
Table of Contents
1 Exercise 2.1. Minimizing a quadratic function and the curse of dimensionality
2 Exercise 2.2. Implementing random search in Python
3 Exercise 2.3. Using random search to minimize a nonconvex function
4 Exercise 2.4. Random search with diminishing steplength
5 Exercise 2.5. Random descent probabilities
6 Exercise 2.6. Revisiting the curse of dimensionality
7 Exercise 2.7. Pseudo-code for the coordinate search algorithm
8 Exercise 2.8. Coordinate search applied to minimize a simple quadratic
9 Exercise 2.9. Coordinate search with diminishing steplength
10 Exercise 2.10. Coordinate search versus coordinate descent

In [1]: # imports from custom library
import sys
sys.path.append('../')
import matplotlib.pyplot as plt
import autograd.numpy as np

import custom libraries
from mlrefined_libraries import basics_library as baslib
from mlrefined_libraries import calculus_library as calib
from mlrefined_libraries import math_optimization_library as optlib

import demos for this notebook
static_plotter = optlib.static_plotter.Visualizer();
optimizers = optlib.optimizers

this is needed to compensate for matplotlib notebook's tendancy to blow up imag
es when plotted inline
%matplotlib notebook
from matplotlib import rcParams
rcParams['figure.autolayout'] = True

%load_ext autoreload
%autoreload 2

Exercise 2.1. Minimizing a quadratic function and the curse of
dimensionality

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

1 of 18 1/11/20, 9:18 AM

https://selldocx.com/products
/solution-manual-watt-machine-learning-refined-foundations-algorithms-and-applications-2e-nan

https://selldocx.com/products/solution-manual-watt-machine-learning-refined-foundations-algorithms-and-applications-2e-nan

In this experiment we verify the curse of dimensionality issue associated with the use of randomly sampled points for naive
evaluation for the simple quadratic function

whose minimum is always regardless of the input dimension .

In this experiment we create a range of these quadratics for input dimension to . We sample the input
space of each quadratic times randomly and uniformly on the hypercube (this
hypercube has sides).

The printout below shows the minimum value attained for each dimensional quadratic after , , and
samples. As we can see in the plot, the minimum value attained even after random samples increases substantially
as the dimension of the quadratic increases - all due to the curse of dimensionality. As discussed above we would need to
use exponentially many samples to counteract this problem, which quickly becomes infeasible.

g(w) = wwT

g() = 00N×1 N

N = 1 N = 100
10, 000 [−1, 1] × [−1, 1] × ⋯ × [−1, 1]

N

100 1, 000 10, 000
10, 000

In [46]: # run experiment for global random evaluation
optlib.random_method_experiments.random_eval_experiment()

A few simple hand-calculations can precisely affirm why this is happening for the particular set of very simple functions we
are studying here. To produce a random point in the input space of the function we sample each axis of the input hypercube
according to a uniform distribution on the interval . Thus the average value along each input dimension is equal to 0
(as the average of a uniform on the interval is given as).

[−1, 1]
[a, b] (a + b)1

2

The problem is that the probability that all input elements are small in magnitude (close to zero or equal to zero)
simultaneously gets exponentially smaller as we go up in dimension. In one dimension, the probability of selecting a value on
the interval is - by definition - . However as we go up in dimension since each
dimension is drawn independently this means that in dimensions the probability of drawing each element so that

 is .

Thus as our dimension increases the probability of randomly accessing points close to the true global minimum at the origin
diminishes exponentially. This again implies that in order to keep up with this our sampling would have to increase
exponentially with dimension as well - which is computationally infeasible.

[−0.1, 0.1] p(v ≤ |0.1|) = = 0.10.2
2

N vi
≤ |0.1|vi p(≤ |0.1|, i = 1, . . . , N) = (0.1vi)N

Exercise 2.2. Implementing random search in Python

Below we have a Python implementation of the random local search algorithm.

