CHAPTER 2

Pharmacodynamics: How Drugs Act

MULTIPLE-CHOICE QUESTIONS

Pharmacodynamics: How Drugs Act			
Page: 36, Answer: c			
1. The study of how a drug interacts with a receptor is termed:			
a. pharmacology.			
b. pharmacokinetics.			
c. pharmacodynamics. d. molecular physiology.			
d. molecular physiology.			
Receptors for Drug Action			
Page: 38, Answer: a			
2. The naturally occurring compounds that bind to receptors are termed:			
a. transmitters.			
b. drugs.			
c. pharmaceuticals.			
d. second messengers.			
Receptors for Drug Action			
Page: 38, Answer: b			
3. A can usually bind to many			
a. receptor; neurotransmitters			
b. neurotransmitter; receptors			
c. ligand; neurotransmitters			
d. neurotransmitter; ligands			
Receptors for Drug Action			
Receptors for Drug Action Page: 38, Answer: a			
Page: 38, Answer: a			
Page: 38, Answer: a			
Page: 38, Answer: a 4. A usually binds to only one a. receptor; neurotransmitter			
Page: 38, Answer: a 4. A usually binds to only one			
Page: 38, Answer: a 4. A usually binds to only one a. receptor; neurotransmitter b. neurotransmitter; receptor			

Page: 38, Answer: b

- 5. New advances in pharmacology enable, for the first time, the development of drugs that bind to:
- a. more than one receptor.
- b. one receptor only.
- c. more than one neurotransmitter.
- d. one neurotransmitter only.

Receptors for Drug Action

Page: 39, Answer: d

- **6.** Remarkably, molecular biological techniques such as receptor "cloning" have allowed for the development of drugs that are more selective than endogenous:
 - a. receptors.
 - b. ligands.
 - c. neurotransmitters.
 - d. ligands and neurotransmitters.

Receptors for Drug Action

Page: 39, Answer: c

- 7. A drug that exerts an effect similar to, and occupies the same receptor site as, the naturally occurring compound is termed:
 - a. a mimicker.
 - b. an antagonist.
 - c. an agonist.
 - d. a facilitator.

Receptors for Drug Action

Page: 39, Answer: b

- **8.** A drug that blocks the effect of, and occupies the same receptor site as, the naturally occurring compound is termed:
 - a. a mimicker.
 - b. an antagonist.
 - c. an agonist.
 - d. a facilitator.

Receptors for Drug Action

Page: 39, Answer: b

- **9.** An ion channel within a postsynaptic receptor responds to binding of a neurotransmitter by altering:
 - a. both its permeability to, and selectivity for, ions.
 - b. its permeability to, but not selectivity for, ions.
 - c. its selectivity for, but not permeability to ions.
 - d. neither its permeability to, nor selectivity for, ions.

Page: 41, Answer: d

- 10. The anxiolytic (anxiety-reducing) effect of benzodiazepines such as *diazepam* occurs through:
- a. antagonist action at the serotonin receptor.
- b. agonist action at the serotonin receptor.
- c. antagonist action at the GABA receptor.
- d. agonist action at the GABA receptor.

Receptors for Drug Action

Page: 41, Answer: c

- 11. The benzodiazepines (such as *diazepam*) bind at:
- a. the same site on the receptor as the endogenous neurotransmitter and mimic the action of the neurotransmitter.
 - b. the same site on the receptor as the endogenous neurotransmitter and block the action of the neurotransmitter.
- c. a different site on the receptor as the endogenous neurotransmitter to facilitate the action of the neurotransmitter.
- d. a different site on the receptor as the endogenous neurotransmitter to inhibit the action of the neurotransmitter.

Receptors for Drug Action

Page: 42, Answer: d

- 12. The benzodiazepine antagonist *flumazenil* binds at the same site on the receptor as the:
- a. endogenous neurotransmitter to mimic the action of the neurotransmitter.
- b. endogenous neurotransmitter to block the action of the neurotransmitter.
- c. benzodiazepines to mimic the action of the benzodiazepines.
- d. benzodiazepines to block the action of the benzodiazepines.

Receptors for Drug Action

Pages: 42–45, Answer: d

- 13. G protein-coupled receptors respond to binding of a neurotransmitter by altering:
- a. ion channel function.
- b. energy metabolism of the neural cell.
- c. cell division
- d. All of the answers are correct.

Receptors for Drug Action

Pages: 42-45, Answer: d

- 14. G proteins can control the following cellular function(s):
- a. opening and closing of ion channels.
- b. energy metabolism of the neural cell.
- c. neural cell division and differentiation.
- d. All of the answers are correct.

Page: 43, Answer: d

- 15. In metabotropic receptors:
 - a. G proteins activate the extracellular recognition site.
 - b. the associated ion channel activates the G protein.
 - c. the associated ion channel activates the receptor recognition site.
 - d. the activated extracellular receptor in turn activates the G protein.

Receptors for Drug Action

Pages: 43-47, Answer: c

- Membrane-spanning receptor proteins include: 16.
- a. G-protein-coupled receptors, but not carrier/transport proteins.
- b. carrier/transport proteins, but not G-protein/coupled receptors.
- c. both G-protein-coupled receptors and carrier/transport proteins.
- d. neither G-protein-coupled receptors nor carrier/transport proteins.

