chapter_2_solutions

file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

https://selldocx.com/products

/solution-manual-watt-machine-learning-refined-foundations-algorithms-and-applications-2e-nan

1of18

Table of Contents

Exercise 2.1. Minimizing_a quadratic function and the curse of dimensionality.

Exercise 2.2. Implementing random search in Python

Exercise 2.3. Using random search to minimize a nonconvex function

Exercise 2.4. Random search with diminishing_steplength

Exercise 2.6. Revisiting_the curse of dimensionality
Exercise 2.7. Pseudo-code for the coordinate search algorithm

Exercise 2.8. Coordinate search applied to minimize a simple quadratic

Exercise 2.9. Coordinate search with diminishing_steplength

1
2
3
4
5 Exercise 2.5. Random descent probabilities
6
7
8
9
1

0 Exercise 2.10. Coordinate search versus coordinate descent

In [1]:

imports from custom library
import sys
sys.path.append('../")

import matplotlib.pyplot as plt
import autograd.numpy as np

import custom libraries

from mlrefined_libraries import basics_library as baslib

from mlrefined_libraries import calculus library as calib

from mlrefined_libraries import math_optimization_ library as optlib

import demos for this notebook
static plotter = optlib.static_plotter.Visualizer();
optimizers = optlib.optimizers

this is needed to compensate for matplotlib notebook's tendancy to blow up imag

es when plotted inline

gmatplotlib notebook

from matplotlib import rcParams
rcParams['figure.autolayout'] = True

%load_ext autoreload
%autoreload 2

Exercise 2.1. Minimizing a quadratic function and the curse of
dimensionality

1/11/20,9:18 AM

https://selldocx.com/products/solution-manual-watt-machine-learning-refined-foundations-algorithms-and-applications-2e-nan

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In this experiment we verify the curse of dimensionality issue associated with the use of randomly sampled points for naive
evaluation for the simple quadratic function
g(w) = wliw

whose minimum is always g(0yx;) = O regardless of the input dimension N.

In this experiment we create a range of these quadratics for input dimension N = 1 to N = 100. We sample the input
space of each quadratic 10, 000 times randomly and uniformly on the hypercube [—1, 1] X [—1, 1] X --- X [—1, 1] (this
hypercube has N sides).

The printout below shows the minimum value attained for each dimensional quadratic after 100, 1, 000, and 10, 000
samples. As we can see in the plot, the minimum value attained even after 10, 000 random samples increases substantially
as the dimension of the quadratic increases - all due to the curse of dimensionality. As discussed above we would need to
use exponentially many samples to counteract this problem, which quickly becomes infeasible.

In [46]: # run experiment for global random evaluation
optlib.random method experiments.random eval experiment()

25 1

20 1

15 A1

10 A1

funciton value

dimension of input

A few simple hand-calculations can precisely affirm why this is happening for the particular set of very simple functions we
are studying here. To produce a random point in the input space of the function we sample each axis of the input hypercube
according to a uniform distribution on the interval [—1, 1]. Thus the average value along each input dimension is equal to 0
(as the average of a uniform on the interval [a, b] is given as %(a + b)).

The problem is that the probability that all input elements are small in magnitude (close to zero or equal to zero)
simultaneously gets exponentially smaller as we go up in dimension. In one dimension, the probability of selecting a value on
the interval [—0.1, 0.1] is - by definition - p(v < |0.1]) = % = 0.1. However as we go up in dimension since each
dimension is drawn independently this means that in N dimensions the probability of drawing each element v; so that

v; <10.1]isp(v; <10.1], i=1,...,N) = (0.DV.

Thus as our dimension increases the probability of randomly accessing points close to the true global minimum at the origin
diminishes exponentially. This again implies that in order to keep up with this our sampling would have to increase
exponentially with dimension as well - which is computationally infeasible.

Exercise 2.2. Implementing random search in Python

Below we have a Python implementation of the random local search algorithm.

20f 18 1/11/20,9:18 AM

chapter_2_solutions

30of 18

In [4]:

file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

random search function
def random search(g,alpha choice,max_its,w,num samples):

ry

run random search

weight history = [] # container for weight history
cost_history = [] # container for corresponding cost function histo
alpha = 0

for k in range(l,max its+l):
check if diminishing steplength rule used
if alpha choice == 'diminishing':
alpha = 1/float(k)
else:
alpha = alpha choice

record weights and cost evaluation
weight history.append(w)
cost _history.append(g(w))

construct set of random unit directions

directions = np.random.randn(num samples,np.size(w))

norms = np.sqrt(np.sum(directions*directions,axis = 1))[:,np.newaxis]
directions = directions/norms

pick best descent direction
compute all new candidate points
w_candidates = w + alpha*directions

evaluate all candidates
evals = np.array([g(w_val) for w val in w_candidates])

1f we find a real descent direction take the step in its direction
ind = np.argmin(evals)
if g(w_candidates[ind]) < g(w):

pluck out best descent direction

d = directions[ind, :]

take step
w = w + alpha*d

record weights and cost evaluation
weight history.append(w)

cost _history.append(g(w))

return weight history,cost_history

Notice that the history of function evaluations returned is called cost_history . This is because - in the context of
machine learning / deep learning - mathematical functions are often referred to as cost or loss functions.

