M

UL	TIPLE CHOICE				
1.	The maximization of a. goal of manager b. decision for decic c. constraint of oped. objective of line.	nent scie sion and erations	ence. alysis. research.	ntity is	the
	ANS: D	PTS:	1	TOP:	Introduction
2.	Decision variables a. tell how much of b. represent the val c. measure the object d. must exist for ear	ues of thective fu	ne constraints.	ng to pi	roduce, invest, purchase, hire, etc.
	ANS: A	PTS:	1	TOP:	Objective function
3.	Which of the follows a. Max 5xy b. Min $4x + 3y + (2x + 6x)$ c. Max $5x^2 + 6y^2$ d. Min $(x_1 + x_2)/x_3$		valid objective	function	n for a linear programming problem?
	ANS: B	PTS:	1	TOP:	Objective function
4.	Which of the follows a. A feasible solution b. An optimal solution c. An infeasible solution d. A feasible solution	on satisf tion satis lution vi	fies all constrain sfies all constra iolates all const	nts. ints. raints.	n the boundary of the feasible region.
	ANS: C	PTS:	1	TOP:	Graphical solution
5.	A solution that satisficonstraints is called a. optimal. b. feasible. c. infeasible. d. semi-feasible.	ies all th	ne constraints o	f a line	ar programming problem except the nonnegativity
	ANS: C	PTS:	1	TOP:	Graphical solution
 6. Slack a. is the difference between the left and right sides of a constraint. b. is the amount by which the left side of a ≤ constraint is smaller than the right side. c. is the amount by which the left side of a ≥ constraint is larger than the right side. d. exists for each variable in a linear programming problem. 					
	ANS: B	PTS:	1	TOP:	Slack variables

7. To find the optimal solution to a linear programming problem using the graphical method

	 a. find the feasible point that is the farthest away from the origin. b. find the feasible point that is at the highest location. c. find the feasible point that is closest to the origin. d. None of the alternatives is correct. 					
	ANS: D	PTS:	1	TOP:	Extreme points	
8.	Which of the follow solution? a. alternate optima b. infeasibility c. unboundedness d. each case require	lity		not requ	ire reformulation of the problem in order to obtain a	
	ANS: A	PTS:	1	TOP:	Special cases	
9.	The improvement in a. sensitivity value b. dual price. c. constraint coeffid. slack value.	.	ue of the object	ive fund	ction per unit increase in a right-hand side is the	
	ANS: B	PTS:	1	TOP:	Right-hand sides	
 10. As long as the slope of the objective function stays between the slopes of the binding constraint a. the value of the objective function won't change. b. there will be alternative optimal solutions. c. the values of the dual variables won't change. d. there will be no slack in the solution. 						
	ANS: C	PTS:	1	TOP:	Objective function	
11.	Infeasibility means to constraints is a. at least 1. b. 0. c. an infinite numbed. at least 2.		number of solut	tions to	the linear programming models that satisfies all	
	ANS: B	PTS:	1	TOP:	Alternate optimal solutions	
12.	A constraint that doca. non-negativity of b. redundant constract. standard constraint.	onstrain raint. iint.		e region	is a	
	ANS: B	PTS:	1	TOP:	Feasible regions	
13.	Whenever all the co to be written in a. standard form. b. bounded form. c. feasible form. d. alternative form		in a linear pro	gram ar	re expressed as equalities, the linear program is said	

	ANS: A	PTS: 1	TOP: Slack variables					
14.	 All of the following statements about a redundant constraint are correct EXCEPT a. A redundant constraint does not affect the optimal solution. b. A redundant constraint does not affect the feasible region. c. Recognizing a redundant constraint is easy with the graphical solution method. d. At the optimal solution, a redundant constraint will have zero slack. 							
	ANS: D	PTS: 1	TOP: Slack variables					
15.	All linear programming problems have all of the following properties EXCEPT a. a linear objective function that is to be maximized or minimized. b. a set of linear constraints. c. alternative optimal solutions. d. variables that are all restricted to nonnegative values.							
	ANS: C	PTS: 1	TOP: Problem formulation					
TRUI	E/FALSE							
1.	Increasing the risolution.	ght-hand side of a nonbin	nding constraint will not cause a change in the optimal					
	ANS: F	PTS: 1	TOP: Introduction					
2.	In a linear progr the decision vari	jective function and the constraints must be linear functions of						
	ANS: T	PTS: 1	TOP: Mathematical statement of the RMC Problem					
3.	3. In a feasible problem, an equal-to constraint cannot be nonbinding.							
	ANS: T	PTS: 1	TOP: Graphical solution					
4.	Only binding constraints form the shape (boundaries) of the feasible region.							
	ANS: F	PTS: 1	TOP: Graphical solution					
5.	The constraint 5	$x_1 - 2x_2 \le 0$ passes through	gh the point (20, 50).					
	ANS: T	PTS: 1	TOP: Graphing lines					
6.	A redundant cor	craint.						
	ANS: F	PTS: 1	TOP: Slack variables					
7.		variables represent the a ve coefficients in the obje	amount by which the solution exceeds a minimum target, they ective function.					
	ANS: F	PTS: 1	TOP: Slack variables					
8.	Alternative optimal solutions occur when there is no feasible solution to the problem.							
	ANS: F	PTS: 1	TOP: Alternative optimal solutions					