Receptors for Drug Action

	1 0				
	Page: 46, Answer: c				
17.	Drugs that block the action of <i>carrier proteins</i> would be expected to ; drugs that				
	facilitate the action of <i>carrier proteins</i> would be expected to .				
a. decr	ease the level of neurotransmitter in the synapse; decrease the level of neurotransmitter in				
the syn	napse				
b. incre	ease the level of neurotransmitter in the synapse; increase the level of neurotransmitter in				
the syn	napse				
c. incre	ease the level of neurotransmitter in the synapse; decrease the level of neurotransmitter in				
the syn	napse				
d. decr	l. decrease the level of neurotransmitter in the synapse; increase the level of neurotransmitter in				
the syn	napse				
	D				

Receptors for Drug Action

Page: 46, Answer: d

18.	Based on the	concept of homeostatic control, you might expect drugs that block the action of		
carrier	<i>proteins</i> to	the number of postsynaptic receptors for the endogenous		
	neurotransmitter; further, you might expect drugs that facilitate the action of carrier proteins to			
	the number of postsynaptic receptors for the endogenous neurotransmitter.			
a. decrease; decrease				

- b. increase; increase
- c. increase; decrease
- d. decrease; increase

Receptors for Drug Action

Page: 48, Answer: c

- Exposure to a drug that inhibits the breakdown of a neurotransmitter (NT): 19.
- a. increases the level of NT by inhibiting breakdown in the synapse; an example of such a drug is acetylcholine esterase.
- b. increases the level of NT by inhibiting breakdown mainly in the presynaptic terminal; an example of such a drug is monoamine oxidase.
- c. increases the level of NT by inhibiting breakdown in the synapse; an example of such a drug is an acetylcholine esterase inhibitor.
- d. increases the level of NT by inhibiting breakdown in the presynaptic terminal; an example of such a drug is an acetylcholine esterase inhibitor.

Page: 48, Answer: d

- **20.** Acetylcholine esterase and monoamine oxidase are examples of:
- a. G-protein-coupled receptors.
- b. carrier/transport proteins.
- c. directly gated ion channels.
- d. enzyme receptor proteins.

Receptors for Drug Action

Page: 49, Answer: d

- 21. "Isomers" represent forms of a molecule that are:
 - a. identical in all respects.
 - b. identical save for a handful of different atoms.
 - c. charged versus uncharged.
 - d. mirror images of one another.

Receptors for Drug Action

Pages: 49, Answer: a

- 22. The intensity of a drug's effect is proportional to:
- a. the "fit" of the drug to the receptor and the percentage of receptors occupied by the drug.
- b. the "fit" of the drug to the receptor but not the percentage of receptors occupied by the drug.
- c. neither the "fit" of the drug to the receptor nor the percentage of receptors occupied by the drug.
- d. the percentage of receptors occupied by the drug but not the "fit" of the drug to the receptor.

Dose-Response Relationships

Page: 51, Answer: a

- **23.** A drug that is more *efficacious* than another drug has:
- a. a larger maximum effect.
- c. a larger TI.
- b. a larger ED₅₀.
- d. a smaller LD₅₀.

Dose-Response Relationships

Page: 51, Answer: a

- **24.** *Potency* refers to:
- a. the absolute number of molecules of drug required to elicit a response.
- b. the maximum effect obtainable.
- c. the individual differences in drug response.
- d. the relative safety of the drug.

Dose-Response Relationships

Pages: 51, 55, Answer: d

- **25.** A drug that is more *potent* than another drug has:
- a. a larger maximal effect.
- b. a larger ED₅₀.
- c. a larger LD₅₀.
- d. a smaller ED₅₀.

Dose-Response Relationships

Page: 51, Answer: d

- **26.** The location of the dose-response curve along the horizontal axis reflects:
- a. the therapeutic index of a drug.
- b. the efficacy of a drug.
- c. individual differences in drug response.
- d. the potency of a drug.

Dose-Response Relationships

Page: 51, Answer: d

- **27.** The variability and slope of the dose-response curve refer to:
- a. the number of molecules of drug required to elicit a response.
- b. the maximum effect obtainable with the drug.
- c. whether the drug acts on presynaptic or postsynaptic receptors.
- d. individual differences in response to the drug.

Dose-Response Relationships

Pages: 51-52, Answer: b

- **28.** The peak of the dose-response curve indicates:
- a. the therapeutic index of a drug.
- b. the efficacy of a drug.
- c. individual differences in drug response.
- d. the potency of a drug.

Dose-Response Relationships

Page: 52, Answer: b

- 29. The fact that caffeine cannot exert as much central nervous system stimulation as amphetamine indicates that caffeine:
- a. is less potent than amphetamine.
- b. is less efficacious than amphetamine.
- c. has a lower therapeutic index than amphetamine.
- d. has a steeper slope than amphetamine on a dose-response curve.