1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

4 of 18

In [5]: | # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: np.dot(w.T,w) + 2

run random search algorithm
alpha choice = 1; w = np.array([3,4]); num samples = 1000; max its = 5;
weight history,cost history = random search(g,alpha choice,max_its,w,num samples)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input surface_contour plot(g,weight history,view = [10,30],xmi
n = -4.5, xmax = 4.5, ymin = -4.5, ymax = 4.5,num contours = 20)

g(wo, wi)
40
1\
20 \\0. @
o NV,
NS
o
0 g
-4 0
0 2 4 4 2 WO

Exercise 2.3. Using random search to minimize a nonconvex
function

As another example, we minimize the function
gwg, wy) = tanh(dwqy + 4wy) + max(0.4wg, +1

using random local search again setting P = 1000 and 8 steps with @ = 1 for all steps. Here because an entire region of
global minima exist at g(w, wy) = 1 the method - as clumsy as it is given the settings - quickly finds a global minimum

2
when initiated at w® = [2] .

1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In [6]: | # define function
g = lambda w: np.tanh(4*w[0] + 4*w[1l]) + max(0.4*w[0]**2,1) + 1

run random search algorithm
alpha choice = 1; w = np.array([2,2]); num samples = 1000; max_its = 8;
weight history,cost_history = random search(g,alpha choice,max its,w,num samples)

show run in both three-dimensions and just the input space via the contour plot
static plotter.two_ input surface contour plot(g,weight history,view = [20,300],nu

m_contours =30, xmin = -3.3,xmax = 2.7,ymin = -5,ymax = 3)

g(wo, wy)

Exercise 2.4. Random search with diminishing steplength

In the cell below we make two runs of random search using a famous optimization test function called the Rosenbrock
function which takes the form
2 2
g wg,wy) = 100(w1 - w(z)) + (wo — D~

This function (whose contour plot is shown in the left panel below) has a global minimum at the point w* = [1] located in

a very narrow and curved valley.

With both runs we begin at the point w = [] , examine 1000 sample directions per step, and take a maximum of 50

steps. First - as illustrated below - we use a fixed steplength value @ = 1. We can see that the procedure halts after just 5
steps because every direction stemming from the final point of length one is an ascent direction. The method was able to
enter the long curved narrow valley where the mininum is located, but cannot properly navigate inside it because the
steplength value is too large.

Sof 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

6 of 18

In [7]: # define function
g = lambda w: 100*(w[1l] - w[O0]**2)**2 + (w[0] - 1)**2

run random search algorithm

alpha choice = 1; w = np.array([-2,-2]); num samples = 1000; max_its = 50;
weight history 1,cost_history 1 = random search(g,alpha choice,max_its,w,num_samp
les)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.two_input contour_plot(g,weight history 1,num contours = 35,xmin =
-2.5,xmax = 2.5,ymin = -2.25,ymax = 2)

2.0 2.0
1.5 1.5
1.0 1.0 4
0.5 1 0.5
Wi 0.0 Wi 0.0
—0.5 —0.5 A
—1.0 —-1.0
-1.5 -1.5
-2.0 -2.0 O

Now we make the same run but use the diminishing steplength rule o = % Because the steplength is constantly shortened
the procedure never encounters a problem like the run above, and completes all 50 iterations. More importantly the
diminishing steplength allows this local method to better navigate the long narrow valley that contains the global mininum -
and so can get substantially closer to it than can a run with a fixed steplength value. Below make this run, plotting the
original fixed steplength run in the left panel and the run produced with the diminishing steplength rule in the right panel.