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

2 of 18 1/11/20, 9:18 AM

In [4]: # random search function
def random_search(g,alpha_choice,max_its,w,num_samples):

run random search
weight_history = [] # container for weight history
cost_history = [] # container for corresponding cost function histo

ry
alpha = 0
for k in range(1,max_its+1):

check if diminishing steplength rule used
if alpha_choice == 'diminishing':

alpha = 1/float(k)
else:

alpha = alpha_choice

record weights and cost evaluation
weight_history.append(w)
cost_history.append(g(w))

construct set of random unit directions
directions = np.random.randn(num_samples,np.size(w))
norms = np.sqrt(np.sum(directions*directions,axis = 1))[:,np.newaxis]
directions = directions/norms

pick best descent direction
compute all new candidate points
w_candidates = w + alpha*directions

evaluate all candidates
evals = np.array([g(w_val) for w_val in w_candidates])

if we find a real descent direction take the step in its direction
ind = np.argmin(evals)
if g(w_candidates[ind]) < g(w):

pluck out best descent direction
d = directions[ind,:]

take step
w = w + alpha*d

record weights and cost evaluation
weight_history.append(w)
cost_history.append(g(w))
return weight_history,cost_history

Notice that the history of function evaluations returned is called cost_history . This is because - in the context of
machine learning / deep learning - mathematical functions are often referred to as cost or loss functions.

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

3 of 18 1/11/20, 9:18 AM

In [5]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: np.dot(w.T,w) + 2

run random search algorithm
alpha_choice = 1; w = np.array([3,4]); num_samples = 1000; max_its = 5;
weight_history,cost_history = random_search(g,alpha_choice,max_its,w,num_samples)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input_surface_contour_plot(g,weight_history,view = [10,30],xmi
n = -4.5, xmax = 4.5, ymin = -4.5, ymax = 4.5,num_contours = 20)

Exercise 2.3. Using random search to minimize a nonconvex
function

As another example, we minimize the function

using random local search again setting and 8 steps with for all steps. Here because an entire region of
global minima exist at the method - as clumsy as it is given the settings - quickly finds a global minimum

when initiated at .

g(,) = tanh(4 + 4) + max(0.4 , 1) + 1w0 w1 w0 w1 w2
0

P = 1000 α = 1
g(,) = 1w1 w2

= []w0 2
2

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

4 of 18 1/11/20, 9:18 AM

In [6]: # define function
g = lambda w: np.tanh(4*w[0] + 4*w[1]) + max(0.4*w[0]**2,1) + 1

run random search algorithm
alpha_choice = 1; w = np.array([2,2]); num_samples = 1000; max_its = 8;
weight_history,cost_history = random_search(g,alpha_choice,max_its,w,num_samples)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input_surface_contour_plot(g,weight_history,view = [20,300],nu
m_contours =30, xmin = -3.3,xmax = 2.7,ymin = -5,ymax = 3)

Exercise 2.4. Random search with diminishing steplength

In the cell below we make two runs of random search using a famous optimization test function called the Rosenbrock
function which takes the form

This function (whose contour plot is shown in the left panel below) has a global minimum at the point located in

a very narrow and curved valley.

With both runs we begin at the point , examine 1000 sample directions per step, and take a maximum of 50

steps. First - as illustrated below - we use a fixed steplength value . We can see that the procedure halts after just 5
steps because every direction stemming from the final point of length one is an ascent direction. The method was able to
enter the long curved narrow valley where the mininum is located, but cannot properly navigate inside it because the
steplength value is too large.

g (,) = 100 + .w0 w1 (−)w1 w2
0

2 (− 1)w0
2

= []w⋆ 1
1

w = []−2
−2

α = 1

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

5 of 18 1/11/20, 9:18 AM

In [7]: # define function
g = lambda w: 100*(w[1] - w[0]**2)**2 + (w[0] - 1)**2

run random search algorithm
alpha_choice = 1; w = np.array([-2,-2]); num_samples = 1000; max_its = 50;
weight_history_1,cost_history_1 = random_search(g,alpha_choice,max_its,w,num_samp
les)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input_contour_plot(g,weight_history_1,num_contours = 35,xmin =
-2.5,xmax = 2.5,ymin = -2.25,ymax = 2)

Now we make the same run but use the diminishing steplength rule . Because the steplength is constantly shortened
the procedure never encounters a problem like the run above, and completes all 50 iterations. More importantly the
diminishing steplength allows this local method to better navigate the long narrow valley that contains the global mininum -
and so can get substantially closer to it than can a run with a fixed steplength value. Below make this run, plotting the
original fixed steplength run in the left panel and the run produced with the diminishing steplength rule in the right panel.

