/test-bank-a-first-course-in-differential-equations-with-modeling-applications-10e-zill Chapter 01 Form C: INTRODUCTION TO DIFFERENTIAL EQUATIONS

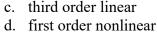
MULTIPLE CHOICE

- 1. The differential equation y'' + 2y' + 3y = 0 is Select the correct answer.
 - a. first order linear
 - b. second order linear
 - c. third order linear
 - d. first order nonlinear
 - e. second order nonlinear

ANS: B PTS: 1

- 2. The differential equation y'' + 2yy' + 3y = 0 is Select the correct answer.
 - a. first order linear
 - b. second order linear
 - c. third order linear
 - d. first order nonlinear
 - e. second order nonlinear

ANS: E PTS: 1


- 3. The differential equation $y' + 3y = \sin x$ is Select the correct answer.
 - a. first order linear
 - b. second order linear
 - c. third order linear
 - d. first order nonlinear
 - e. second order nonlinear

ANS: A PTS: 1

- 4. The differential equation $y'' + 2y' + 3y = \sin y$ is Select the correct answer.
 - a. first order linear
 - b. second order linear
 - c. third order linear
 - d. first order nonlinear
 - e. second order nonlinear

ANS: E PTS: 1

5.	The differential equation $y''' + 2y'' + 3xy' - 4e^x y = \sin x$ is Select the correct answer.	
	a. first order linearb. second order linear	

e. second order nonlinear

6. The values of m for which $y = e^{mx}$ is a solution of y'' - 5y' + 6y = 0 are Select the correct answer.

b.
$$-2$$
 and -3

c. 3 and 4

d. 2 and 3

e. 1 and 5

7. The values of m for which $y = x^m$ is a solution of $x^2y'' - 5xy' + 8y = 0$ Select the correct answer.

b.
$$-2$$
 and -4

8. The values of c for which y = c is a constant solution of $y' = y^2 + 3y - 4$ are Select the correct answer.

b.
$$-1$$
 and -3

c.
$$1$$
 and -4

d.
$$-1$$
 and 3

9. The values of m for which $y = e^{mx}$ is a solution of y'' - 4y' - 5y = 0 are Select the correct answer.

b.
$$-1$$
 and 4

d.
$$-2$$
 and -3

e.
$$-1$$
 and 5

10. The population of a town increases at a rate proportional to its population. Its initial population is 1000. The correct initial value problem for the population, P(t), as a function of time, t, is

Select the correct answer.

a.
$$\frac{dP}{dt} = kP, P(0) = 1000$$

b.
$$\frac{dP}{dt} = kP^2$$
, $P(0) = 100$

c.
$$\frac{dP}{dt} = kP, P(0) = 100$$

d.
$$\frac{dP}{dt} = kP(1-P), P(0) = 100$$

e.
$$\frac{dP}{dt} = kP^2$$
, $P(0) = 1000$

11. The solution of the initial value problem y' = 3y, y(0) = 2 is $y = ce^{3x}$, where c =Select the correct answer.

12. The solution of the initial value problem y' = 2y + x, y(1) = 1/4 is $y = -x/2 - 1/4 + ce^{2x}$, where c =

Select the correct answer.

d.
$$e^{-2}/2$$

13. The initial value problem
$$y' = \sqrt{y^2 - 9}$$
, $y(x_0) = y_0$ has a unique solution guaranteed by Theorem 1.1 if Select the correct answer.

a.
$$y_0 = 3$$

b. $y_0 = -3$

c.
$$y_0 = 5$$

d.
$$y_0 = 0$$

e.
$$y_0 = 1$$

14. The temperature of a cup of coffee obeys Newton's law of cooling. The initial temperature of the coffee is 150° F and one minute later, it is 135° F. The ambient temperature of the room is 70° F. If T(t) represents the temperature of the coffee at time t, the correct differential equation for the temperature with side conditions is Select the correct answer.

a.
$$\frac{dT}{dt} = k(T - 135)$$

b.
$$\frac{dT}{dt} = k(T - 150)$$

c.
$$\frac{dT}{dt} = k(T - 70)$$

d.
$$\frac{dT}{dt} = T(T - 150)$$

e.
$$\frac{dT}{dt} = T(T - 70)$$

15. In the previous problem, after a long period of time, the temperature of the coffee approaches

Select the correct answer.

- 16. In the *LRC* circuit problem in the text, *C* stands for Select the correct answer.
 - a. capacitance
 - b. resistance

- c. current
- d. inductance
- e. charge on the capacitor

ANS: A PTS: 1

17. A large mixing tank initially contains 100 gallons of water in which 30 pounds of salt have been dissolved. Another brine solution is pumped into the tank at the rate of 4 gallons per minute, and the resulting mixture is pumped out at the same rate. The concentration of the incoming brine solution is 2 pounds of salt per gallon. If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is Select the correct answer.

a.
$$\frac{dA}{dt} = 8 - .02A$$

b.
$$\frac{dA}{dt} = 8 - .04A$$
c.
$$\frac{dA}{dt} = 4 - .04A$$

c.
$$\frac{dA}{dt} = 4 - .04A$$

$$\frac{dl}{dt} = 2 - .04A$$

e.
$$\frac{dA}{dt} = 4 - .08A$$

ANS: B PTS: 1

18. In the previous problem, over a long period of time, the total amount of salt in the tank will approach

Select the correct answer.

- a. 30 pounds
- b. 50 pounds
- c. 100 pounds
- d. 200 pounds
- e. 300 pounds

ANS: D PTS: 1

- 19. In the LRC circuit problem in the text, the units of inductance, L, are Select the correct answer.
 - a. ohms
 - b. farads
 - c. amperes
 - d. henrys
 - e. coulombs

ANS: D PTS: 1

20. In the falling body problem, the units of acceleration might be Select the correct answer.

- a. meters per secondb. feet per second

- c. meters per second per secondd. kilograms per metere. kilograms per meter per second

PTS: 1 ANS: C