Thank you for selecting our
textbook for your course.

Constantinos S. Papacostas
Panos D. Prevedouros
(Honolulu, June 1999)




CHAPTER 2
2/1 v =12 mi/h = 17.6 ft/s and X, = 0.0 ft.

Interval 0 < t < 5 s.

dv 2 . . £2

w-2a-=t ft/s®. By integration, v =7 + 17.6 ft/s.

4% _ v and e £ 4 17.6 ¢4 0.0 £t

dt 6 ) * )

When t = 5 s, v(5) = 30.1 ft/s and x(5) = 108.8 ft.
Interval 5<t<15s or 0< (t-35)<10

dv 2

w-2-= 5 ft/s and v = 5(t - 5) + 30.1 ft/s.

2
%% = v. Therefore, x = 5 SE—%—él— + 30.1(t - 5) + 108.8 ft.

When t = 15 s, v(15) = 80.1 ft/s and x(15) = 659.8 ft.

Interval 15< t <20s or 0 < (t-15) <5

2
v _ .. -%{t - 15) ft/s® and v = -%ﬁ%@—ar 80.1 ft/s.

dt
3
Q% = v. Consequently, x = - %.ﬁ&.g_lél_ + 80.1(t - 15) + 659.8 ft.

When t = 20 s, v(20) = 60.1 ft/s and x(20) = 1027.0 ft. Answer

The relationship between speed and time is plotted below.

v (ft/s)

Note that the shape of the v-t curve

80 <+
can be inferred directly from the

shape of the a-t diagram. At t = O,

60
the slope of the v-t diagram is zero

since a = 0. The slope increases in a
linear fashion until t = 5 s. Between

30
t=5sand t =15 s, the slope remains

constant. At t = 15 s, it abruptly

changes to zero, and then it decreases

linearly.
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From the above diagram tan a = 0.02 and a = 1.15°.

Also Dy = x cosa = x.

4 v vl v o vE
Eq. 2.2.6 gives x =——— and Eq. 2.2.13 yields Db =X =-
(2)(8) 2g(f + 0.02)
Therefore 16 = 2g(f + 0.02) = 64.4 (f + 0.02).
Solving for the coefficient of friction, f = 0.23.
This value suggests a wet pavement.
2/3
Assuming the case of constant acceleration,
v =at + v, and (v2 - vg) = 2a(x - xo) [Egs. 2.2.4 & 2.2.6]
The movement from the ground floor to the restaurant level involved:
Total distance = 140 ft.
Time to reach cruising velocity when a = 5 ft/s2 = %Q =4 s.
Time to stop from cruising velocity when d =4 ft/s2 = %Q =5 s.
Acceleration distance = 202/[2(5)] = 40 ft.
Deceleration distance = 202/[2(4)] = 50 ft.

Cruising distance = 140 - 40 - 50 = 50 ft.

Cruising time at maximum cruising speed = 50/20 = 2.5 s.

During the movement from the restaurant level to the observation deck the

elevator did not reach cruising velocity. The total distance of 20

ft

consisted of accelerating (xa) and decelerating (xd) distances, i.e.,

X, + Xy = 20 ft.



2/3 (cont.)
H Vz v
ence, TO) + 7%

= 20 ft.

Consequently, the highest speedreached was v = 9.4 ft/s. 1In additionm,

Acceleration distance = 8.9 ft.
Deceleration distance = 11.1 ft.
Acceleration time = 1.9 s.
Deceleration time = 2.4 s.

The required diagrams are drawn below.
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2/4 2 2 2
A =100 ft W = 40,000 1b a = 100 1b/ft B = 3.33 1b/ft"-s
a) F = (AP)A = (W/g)a
Solve for acceleration in terms of pressure difference AP:
-2 - -22.2 -
a=q A (AP) = 70,000 (100)(AP) = 0.0805(AP)
Also, v=[adt and x = [ v dt.

For simplicity, set t, = 0O and Xy = 0.



2/4 (cont.)
Acceleration phase (0 < t < ty):
0.0805(100 - 3.33t) = 8.05 - 0.268t  ft/s’

a=
v = 8.05t - 0.268(t%/2) + v = 8.05¢t - 0.136t2  ft/s (Eq.1)
x = 8.05(t%/2) - 0.134(/3) + x;  fr.

According to the given a-t diagram, a = O when t = t - Consequently,
t = (8.05)/(0.268) = 30 s. At this instant, cruising velocity is attained:
2
Veruise = 8.05(30) - 0.134(30)° = 120.9 ft/s.

The distance traveled during the acceleration phase is x = 2416.5 ft.

Deceleration phase (t, <t S-tS):

a = 0.0805(-3.33)(t - tz) where t, depends on station spacing.
(t - tz)z 2
v = - 0.268 3 +Voouise = 120.9 - 0.134(t - tz) (Eq.2)
(t - t2)2
(x - x2) = 120.9(t - t2) - 0.134 3

The deceleration time may be computed via Eq. 2 or by symmetry with the
acceleration phase to be (t3 - t2) = 30 s. By similar reasoning, the
deceleration distance X4 equals the acceleration distance Xy that is
2416.5 ft.