In [8]: | # define function
g = lambda w: 100*(w[l] - w[O]**2)**2 + (w[0] - 1)**2

run random search algorithm

alpha choice = 'diminishing'; w = np.array([-2,-2]); num samples = 1000; max_its
= 50;

weight history 2,cost_history 2 = random search(g,alpha choice,max_its,w,num_samp
les)

1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In [9]: | # show run in both three-dimensions and just the input space via the contour plot
static_plotter.compare runs_contour plots(g,[weight history 1,weight history 2],n
um_contours = 35,xmin = -2.5,xmax = 2.5,ymin = -2.25,ymax = 2,show _original = Fal
se)

2.0

1.5

1.0 4

0.5

—0.5 A1

-1.0 1

-1.5

-2.0 O -2.0 O

Exercise 2.5. Random descent probabilities

7 of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

8of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

As with the global optimization approach, the curse of dimensionality also poses a major obstacle to random local search as
the dimension of a function's input increases. We illustrate this using a sequence of simple quadratic functions (where we
will gradually increase the input dimension N)

g(w) = wiw+2

starting at the point

_0_N><1

1
a) When N = 2, starting at w' = [0] (shown by a blue circle in the figure below) we have infinitely many unit directions to

choose from, where only a fraction of them whose endpoint lie inside the unit circle (centered at origin) are descent
directions. Therefore if we were to choose a unit direction randomly, the descent probability would be calculated as the
length of the yellow arc in the figure divided by the entire length of the unit circle centered at wl.

o length of yellow arc
descent probability =

length of unit circle

For more clarity, the two-dimensional input space is re-drawn from above in the right panel of the figure below.

W ascent direction

descent direction

Notice the black circle shown in the right panel, centered at the midpoint of w and the origin, completely encompasses the
yellow arc, and hence one-half of its length is greater than that of the yellow arc. In other words, the length of the yellow arc
is upper-bounded by the length of the black semi-circle that lie inside the unit circle, and we have

d ¢ probability < 1 length of black circle
eoceit Probabiity 2 length of unit circle

Both the numerator and the denominator are now easy to compute, noticing that a simple application of the Pythagorean

1 2z (%)
descent probability < 5 T(l) =5 = 0.433

theorem gives the radius of the black circle as g .

S

b) In higher dimensions we can still use the same geometric argument we made above to find an upperbound to the descent
probability, only this time we are dealing with hyperspheres instead of circles. More specifically, in N we can write

descent probability < 5" Z - _.

surface area of unit hypersphere 2

1 surface area of encompassing hypersphere of radius A} 1 < V3 >N -1
2

9of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

Exercise 2.6. Revisiting the curse of dimensionality

Here we empirically confirm the curse of dimensionality problem described above for the simple quadratic used there. In the
Python cell below we gradually increase the dimension of the input to this quadratic from N = 1 to N = 25, and starting at
1

the N dimensional input point w® = we create 10, 000 random unit directions and evaluate candidate point
0
Weandidate = W — d - where d is a random unit direction - via the quadratic.

The printout shows what portion of the sampled directions provide a decrease in function evaluation - or in other words what
portion of those sampled are descent directions - among the first 100, 1, 000, and 10, 000 directions sampled. As we can
see from the printout this portion vanishes rapidly to zero as N increases, even when 10, 000 random directions are chosen.

In [10]: # run experiment
optlib.random method experiments.random local experiment ()

2

5 0.5 4

C

C

3 0.4 1

(V]

©

v 0.3 -

(@]

9 0.2 - —— 100
S 1000
© 0.1 - > —— 10000
5

4%' 0.0 ——mmm T —— —_—
= 0 5 10 15 20 25

dimension of input

The true global minimum here is located at (w;, w,) = (0, 0), which we do not get that close too in the above run. However
if we increase both the number of directions sampled at each step P as well as the number of total iterations we can get
closer. We do this in the next Python cell - increasing P = 100 and letting the maximum number of iterations equal 10.

Exercise 2.7. Pseudo-code for the coordinate search
algorithm

Below we provide both pseudo-code and an implementation of coordinate search, followed by several examples employing
it.

10 of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

Algorithm 1 Coordinate search algorithm

input: initial point w’, maximum number of steps K, a steplength a or diminishing steplength rule, take the
set of directions d%*! = e, and d?* = —e,, forn =1,...,N and set P = 2N

for k=1..K
find s = argmin g(w"‘1 + ad”)
p=1..P
set df = d°

form new point w* = wk! + ad*
ifg(wk) < g(w"‘l)
whl — wk

output: history of weights {wk}:zo and corresponding function evaluations { g (wk)}::o =0

Exercise 2.8. Coordinate search applied to minimize a simple
quadratic

Below we implement the coordinate search algorithm.

11 of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

12 of 18

In [11]: # zero order coordinate search
def coordinate search(g,alpha choice,max its,w):
construct set of all coordinate directions
directions plus = np.eye(np.size(w),np.size(w))
directions minus = - np.eye(np.size(w),np.size(w))
directions = np.concatenate((directions_plus,directions_minus),axis=0)

run coordinate search

weight history = [] # container for weight history

cost_history = [] # container for corresponding cost function histo
ry

alpha = 0

for k in range(l,max its+1l):
check if diminishing steplength rule used
if alpha_choice == 'diminishing':
alpha = 1/float(k)
else:
alpha = alpha_choice

record weights and cost evaluation
weight history.append(w)
cost_history.append(g(w))

pick best descent direction
compute all new candidate points
w_candidates = w + alpha*directions

evaluate all candidates
evals = np.array([g(w_val) for w val in w_candidates])

1f we find a real descent direction take the step in its direction
ind = np.argmin(evals)
if g(w_candidates[ind]) < g(w):

pluck out best descent direction

d = directions[ind, :]

take step
w = w + alpha*d

record weights and cost evaluation
weight history.append(w)

cost _history.append(g(w))

return weight history,cost_history

In the next Python cell we compare 5 steps of the random search algorithm (with P = 1000 random directions tested at
3
each step) to 7 steps of coordinate search, using the same starting point wl = [4] and fixed steplength parameter value

a = 1 for both. The test function in this case is the simple quadratic used in several of the examples of the previous Section
gwg, wy) = w(z) + w% + 2.

The resulting steps taken by random search are shown on the function contour in the left panel, and likewise for coordinate
search in the right panel. Both algorithms reach the global minimum of the function at the origin, but it takes coordinate
search a few more steps to do so (due to the vastly fewer directions it searches over when compared to random search).
Notice as well how the steps of coordinate descent tend to zig-zag towards the solution. This is again due to the fact that it
only looks over the two perpendicular directions provided by the axes when deciding on a direction for each step.

1/11/20,9:18 AM

chapter_2_solutions

In [12]:

file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

define function
g = lambda w: np.dot(w.T,w) + 2

run random search algorithm

alpha choice = 1; w = np.array([3,4]); num samples = 1000; max_its = 5;

weight history 1,cost_history 1 = optimizers.random search(g,alpha choice,max_it
S,w,num_samples)

run coordinate search algorithm
alpha choice = 1; w = np.array([3,4]); max_its = 7;
weight history 2,cost history 2 = coordinate search(g,alpha choice,max its,w)

show run in both three-dimensions and just the input space via the contour plot
static_plotter.compare_runs_contour_plots(g,[weight history 1,weight history 2],x

min = -0.5,xmax = 4.5,ymin = -0.5,ymax = 4.5,num contours = 17)
44
34
Wi 5
1 1
0 - 0
0 1 2 3 4 0 1 2 3 4

Exercise 2.9. Coordinate search with diminishing
steplength

In the next Python cell we compare 5 steps of the random search algorithm (with P = 1000 random directions tested at

3
each step) to 5 steps of coordinate search, using the same starting point wl = [4] and fixed steplength parameter value

a = 1 for both. The test function in this case is a skewed quadratic function

glwg,w1) = 0.26 (w(z) + w%) — 0.48wow;

The resulting steps taken by random search are shown on the function contour in the left panel, and likewise for coordinate
search in the right panel. Here while the random search algorithm finds the true minimum at the origin, the coordinate search
run halts after the first step due to the steplength being set too large for this particular function / initialization (each of the
four coordinate directions are directions of ascent at the first step).

13 of 18

1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In [13]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1l]**2) - 0.48*w[0]*w[1]

run random search algorithm

alpha choice = 1; w = np.array([3,4]); num samples = 1000; max its = 5;

weight history 1,cost history 1 = optimizers.random search(g,alpha choice,max it
s,w,num_samples)

run coordinate search algorithm
alpha choice = 1; w = np.array([3,4]); max _its = 5;
weight_history_2,cost_history_ 2 = coordinate_search(g,alpha_choice,max_its,w)

show run in both three-dimensions and just the input space via the contour plot
static plotter.compare runs contour plots(g,[weight history 1,weight history 2],x

min = -1.5,xmax = 4.5,ymin = -1.5,ymax = 4.5,num_contours = 23)
4' 4'
3 3
2 1 2
w1 w1
1 14
0 - 0 -
_1- _1.
-1 0 1 2 3 4 -1 0 1 2 3 4
Wo Wo

By making the steplength parameter smaller we can encourage coordinate search to find its way towards the function's
minimum at the origin. Below we re-run coordinate search using a diminishing steplength parameter a = % at the k™" step
for 1000 steps. With this run the method gets much closer to the function minimum. Furthermore, even though we used
1000 steps this run takes fewer total function evaluations - and hence total computation - then the corresponding random
search run shown above (for the simple reason discussed in the previous example).