9.	A range of optimality is applicable only if the other coefficient remains at its original value.				
	ANS: T	PTS:	1	TOP:	Simultaneous changes
10.	Because the dual pri- increase in right-han				in the value of the optimal solution per unit negative.
	ANS: F	PTS:	1	TOP:	Right-hand sides
11.	Decision variables li satisfied.	mit the	degree to which	n the ob	jective in a linear programming problem is
	ANS: F	PTS:	1	TOP:	Introduction
12.	No matter what valuline in a problem.	e it has,	each objective	functio	on line is parallel to every other objective function
	ANS: T	PTS:	1	TOP:	Graphical solution
13.	The point (3, 2) is fe	asible fo	or the constrain	$t 2x_1 +$	$6x_2 \le 30.$
	ANS: T	PTS:	1	TOP:	Graphical solution
14.	The constraint $2x_1$ –	$x_2 = 0 p$	asses through t	he poin	t (200,100).
	ANS: F	PTS:	1	TOP:	A note on graphing lines
15.	The standard form o problem.	f a linea	r programming	proble	m will have the same solution as the original
	ANS: T	PTS:	1	TOP:	Surplus variables
16.	An optimal solution region for the proble		ar programmin	g probl	em can be found at an extreme point of the feasible
	ANS: T	PTS:	1	TOP:	Extreme points
17.	An unbounded feasil maximization proble	_	on might not res	sult in a	an unbounded solution for a minimization or
	ANS: T	PTS:	1	TOP:	Special cases: unbounded
18.	An infeasible proble	m is one	e in which the o	bjectiv	e function can be increased to infinity.
	ANS: F	PTS:	1	TOP:	Special cases: infeasibility
19.	A linear programmir	ng probl	em can be both	unbour	nded and infeasible.
	ANS: F	PTS:	1	TOP:	Special cases: infeasibility and unbounded
20.	It is possible to have	exactly	two optimal so	olutions	to a linear programming problem.

	ANS: F	PTS:	1	TOP:	Special cases: alternative optimal solutions	
SHO	RT ANSWER					
1.				ion in an objective function. Why is it important for ctive function coefficients represent?		
	ANS: Answer not provided	l.				
	PTS: 1	TOP:	Objective fund	ction		
2.	Explain how to grapl	h the lin	the $x_1 - 2x_2 \ge 0$.			
	ANS: Answer not provided	1.				
	PTS: 1	TOP:	Graphing lines	S		
3.	Create a linear programming problem with two decision variables and three constraints that will include both a slack and a surplus variable in standard form. Write your problem in standard form.					
	ANS: Answer not provided	1.				
	PTS: 1	TOP:	Standard form	l		
4.	Explain what to look for in problems that are infeasible or unbounded.					
	ANS: Answer not provided	l.				
	PTS: 1	TOP:	Special cases			
5.	Use a graph to illustrate why a change in an objective function coefficient does not necessarily lead to a change in the optimal values of the decision variables, but a change in the right-hand sides of a binding constraint does lead to new values.					
	ANS: Answer not provided	l .				
	PTS: 1	TOP:	Graphical sens	sitivity	analysis	
6.	Explain the concepts	of prop	ortionality, add	litivity,	and divisibility.	
	ANS: Answer not provided	1.				
	PTS: 1	TOP:	Notes and con	nments		
7.	Explain the steps nec	essary	to put a linear p	rogram	in standard form.	

Answer not provided.

PTS: 1 TOP: Surplus variables

8. Explain the steps of the graphical solution procedure for a minimization problem.

ANS:

Answer not provided.