Cruising phase ( Lt S.tz):

The total cruising distance equals the station spacing (1 mi = 5280 ft)

minus (xa + xb), or x = 447 ft. The required equations for the

cruise
cruising phase are:

a=0ft/s?2 v =120.9 ft/s and x = 120.9(t -30) + 2416.5 ft.

b) The v-t diagram for the entire movement is shown below:

120.9 ft/s
Eq. 2

Eq. 1
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2/5
The estimated speed at impact was 15 mi/h or 22 ft/s.

o = arctan 0.03 = 1.72°.

Db = x cos 1.72° = 20 cos 1.72° = 19.99 ft = 20 ft.
In the absence of a measured value for f, use 0.6 as an approximation
since the pavement was dry. Using v = 22 ft/s and G = +0.03, apply

Eq. 2.2.13 to find Vo = 36 ft/s = 24.5 mi/h. Answer

2/6
The total stopping distance equals the distance traveled during 6§, i.e.,

perception reaction time, plus the braking distance:
2

Yo
X =V S+ pE v 0y

For Vo = 42 mi/h = 61,6 ft/s; § = 0.8 s; £ =0.5s; and G =0
Xg = 49.28 + 117.84 = 167.12 ft.

Since 167.12 < 175, there was no impact. Answer

2/7
According to Fig., 2.3.5 the length of the dilemma

zone, Lp, equals (xC - xo). Substitution of the given data into Egs.

2.3.3 and 2.3.6 yields:
2

v

o
c " 1.0 Vot 32.2

ta
I

tad
|

= 4.5y - 80
(o]
and Ly =0.03 vg - 3.5 v, + 80

This is a quadratic equation with roots v = 32 and vy = 85 ft/s. By

setting the first derivative of LD with respect to Yo equal to zero,

0.06 vy~ 3.5=0
the critical point is found to occur at vy ® 58 ft/s. Since the second
derivative at this point is +0.06, the curve is concave upward and the
critical point is a minimum. At this point the value of LD is -22 ft. The
relationship between approach speed and the length of the dilemma zone is
plotted on the following page. Note that negative values of v, are
meaningless in this case; they may describe the situation in which the
vehicle backs up to clear the intersection behind it! Also, negative
values of LD represent the situation illustrated by Fig. 2.3.5 in the
textbook, a situation that does not present a dilemma zone problem. Thus

for the.data . given the dilemma zone problem arises for the range of speeds



2/7 (cont.)

v, < 32 ft/s and vy > 85 ft/s

LD (ft)

80

vy (ft/s)

=22

Another way of viewing the same phenomenon is by superposing the Vo T %o
and the vy < Xc curves:

X_ Of X, (ft) The vertical distance between the two
curves represents the length of the
dilemma zone at the corresponding speed.

o The graph illustrates that both the
length and the location of the dilemma
zone depend on speed. At very low speeds
the dilemma zone extends beyond the
stopping line (i.e., the horizontal
axis). This means that a vehicle that
happens to already be within the inter-
section may not be able to clear the
intersection prior to the onset of red.
Again, "positive" dilemma zones are
seen at low- and high-speed-limit ranges.

stopping line Also, not all approaching vehicles will

be affected by the presence of a dilemma
zone: Only those approaching at the

speed limit v, that happen to be located

within the confines of the dilemma zone
will be affected. This discussion is

based on the assumpticn of zero accele-

ration.



2/8
Equation 2.3.7

Tmin (s)
describes the relationship between 81
T . and v_. For the given data:
min o
v
- 2,80 77
Tmin—0'9+16+v
o
To find the critical point(s), set 6 1
the first derivative to zero and
. 5 4
solve for Vo' 4.77 1 '
1 _60v2-0 and v_ =231 ft/s !
16 o o - 4 T
31 v, (ft/s)

Since negative speeds are meaningless
in this case, the critical point is

at v = 31 ft/s. Since the second derivative at this point is positive, the
curve is concave upward and the point is a minimum. The corresponding value

for 1 is 4.77 s. Thus, for this case, the absolute minimum value of the

min
amber duration is 4.77 s when the speed limit is about 20 mi/h.

2/9 (computer exercise)

2/10
The sign becomes legible to the driver at a distance of 100 ft. At a speed

of 30 mi/h (= 44 ft/s), the sign remains in view for 100/44 = 2.27 s. The

driver has enough time to read it.

2/11
The existing letter size can be read by a person with 20/50 vision from

a distance of 300(40/50) = 240 ft. For the same person to be able to read
the sign from a distance of 450 ft, the letter size should be 450/240 or

1.9 times as large.

2/12
The witness should have been at most 180(20/60) = 60 ft from the hit-and-

run vehicle.

2/13
The relative speed between the two vehicles is 35 + 40 = 75 mi/h or 110 ft/s.

According to Eq. 2.3.9, driver A will displace latterally at a distance

of separation lA as follows:



