https://selldocx.com/products/test-bank-an-introduction-to-management-science-13e-anderson

Chapter 2—An Introduction to Linear Programming

MULTIPLE CHOICE

1	TD1		. ,.				. •	C		•	.1
Ι.	The	maxim	nzation	or	mınır	nıza	tıon	ot a	quantity	/ 1S	the

- a. goal of management science.
- b. decision for decision analysis.
- c. constraint of operations research.
- d. objective of linear programming.

ANS: D PTS: 1 TOP: Introduction

2. Decision variables

- a. tell how much or how many of something to produce, invest, purchase, hire, etc.
- b. represent the values of the constraints.
- c. measure the objective function.
- d. must exist for each constraint.

ANS: A PTS: 1 TOP: Objective function

- 3. Which of the following is a valid objective function for a linear programming problem?
 - a. Max 5xy
 - b. $\min 4x + 3y + (2/3)z$
 - c. Max $5x^2 + 6y^2$
 - d. Min $(x_1 + x_2)/x_3$

ANS: B PTS: 1 TOP: Objective function

- 4. Which of the following statements is NOT true?
 - a. A feasible solution satisfies all constraints.
 - b. An optimal solution satisfies all constraints.
 - c. An infeasible solution violates all constraints.
 - d. A feasible solution point does not have to lie on the boundary of the feasible region.

ANS: C PTS: 1 TOP: Graphical solution

- 5. A solution that satisfies all the constraints of a linear programming problem except the nonnegativity constraints is called
 - a. optimal.
 - b. feasible.
 - c. infeasible.
 - d. semi-feasible.

ANS: C PTS: 1 TOP: Graphical solution

6. Slack

- a. is the difference between the left and right sides of a constraint.
- b. is the amount by which the left side of a \leq constraint is smaller than the right side.
- c. is the amount by which the left side of $a \ge constraint$ is larger than the right side.
- d. exists for each variable in a linear programming problem.

ANS: B PTS: 1 TOP: Slack variables

7.	To find the optimal s a. find the feasible b. find the feasible c. find the feasible d. None of the alter	point th point th point th	at is the farthes at is at the high at is closest to	st away nest loca	ation.
	ANS: D	PTS:	1	TOP:	Extreme points
8.	Which of the follows solution? a. alternate optima b. infeasibility c. unboundedness d. each case require	lity		not requ	ire reformulation of the problem in order to obtain a
	ANS: A	PTS:	1	TOP:	Special cases
9.	The improvement in a. sensitivity value b. dual price. c. constraint coeffid. slack value.	•	ue of the object	ive fund	ction per unit increase in a right-hand side is the
	ANS: B	PTS:	1	TOP:	Right-hand sides
10.	As long as the slope a. the value of the c b. there will be alte c. the values of the d. there will be no	objectivernative dual va	e function won' optimal solutio riables won't cl	't chang ns.	between the slopes of the binding constraints ge.
	ANS: C	PTS:	1	TOP:	Objective function
11.	Infeasibility means to constraints is a. at least 1. b. 0. c. an infinite numb d. at least 2.		number of solut	cions to	the linear programming models that satisfies all
	ANS: B	PTS:	1	TOP:	Alternative optimal solutions
12.	A constraint that doe a. non-negativity c b. redundant constra c. standard constra d. slack constraint.	onstrain aint.		e region	is a
	ANS: B	PTS:	1	TOP:	Feasible regions