PTS: 1 TOP: Graphical solution procedure for minimization problems

PROBLEM

1. Solve the following system of simultaneous equations.

$$6X + 2Y = 50$$

 $2X + 4Y = 20$

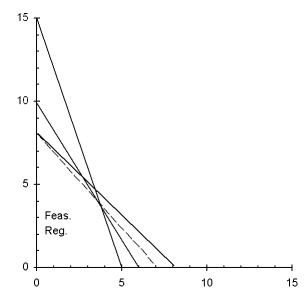
$$X = 8, Y = 1$$

PTS: 1 TOP: Simultaneous equations

2. Solve the following system of simultaneous equations.

$$6X + 4Y = 40$$
$$2X + 3Y = 20$$

$$X = 4, Y = 4$$


PTS: 1 TOP: Simultaneous equations

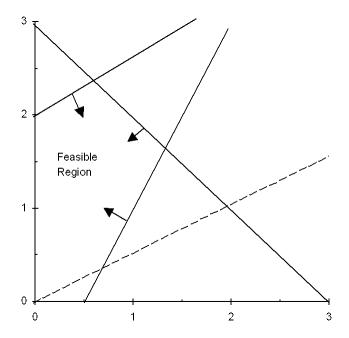
3. Consider the following linear programming problem

Max
$$8X + 7Y$$

s.t.
$$15X + 5Y \le 75$$
$$10X + 6Y \le 60$$
$$X + Y \le 8$$
$$X, Y \ge 0$$

- a. Use a graph to show each constraint and the feasible region.
- b. Identify the optimal solution point on your graph. What are the values of X and Y at the optimal solution?
- c. What is the optimal value of the objective function?

- b. The optimal solution occurs at the intersection of constraints 2 and 3. The point is X = 3, Y = 5.
- c. The value of the objective function is 59.


PTS: 1 TOP: Graphical solution

4. For the following linear programming problem, determine the optimal solution by the graphical solution method

$$Max \qquad -X+2Y$$

s.t.
$$6X - 2Y \le 3$$
$$-2X + 3Y \le 6$$
$$X + Y \le 3$$
$$X, Y \ge 0$$

$$X = 0.6$$
 and $Y = 2.4$

PTS: 1

TOP: Graphical solution

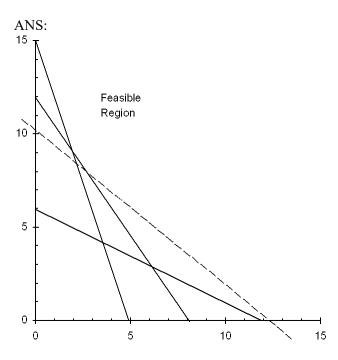
5. Use this graph to answer the questions.

$$Max \qquad 20X + 10Y$$

s.t.
$$12X + 15Y \le 180$$
$$15X + 10Y \le 150$$
$$3X - 8Y \le 0$$
$$X, Y \ge 0$$

- a. Which area (I, II, III, IV, or V) forms the feasible region?
- b. Which point (A, B, C, D, or E) is optimal?
- c. Which constraints are binding?
- d. Which slack variables are zero?

ANS:

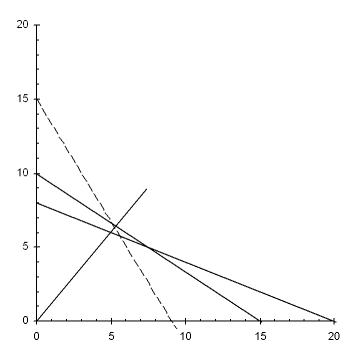

- a. Area III is the feasible region
- b. Point D is optimal
- c. Constraints 2 and 3 are binding
- d. S_2 and S_3 are equal to 0

PTS: 1 TOP: Graphical solution

6. Find the complete optimal solution to this linear programming problem.

Min
$$5X + 6Y$$

s.t.
$$3X + Y \ge 15$$
$$X + 2Y \ge 12$$
$$3X + 2Y \ge 24$$
$$X, Y \ge 0$$


The complete optimal solution is X = 6, Y = 3, Z = 48, $S_1 = 6$, $S_2 = 0$, $S_3 = 0$