α = 1
k

In [8]: # define function
g = lambda w: 100*(w[1] - w[0]**2)**2 + (w[0] - 1)**2

run random search algorithm
alpha_choice = 'diminishing'; w = np.array([-2,-2]); num_samples = 1000; max_its
= 50;
weight_history_2,cost_history_2 = random_search(g,alpha_choice,max_its,w,num_samp
les)

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

6 of 18 1/11/20, 9:18 AM

In [9]: # show run in both three-dimensions and just the input space via the contour plot
static_plotter.compare_runs_contour_plots(g,[weight_history_1,weight_history_2],n
um_contours = 35,xmin = -2.5,xmax = 2.5,ymin = -2.25,ymax = 2,show_original = Fal
se)

Exercise 2.5. Random descent probabilities

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

7 of 18 1/11/20, 9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

8 of 18 1/11/20, 9:18 AM

As with the global optimization approach, the curse of dimensionality also poses a major obstacle to random local search as
the dimension of a function's input increases. We illustrate this using a sequence of simple quadratic functions (where we
will gradually increase the input dimension)

starting at the point

a) When , starting at (shown by a blue circle in the figure below) we have infinitely many unit directions to

choose from, where only a fraction of them whose endpoint lie inside the unit circle (centered at origin) are descent
directions. Therefore if we were to choose a unit direction randomly, the descent probability would be calculated as the
length of the yellow arc in the figure divided by the entire length of the unit circle centered at .

For more clarity, the two-dimensional input space is re-drawn from above in the right panel of the figure below.

Notice the black circle shown in the right panel, centered at the midpoint of and the origin, completely encompasses the
yellow arc, and hence one-half of its length is greater than that of the yellow arc. In other words, the length of the yellow arc
is upper-bounded by the length of the black semi-circle that lie inside the unit circle, and we have

Both the numerator and the denominator are now easy to compute, noticing that a simple application of the Pythagorean
theorem gives the radius of the black circle as .

b) In higher dimensions we can still use the same geometric argument we made above to find an upperbound to the descent
probability, only this time we are dealing with hyperspheres instead of circles. More specifically, in we can write

So, for instance, when the descent probability falls below 1%.

N
g (w) = w + 2wT

=w0

⎡

⎣

⎢⎢⎢⎢⎢⎢

1
0
0
⋮
0

⎤

⎦

⎥⎥⎥⎥⎥⎥
N×1

N = 2 = []w0 1
0

w0

descent probability =
length of yellow arc
length of unit circle

w0

descent probability < ⋅1
2

length of black circle
length of unit circle

3√
2

descent probability < ⋅ = = 0.4331
2

2π ()3√
2

2π (1)
3‾√

4

N

descent probability < ⋅ = ⋅1
2

surface area of encompassing hypersphere of radius 3√
2

surface area of unit hypersphere
1
2 ()3‾√

2

N−1

N = 30

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

9 of 18 1/11/20, 9:18 AM

Exercise 2.6. Revisiting the curse of dimensionality

Here we empirically confirm the curse of dimensionality problem described above for the simple quadratic used there. In the
Python cell below we gradually increase the dimension of the input to this quadratic from to , and starting at

the dimensional input point we create random unit directions and evaluate candidate point

 - where is a random unit direction - via the quadratic.

The printout shows what portion of the sampled directions provide a decrease in function evaluation - or in other words what
portion of those sampled are descent directions - among the first , , and directions sampled. As we can
see from the printout this portion vanishes rapidly to zero as increases, even when random directions are chosen.

N = 1 N = 25

N =w0

⎡

⎣

⎢⎢⎢⎢

1
0
⋮
0

⎤

⎦

⎥⎥⎥⎥
10, 000

= − dwcandidate w0 d

100 1, 000 10, 000
N 10, 000

In [10]: # run experiment
optlib.random_method_experiments.random_local_experiment()

The true global minimum here is located at , which we do not get that close too in the above run. However
if we increase both the number of directions sampled at each step as well as the number of total iterations we can get
closer. We do this in the next Python cell - increasing and letting the maximum number of iterations equal 10.

(,) = (0, 0)w1 w2
P

P = 100

Exercise 2.7. Pseudo-code for the coordinate search
algorithm

Below we provide both pseudo-code and an implementation of coordinate search, followed by several examples employing
it.

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

10 of 18 1/11/20, 9:18 AM

Exercise 2.8. Coordinate search applied to minimize a simple
quadratic

Below we implement the coordinate search algorithm.