Drug Safety and Effectiveness

Pages: 53-54, Answer: d

- **30.** The therapeutic index refers to the:
- a. absolute number of molecules of drug required to elicit a response.
- b. maximum effect obtainable.
- c. individual differences in drug response.
- d. relative safety of the drug.

Drug Safety and Effectiveness

Pages: 53–54, Answer: d

- **31.** The *therapeutic index* is defined as the ratio of:
- a. efficacy to potency.
- b. potency to efficacy.
- c. ED_{50} to LD_{50} .
- d. LD_{50} to ED_{50} .

Drug Safety and Effectiveness

Page: 53, Answer: c

- 32. The dose of drug that produces the effect desired in half of subjects is called the drug's:
- a. half-life.
- b. therapeutic index.
- c. ED₅₀.
- $d. LD_{50}.$

Drug Safety and Effectiveness

Page: 54, Answer: d

- 33. In a given population, the dose-response curve for the dose of drug that produces the desired effect may overlap with the dose response curve for the lethal dose of the drug. For this reason, a more useful index of the margin of safety for a drug is the ratio of the:
- a. LD_{50} to ED_{50} .
- b. ED_{50} to LD_{50} .
- c. ED_{99} to LD_1 .
- d. LD₁ to ED₉₉.

Drug Safety and Effectiveness

Pages: 55-56, Answer: d

- **34.** Side effects of a drug are usually:
- a. not apparent until the maximum effect of the drug is observed and are independent of the purpose for which the drug was taken.
- b. not apparent until the maximum effect of the drug is observed and are dependent on the purpose for which the drug was taken.
- c. apparent well before the maximum effect of the drug is observed and are independent of the purpose for which the drug was taken.
- d. apparent well before the maximum effect of the drug is observed and are dependent on the purpose for which the drug was taken.

Drug Safety and Effectiveness

Page: 57, Answer: b

- **35.** The term *placebo* is best described as:
- a. a pharmacologically active substance that elicits a significant therapeutic response.
- b. a pharmacologically inactive substance that elicits a significant therapeutic response.
- c. a pharmacologically active substance that fails to elicit a significant therapeutic response.
- d. a pharmacologically inactive substance that fails to elicit a significant therapeutic response.

Drug Safety and Effectiveness

Page: 58, Answer: d

- **36.** Possible mechanisms for the placebo effect include:
- a. biological action of the active ingredient in the placebo.
- b. a clearly defined set of traits in the patient.
- c. side effects of the placebo.
- d. genetics of the patient.

TRUE OR FALSE QUESTIONS

Pharmacodynamics: How Drugs Act

Page: 37, Answer: False

37. With rare exception, the binding of a drug to a receptor is irreversible.

Receptors for Drug Action

Page: 38, Answer: False

38. A given receptor is usually capable of binding to more than one neurotransmitter.

Receptors for Drug Action

Page: 38, Answer: True

39. A given neurotransmitter is usually capable of binding to more than one receptor.

Receptors for Drug Action

Page: 39, Answer: False

40. An antagonist binds to the same receptor site as the endogenous compound but produces an effect opposite to the endogenous compound.

Receptors for Drug Action

Page: 39, Answer: True

41. An antagonist binds to the same receptor site as the endogenous compound but prevents the endogenous compound from acting.

Receptors for Drug Action

Page: 43, Answer: False

42. Metabotropic receptors form a membrane-spanning pore through which ions pass.

Receptors for Drug Action

Page: 43-45, Answer: True

43. The G protein can directly, as well as indirectly, activate an ion channel.

Receptors for Drug Action

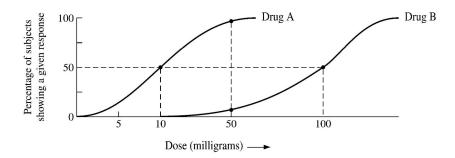
Page: 45, Answer: False

44. Ionotropic and metabotropic receptors mediate the effect of the steroid hormones.

Receptors for Drug Action

Page: 49, Answer: False

45. Two *enantiomers* of a given drug are almost always roughly equal to each other in biological activity.


Drug Safety and Effectiveness

Page: 57, Answer: False

46. The double-blind randomized clinical trial without placebo is currently the gold standard for studying the effectiveness and safety of drugs in humans.

Dose-Response Relationships and Drug Safety and Effectiveness

The following True or False questions refer to the figure below, in which two dose-response curves are shown.

If these two curves represent dose-response relationships of two drugs (Drug A on the left; Drug B on the right), then:

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-54, Answer: False

47. The two dose-response curves represent drugs that are equipotent.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: True

48. Drug A and Drug B each have a different ED_{50} .

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: False

49. Drug B is more potent that Drug A.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50–52, Answer: True

50. Drug A and Drug B are equally efficacious.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: False

51. Drug B is five times more efficacious than Drug A.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: False

52. Drug A is more efficacious than Drug B.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: False

53. Drug B is 10 times more potent than Drug A.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: False

54. Drug A is five times more potent than Drug B.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: True

55. Drug A is 10 times more potent than Drug B.

Dose-Response Relationships and Drug Safety and Effectiveness

Pages: 50-52, Answer: False

56. Drug A is 10 times more efficacious than Drug B.