PTS: 1 TOP: Graphical solution

7. Find the complete optimal solution to this linear programming problem.

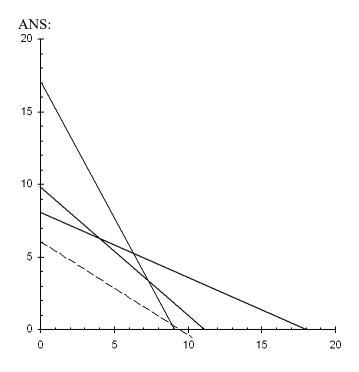
Max
$$5X + 3Y$$

s.t.
$$2X + 3Y \le 30$$

 $2X + 5Y \le 40$
 $6X - 5Y \le 0$
 $X, Y \ge 0$

The complete optimal solution is

$$X = 15, Y = 0, Z = 75, S_1 = 0, S_2 = 10, S_3 = 90$$


PTS: 1

TOP: Graphical solution

8. Find the complete optimal solution to this linear programming problem.

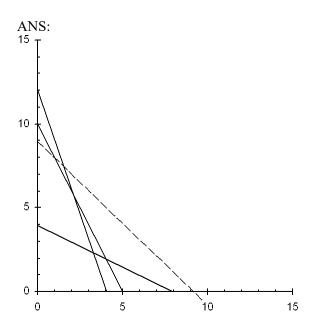
$$Max \qquad 2X + 3Y$$

s.t.
$$4X + 9Y \le 72$$

$$10X + 11Y \le 110$$

$$17X + 9Y \le 153$$

$$X, Y \ge 0$$



PTS: 1 TOP: Graphical solution

9. Find the complete optimal solution to this linear programming problem.

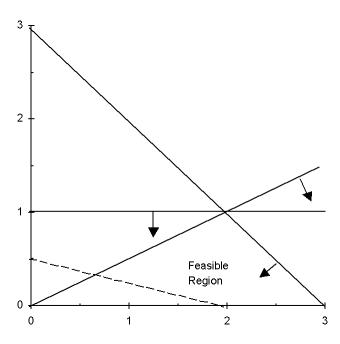
Min
$$3X + 3Y$$

s.t.
$$12X + 4Y \ge 48$$
$$10X + 5Y \ge 50$$
$$4X + 8Y \ge 32$$
$$X, Y \ge 0$$

The complete optimal solution is

$$X = 4$$
, $Y = 2$, $Z = 18$, $S_1 = 8$, $S_2 = 0$, $S_3 = 0$

PTS: 1 TOP: Graphical solution


10. For the following linear programming problem, determine the optimal solution by the graphical solution method. Are any of the constraints redundant? If yes, then identify the constraint that is redundant.

Max
$$X + 2Y$$

s.t.
$$\begin{aligned} X + & Y \leq 3 \\ X - 2Y \geq 0 \\ & Y \leq 1 \\ X, & Y \geq 0 \end{aligned}$$

ANS:

X = 2, and Y = 1 Yes, there is a redundant constraint; $Y \le 1$

PTS: 1

TOP: Graphical solution

11. Maxwell Manufacturing makes two models of felt tip marking pens. Requirements for each lot of pens are given below.

	Fliptop Model	Tiptop Model	Available
Plastic	3	4	36
Ink Assembly	5	4	40
Molding Time	5	2	30

The profit for either model is \$1000 per lot.

- a. What is the linear programming model for this problem?
- b. Find the optimal solution.
- c. Will there be excess capacity in any resource?

ANS:

a. Let F = the number of lots of Fliptop pens to produce Let T = the number of lots of Tiptop pens to produce

Max
$$1000F + 1000T$$

s.t.
$$3F + 4T \le 36$$

 $5F + 4T \le 40$

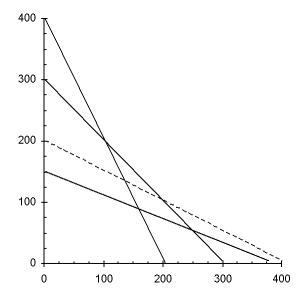
$$5F + 2T \le 30$$

$$F, T \ge 0$$

The complete optimal solution is F = 2, T = 7.5, Z = 9500, $S_1 = 0$, $S_2 = 0$, $S_3 = 5$ There is an excess of 5 units of molding time available.

PTS: 1 TOP: Modeling and graphical solution

12. The Sanders Garden Shop mixes two types of grass seed into a blend. Each type of grass has been rated (per pound) according to its shade tolerance, ability to stand up to traffic, and drought resistance, as shown in the table. Type A seed costs \$1 and Type B seed costs \$2. If the blend needs to score at least 300 points for shade tolerance, 400 points for traffic resistance, and 750 points for drought resistance, how many pounds of each seed should be in the blend? Which targets will be exceeded? How much will the blend cost?