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

11 of 18 1/11/20, 9:18 AM

In [11]: # zero order coordinate search
def coordinate_search(g,alpha_choice,max_its,w):

construct set of all coordinate directions
directions_plus = np.eye(np.size(w),np.size(w))
directions_minus = - np.eye(np.size(w),np.size(w))
directions = np.concatenate((directions_plus,directions_minus),axis=0)

run coordinate search
weight_history = [] # container for weight history
cost_history = [] # container for corresponding cost function histo

ry
alpha = 0
for k in range(1,max_its+1):

check if diminishing steplength rule used
if alpha_choice == 'diminishing':

alpha = 1/float(k)
else:

alpha = alpha_choice

record weights and cost evaluation
weight_history.append(w)
cost_history.append(g(w))

pick best descent direction
compute all new candidate points
w_candidates = w + alpha*directions

evaluate all candidates
evals = np.array([g(w_val) for w_val in w_candidates])

if we find a real descent direction take the step in its direction
ind = np.argmin(evals)
if g(w_candidates[ind]) < g(w):

pluck out best descent direction
d = directions[ind,:]

take step
w = w + alpha*d

record weights and cost evaluation
weight_history.append(w)
cost_history.append(g(w))
return weight_history,cost_history

In the next Python cell we compare 5 steps of the random search algorithm (with random directions tested at

each step) to 7 steps of coordinate search, using the same starting point and fixed steplength parameter value

 for both. The test function in this case is the simple quadratic used in several of the examples of the previous Section

The resulting steps taken by random search are shown on the function contour in the left panel, and likewise for coordinate
search in the right panel. Both algorithms reach the global minimum of the function at the origin, but it takes coordinate
search a few more steps to do so (due to the vastly fewer directions it searches over when compared to random search).
Notice as well how the steps of coordinate descent tend to zig-zag towards the solution. This is again due to the fact that it
only looks over the two perpendicular directions provided by the axes when deciding on a direction for each step.

P = 1000

= []w0 3
4

α = 1
g(,) = + + 2.w0 w1 w2

0 w2
1

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

12 of 18 1/11/20, 9:18 AM

In [12]: # define function
g = lambda w: np.dot(w.T,w) + 2

run random search algorithm
alpha_choice = 1; w = np.array([3,4]); num_samples = 1000; max_its = 5;
weight_history_1,cost_history_1 = optimizers.random_search(g,alpha_choice,max_it
s,w,num_samples)

run coordinate search algorithm
alpha_choice = 1; w = np.array([3,4]); max_its = 7;
weight_history_2,cost_history_2 = coordinate_search(g,alpha_choice,max_its,w)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.compare_runs_contour_plots(g,[weight_history_1,weight_history_2],x
min = -0.5,xmax = 4.5,ymin = -0.5,ymax = 4.5,num_contours = 17)

Exercise 2.9. Coordinate search with diminishing
steplength

In the next Python cell we compare 5 steps of the random search algorithm (with random directions tested at

each step) to 5 steps of coordinate search, using the same starting point and fixed steplength parameter value

 for both. The test function in this case is a skewed quadratic function

The resulting steps taken by random search are shown on the function contour in the left panel, and likewise for coordinate
search in the right panel. Here while the random search algorithm finds the true minimum at the origin, the coordinate search
run halts after the first step due to the steplength being set too large for this particular function / initialization (each of the
four coordinate directions are directions of ascent at the first step).

P = 1000

= []w0 3
4

α = 1
g(,) = 0.26 (+) − 0.48w0 w1 w2

0 w2
1 w0w1

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

13 of 18 1/11/20, 9:18 AM

In [13]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1]**2) - 0.48*w[0]*w[1]

run random search algorithm
alpha_choice = 1; w = np.array([3,4]); num_samples = 1000; max_its = 5;
weight_history_1,cost_history_1 = optimizers.random_search(g,alpha_choice,max_it
s,w,num_samples)

run coordinate search algorithm
alpha_choice = 1; w = np.array([3,4]); max_its = 5;
weight_history_2,cost_history_2 = coordinate_search(g,alpha_choice,max_its,w)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.compare_runs_contour_plots(g,[weight_history_1,weight_history_2],x
min = -1.5,xmax = 4.5,ymin = -1.5,ymax = 4.5,num_contours = 23)

By making the steplength parameter smaller we can encourage coordinate search to find its way towards the function's
minimum at the origin. Below we re-run coordinate search using a diminishing steplength parameter at the step
for steps. With this run the method gets much closer to the function minimum. Furthermore, even though we used

 steps this run takes fewer total function evaluations - and hence total computation - then the corresponding random
search run shown above (for the simple reason discussed in the previous example).

