1. Determine how many different values can arise from inserting one pair of parentheses in this expression.

$$12 - 8 - 7 - 5$$

- A) 1
- B) 3
- C) 4
- D) 6
 - 2. What property of numbers is demonstrated by the equation:

$$12 + 10 = 10 + 12$$

- A) Associativity
- B) Commutativity
- C) Identity
- D) Inverse
 - 3. What property of numbers is demonstrated by the equation:

$$(12+5)+2=12+(5+2)$$

- A) Associativity
- B) Commutativity
- C) Identity
- D) Inverse
- 4. Evaluate.

$$12 + 6 \cdot (13 - 5)$$

5. Evaluate.

$$5+7\cdot(15-9-(2+3)+2\cdot 6)$$

6. Expand the expression:

$$(2x+5)(x^2-7x+3)$$

7. Expand the expression:

$$(3x-3)^2$$

8. Expand the expression:

$$(a+8)(a-3)(a+12)$$

9. Simplify the expression as much as possible.

$$5(2m+8)-2m$$

10. Simplify the expression as much as possible.

$$5(4m+3(3n+4))-4m$$

11. Simplify. Express the answer as a reduced fraction or mixed number.

$$\frac{5}{6} + \frac{1}{2}$$

12. Simplify. Express the answer as a reduced fraction.

$$\frac{15}{40} \cdot \frac{24}{50}$$

13. Simplify. Express the answer as a reduced fraction.

14. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{6m-5}{m^2} + \frac{3}{m}$$

15. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{7p-5}{p^2} - \frac{5}{p}$$

16. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{\left(x+4\right)^2-x^2}{9}$$

17. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{6y}{11} \cdot \frac{3}{y+6}$$

18. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{7}{4x(x-5)} \cdot \frac{x+4}{8x^3}$$

19. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\left(\frac{1}{x} - \frac{x}{y}\right) \frac{5}{2x + 3y}$$

20. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{x-2}{y+4}$$

$$\frac{y-4}{x+2}$$

21. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\left(\frac{5}{y-x} - \frac{5}{y+x}\right)\frac{2}{x}$$

22. Simplify the expression as much as possible. Express the answer as a single reduced fraction.

$$\frac{7}{w^3(w-5)} + \frac{w+5}{w^5}$$

Answer Key

- 1. C
- 2. B
- 3. A
- 4. 60
- 5. 96
- 6. $2x^3 9x^2 29x + 15$ 7. $9x^2 18x + 9$
- 8. $a^3 + 17a^2 + 36a 288$
- 9. 8m + 40
- 10. 16m + 45n + 60
- 11. $\frac{4}{3}$ or
- 12. $\frac{9}{50}$
- 13. $\frac{8}{63}$
- $14. \ \frac{9m-5}{m^2}$
- $15. \ \frac{2p-5}{p^2}$
- 16. 8x + 16
- 17. 18*y* 11y + 66
- 18. 7x + 28 $\overline{32x^5 - 160x^4}$
- $19. \quad \frac{5y 5x^2}{2x^2y + 3xy^2}$
- $20. \quad \frac{x^2 4}{y^2 16}$
- 21. $\frac{20}{x^2 y^2}$
- $22. \quad \frac{8w^2 175}{w^6 5w^5}$