	Type A	Type B
Shade Tolerance	1	1
Traffic Resistance	2	1
Drought Resistance	2	5

ANS:

Let A = the pounds of Type A seed in the blend Let B = the pounds of Type B seed in the blend

Min
$$1A + 2B$$

s.t.
$$1A + 1B \ge 300$$

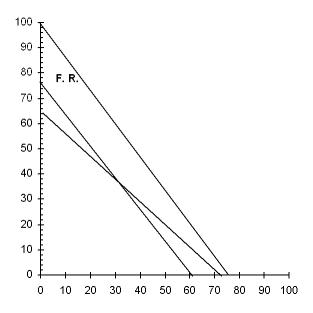
 $2A + 1B \ge 400$
 $2A + 5B \ge 750$
 $A, B \ge 0$

The optimal solution is at A = 250, B = 50. Constraint 2 has a surplus value of 150. The cost is 350.

PTS: 1 TOP: Modeling and graphical solution

13. Muir Manufacturing produces two popular grades of commercial carpeting among its many other products. In the coming production period, Muir needs to decide how many rolls of each grade should be produced in order to maximize profit. Each roll of Grade X carpet uses 50 units of synthetic fiber, requires 25 hours of production time, and needs 20 units of foam backing. Each roll of Grade Y carpet uses 40 units of synthetic fiber, requires 28 hours of production time, and needs 15 units of foam backing.

The profit per roll of Grade X carpet is \$200 and the profit per roll of Grade Y carpet is \$160. In the coming production period, Muir has 3000 units of synthetic fiber available for use. Workers have been scheduled to provide at least 1800 hours of production time (overtime is a possibility). The company has 1500 units of foam backing available for use.


Develop and solve a linear programming model for this problem.

ANS:

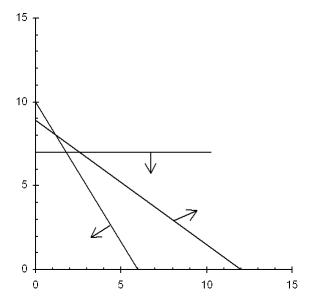
Let X = the number of rolls of Grade X carpet to make Let Y = the number of rolls of Grade Y carpet to make

Max
$$200X + 160Y$$

s.t.
$$50X + 40Y \le 3000$$
$$25X + 28Y \ge 1800$$
$$20X + 15Y \le 1500$$
$$X, Y \ge 0$$

The complete optimal solution is X = 30, Y = 37.5, Z = 12000, $S_1 = 0$, $S_2 = 0$, $S_3 = 337.5$

PTS: 1 TOP: Modeling and graphical solution


14. Does the following linear programming problem exhibit infeasibility, unboundedness, or alternate optimal solutions? Explain.

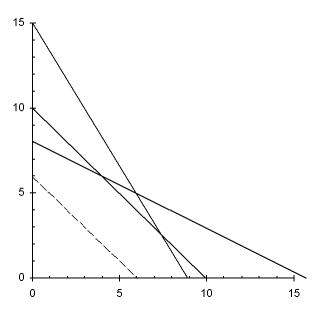
Min
$$1X + 1Y$$

s.t.
$$5X + 3Y \le 30$$
$$3X + 4Y \ge 36$$
$$Y \le 7$$
$$X, Y \ge 0$$

ANS:

The problem is infeasible.

PTS: 1


TOP: Special cases

15. Does the following linear programming problem exhibit infeasibility, unboundedness, or alternate optimal solutions? Explain.

Min
$$3X + 3Y$$

s.t. $1X + 2Y \le 16$
 $1X + 1Y \le 10$
 $5X + 3Y \le 45$
 $X, Y \ge 0$

ANS:

The problem has alternate optimal solutions.

PTS: 1

TOP: Special cases

16. A businessman is considering opening a small specialized trucking firm. To make the firm profitable, it is estimated that it must have a daily trucking capacity of at least 84,000 cu. ft. Two types of trucks are appropriate for the specialized operation. Their characteristics and costs are summarized in the table below. Note that truck 2 requires 3 drivers for long haul trips. There are 41 potential drivers available and there are facilities for at most 40 trucks. The businessman's objective is to minimize the total cost outlay for trucks.

		Capacity	Drivers
Truck	Cost	(Cu. Ft.)	Needed
Small	\$18,000	2,400	1
Large	\$45,000	6,000	3

Solve the problem graphically and note there are alternate optimal solutions. Which optimal solution:

- a. uses only one type of truck?
- b. utilizes the minimum total number of trucks?
- c. uses the same number of small and large trucks?