14 of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In [14]: # This code cell will not be shown in the HTML version of this notebook

define function
g = lambda w: 0.26*(w[0]**2 + w[1l]**2) - 0.48*w[0]*w[1]

run coordinate search algorithm
alpha choice = 'diminishing'; w = np.array([3,4]); max its = 1000;
weight history,cost history = coordinate search(g,alpha choice,max its,w)

show run in both three-dimensions and just the input space via the contour plot

static_plotter.two_input contour_plot(g,weight history,xmin = -1.5,xmax = 4.5,ymi
n = -1.5,ymax = 4.5,num contours = 23,show original = False)

Exercise 2.10. Coordinate search versus coordinate
descent

15of 18 1/11/20,9:18 AM

chapter_2_solutions

16 of 18

In [22]:

file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

zero order coordinate search
def coordinate descent zero order(g,alpha choice,max_its,w):

ry

run coordinate search
N = np.size(w)

weight history = [] # container for weight history
cost_history = [] # container for corresponding cost function histo
alpha = 0

for k in range(l,max its+1l):
check if diminishing steplength rule used
if alpha_choice == 'diminishing':
alpha = 1/float(k)
else:
alpha = alpha_choice

random shuffle of coordinates
c = np.random.permutation(N)

forming the dirction matrix out of the loop
cost = g(w)

loop over each coordinate direction
for n in range(N):
direction = np.zeros((N,1l)).flatten()
direction[c[n]] =1

record weights and cost evaluation
weight history.append(w)
cost_history.append(cost)

evaluate all candidates

evals = [g(w + alpha*direction)]
evals.append(g(w - alpha*direction))
evals = np.array(evals)

if we find a real descent direction take the step in its direction
ind = np.argmin(evals)
if evals[ind] < cost_history[-1]:

take step

w=w + ((-1)**(ind))*alpha*direction

cost = evals[ind]

record weights and cost evaluation
weight history.append(w)
cost_history.append(g(w))

return weight history,cost history

In this example we compare the efficacy of coordinate search and the coordinate descent algorithm described above using
the same function from the previous example. Here we compare 20 steps of coordinate search (left panel) and coordinate
descent (right panel), using a diminishing step length for both runs. Because coordinate descent takes two steps for every
single step taken by coordinate search we get significantly closer to the function minimum.

1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In [23]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1l]**2) - 0.48*w[0]*w[1]

run coordinate search algorithm
alpha choice = 'diminishing'; w = np.array([3,4]); max _its = 40;

weight history 1,cost history 1 = coordinate search(g,alpha choice,max its,w)

run coordinate descent algorithm

alpha choice = 'diminishing'; w = np.array([3,4]); max _its = 40;
weight history 2,cost history 2 = coordinate descent zero order(g,alpha choice,ma
x_its,w)

show run in both three-dimensions and just the input space via the contour plot
static plotter.compare runs contour plots(g,[weight history 1,weight history 2],x
min = -1.5,xmax = 4.5,ymin = -1.5,ymax = 4.5,num_contours = 25)

/

We can view the precise difference more easily by comparing the two function evaluation histories via the cost function
history plot, which we do below. Here we can see in this instance while the first several steps of coordinate search were
more effective than their descent counterparts (since they search over the entire list of coordinate directions instead of one
at a time), the coordinate descent method quickly overtakes search finding a lower point on the cost function.

In [24]: # This code cell will not be shown in the HTML version of this notebook
plot the cost function history for a given run
static_plotter.plot cost_histories([cost_history 1,cost_history 2],start = 0,poin
ts = False,labels = ['coordinate search', 'coordinate descent'])

= coordinate search
= coordinate descent
0.6 1
g(wk) 0.4
0.2 1
0.0 1
0 10 20 30 40 50 60 70 80

step k

17 of 18 1/11/20,9:18 AM

chapter_2_solutions file:///Users/Nurgetson/Dropbox/github_repos/mlrefined_ed2_hw_...

In [27]: # This code cell will not be shown in the HTML version of this notebook
define function
g = lambda w: 0.26*(w[0]**2 + w[1l]**2) - 0.48*w[0]*w[1]

run coordinate search algorithm

alpha choice = 'diminishing'; w = np.array([3,4]); max its = 100;

weight history,cost history coordinate descent zero order(g,alpha choice,max it
S,wW)

I~

show run in both three-dimensions and just the input space via the contour plot
static plotter.two_ input contour plot(g,weight history,xmin = -1.5,xmax = 4.5,ymi
n = -1.5,ymax = 4.5,num_contours = 25,show _original = False)

18 of 18 1/11/20,9:18 AM