α = 1
k kth

1000
1000

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

14 of 18 1/11/20, 9:18 AM

In [14]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1]**2) - 0.48*w[0]*w[1]

run coordinate search algorithm
alpha_choice = 'diminishing'; w = np.array([3,4]); max_its = 1000;
weight_history,cost_history = coordinate_search(g,alpha_choice,max_its,w)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input_contour_plot(g,weight_history,xmin = -1.5,xmax = 4.5,ymi
n = -1.5,ymax = 4.5,num_contours = 23,show_original = False)

Exercise 2.10. Coordinate search versus coordinate
descent

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

15 of 18 1/11/20, 9:18 AM

In [22]: # zero order coordinate search
def coordinate_descent_zero_order(g,alpha_choice,max_its,w):

run coordinate search
N = np.size(w)
weight_history = [] # container for weight history
cost_history = [] # container for corresponding cost function histo

ry
alpha = 0
for k in range(1,max_its+1):

check if diminishing steplength rule used
if alpha_choice == 'diminishing':

alpha = 1/float(k)
else:

alpha = alpha_choice

random shuffle of coordinates
c = np.random.permutation(N)

forming the dirction matrix out of the loop
cost = g(w)

loop over each coordinate direction
for n in range(N):

direction = np.zeros((N,1)).flatten()
direction[c[n]] = 1

record weights and cost evaluation
weight_history.append(w)
cost_history.append(cost)

evaluate all candidates
evals = [g(w + alpha*direction)]
evals.append(g(w - alpha*direction))
evals = np.array(evals)

if we find a real descent direction take the step in its direction
ind = np.argmin(evals)
if evals[ind] < cost_history[-1]:

take step
w = w + ((-1)**(ind))*alpha*direction
cost = evals[ind]

record weights and cost evaluation
weight_history.append(w)
cost_history.append(g(w))
return weight_history,cost_history

In this example we compare the efficacy of coordinate search and the coordinate descent algorithm described above using
the same function from the previous example. Here we compare steps of coordinate search (left panel) and coordinate
descent (right panel), using a diminishing step length for both runs. Because coordinate descent takes two steps for every
single step taken by coordinate search we get significantly closer to the function minimum.

20

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

16 of 18 1/11/20, 9:18 AM

In [23]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1]**2) - 0.48*w[0]*w[1]

run coordinate search algorithm
alpha_choice = 'diminishing'; w = np.array([3,4]); max_its = 40;
weight_history_1,cost_history_1 = coordinate_search(g,alpha_choice,max_its,w)

run coordinate descent algorithm
alpha_choice = 'diminishing'; w = np.array([3,4]); max_its = 40;
weight_history_2,cost_history_2 = coordinate_descent_zero_order(g,alpha_choice,ma
x_its,w)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.compare_runs_contour_plots(g,[weight_history_1,weight_history_2],x
min = -1.5,xmax = 4.5,ymin = -1.5,ymax = 4.5,num_contours = 25)

We can view the precise difference more easily by comparing the two function evaluation histories via the cost function
history plot, which we do below. Here we can see in this instance while the first several steps of coordinate search were
more effective than their descent counterparts (since they search over the entire list of coordinate directions instead of one
at a time), the coordinate descent method quickly overtakes search finding a lower point on the cost function.

In [24]: # This code cell will not be shown in the HTML version of this notebook
plot the cost function history for a given run
static_plotter.plot_cost_histories([cost_history_1,cost_history_2],start = 0,poin
ts = False,labels = ['coordinate search','coordinate descent'])

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

17 of 18 1/11/20, 9:18 AM

In [27]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1]**2) - 0.48*w[0]*w[1]

run coordinate search algorithm
alpha_choice = 'diminishing'; w = np.array([3,4]); max_its = 100;
weight_history,cost_history = coordinate_descent_zero_order(g,alpha_choice,max_it
s,w)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input_contour_plot(g,weight_history,xmin = -1.5,xmax = 4.5,ymi
n = -1.5,ymax = 4.5,num_contours = 25,show_original = False)

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

18 of 18 1/11/20, 9:18 AM