- a. 35 small, 0 large
- b. 5 small, 12 large
- c. 10 small, 10 large

PTS: 1 TOP: Alternative optimal solutions

17. Consider the following linear program:

MAX
$$60X + 43Y$$

s.t.
$$X + 3Y \ge 9$$
$$6X - 2Y = 12$$
$$X + 2Y \le 10$$
$$X, Y \ge 0$$

- a. Write the problem in standard form.
- b. What is the feasible region for the problem?
- c. Show that regardless of the values of the actual objective function coefficients, the optimal solution will occur at one of two points. Solve for these points and then determine which one maximizes the current objective function.

ANS:

a.
$$MAX = 60X + 43Y$$

S.T.
$$X + 3Y - S_1 = 9$$

 $6X - 2Y = 12$
 $X + 2Y + S_3 = 10$
 $X, Y, S_1, S_3 \ge 0$

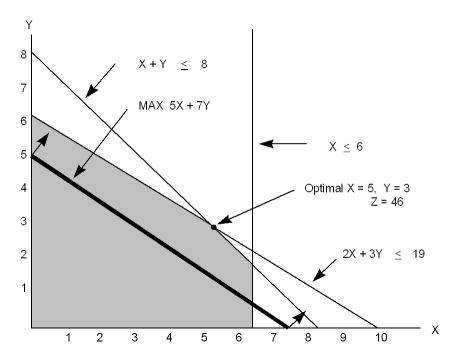
- b. Line segment of 6X 2Y = 12 between (22/7,24/7) and (27/10,21/10).
- c. Extreme points: (22/7,24/7) and (27/10,21/10). First one is optimal, giving Z = 336.

PTS: 1 TOP: Standard form and extreme points

18. Solve the following linear program graphically.

MAX
$$5X + 7Y$$

s.t.
$$X \leq 6$$


$$2X + 3Y \leq 19$$

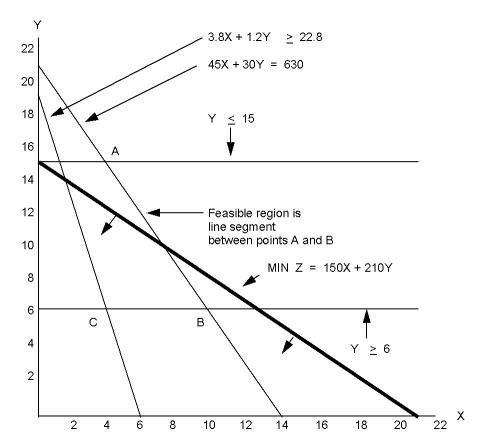
$$X + Y \leq 8$$

$$X, Y \geq 0$$

ANS:

From the graph below we see that the optimal solution occurs at X = 5, Y = 3, and Z = 46.

PTS: 1 TOP: Graphical solution procedure


19. Given the following linear program:

MIN
$$150X + 210Y$$

s.t. $3.8X + 1.2Y \ge 22.8$
 $Y \ge 6$
 $Y \le 15$
 $45X + 30Y = 630$
 $X, Y \ge 0$

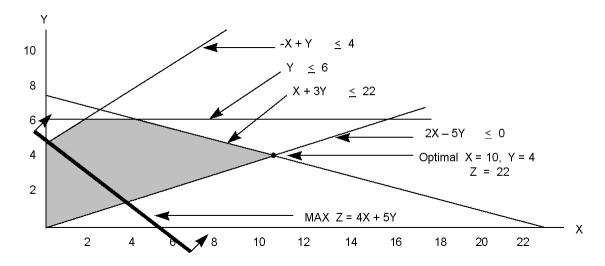
Solve the problem graphically. How many extreme points exist for this problem?

ANS:

Two extreme points exist (Points A and B below). The optimal solution is X = 10, Y = 6, and Z = 2760 (Point B).

PTS: 1

TOP: Graphical solution procedure


20. Solve the following linear program by the graphical method.

$$MAX \quad 4X + 5Y$$

s.t.
$$X + 3Y \le 22$$

$$-X + Y \le 4$$

$$Y \le 6$$

$$2X - 5Y \le 0$$

$$X, Y \ge 0$$

ANS:

Two extreme points exist (Points A and B below). The optimal solution is X = 10, Y = 6, and Z = 2760 (Point B).

PTS: 1 TOP: Graphical solution procedure