13.	Whenever all the corto be written in a. standard form. b. bounded form. c. feasible form. d. alternative form.		in a linear prog	gram ar	e expressed as equalities, the linear program is said
	ANS: A	PTS:	1	TOP:	Slack variables
14.	a. A redundant contb. A redundant contc. Recognizing a re	straint d straint d dundan	loes not affect to loes not affect to t constraint is e	he option he feas asy wit	
	ANS: D	PTS:	1	TOP:	Slack variables
15.		e function straints al solut	on that is to be 1 s. ions.	maximi	ollowing properties EXCEPT zed or minimized.
	ANS: C	PTS:	1	TOP:	Problem formulation
TRUI	E/FALSE				
1.	Increasing the right-l solution.	nand sid	e of a nonbindi	ng con	straint will not cause a change in the optimal
	ANS: F	PTS:	1	TOP:	Introduction
2.	In a linear programm the decision variable		blem, the objec	tive fur	nction and the constraints must be linear functions of
	ANS: T	PTS:	1	TOP:	Mathematical statement of the RMC Problem
3.	In a feasible problem	ı, an equ	ıal-to constrain	t canno	t be nonbinding.
	ANS: T	PTS:	1	TOP:	Graphical solution
4.	Only binding constra	ints for	m the shape (bo	oundari	es) of the feasible region.
	ANS: F	PTS:	1	TOP:	Graphical solution
5.	The constraint $5x_1$ –	$2x_2 \le 0$	passes through	the poi	nt (20, 50).
	ANS: T	PTS:	1	TOP:	Graphing lines
6.	A redundant constrai	nt is a b	inding constrai	nt.	
	ANS: F	PTS:	1	TOP:	Slack variables

7.			present the amounts in the objective		which the solution exceeds a minimum target, they tion.
	ANS: F	PTS:	1	TOP:	Slack variables
8.	Alternative op	otimal solutions	s occur when the	ere is n	o feasible solution to the problem.
	ANS: F	PTS:	1	TOP:	Alternative optimal solutions
9.	A range of opt	timality is appl	icable only if the	e other	coefficient remains at its original value.
	ANS: T	PTS:	1	TOP:	Simultaneous changes
10.		• •	sents the improv dual price cann		in the value of the optimal solution per unit negative.
	ANS: F	PTS:	1	TOP:	Right-hand sides
11.	Decision varia	ables limit the o	degree to which	the ob	jective in a linear programming problem is
	ANS: F	PTS:	1	TOP:	Introduction
12.	No matter who line in a probl		each objective f	unctio	n line is parallel to every other objective function
	ANS: T	PTS:	1	TOP:	Graphical solution
13.	The point (3, 2	2) is feasible fo	or the constraint	$2x_1 + 6$	$6x_2 \le 30.$
	ANS: T	PTS:	1	TOP:	Graphical solution
14.	The constraint	$t 2x_1 - x_2 = 0 p$	asses through th	e poin	t (200, 100).
	ANS: F	PTS:	1	TOP:	A note on graphing lines
15.	The standard to problem.	form of a linea	r programming p	oroblei	m will have the same solution as the original
	ANS: T	PTS:	1	TOP:	Surplus variables
16.	An optimal so region for the		ar programming	probl	em can be found at an extreme point of the feasible
	ANS: T	PTS:	1	TOP:	Extreme points
НОЕ	RT ANSWER				

1. Explain the difference between profit and contribution in an objective function. Why is it important for the decision maker to know which of these the objective function coefficients represent?

A 7	T		
Λ	N	v	•
$\overline{}$	N	١,	_

Answer not provided.

PTS: 1 TOP: Objective function

2. Explain how to graph the line $x_1 - 2x_2 \ge 0$.

ANS:

Answer not provided.

PTS: 1 TOP: Graphing lines

3. Create a linear programming problem with two decision variables and three constraints that will include both a slack and a surplus variable in standard form. Write your problem in standard form.

ANS:

Answer not provided.

PTS: 1 TOP: Standard form

4. Explain what to look for in problems that are infeasible or unbounded.

ANS:

Answer not provided.

PTS: 1 TOP: Special cases

5. Use a graph to illustrate why a change in an objective function coefficient does not necessarily lead to a change in the optimal values of the decision variables, but a change in the right-hand sides of a binding constraint does lead to new values.

ANS:

Answer not provided.

PTS: 1 TOP: Graphical sensitivity analysis

6. Explain the concepts of proportionality, additivity, and divisibility.

ANS:

Answer not provided.

PTS: 1 TOP: Notes and comments

PROBLEM

1. Solve the following system of simultaneous equations.

$$6X + 2Y = 50$$

$$2X + 4Y = 20$$

$$X = 8, Y = 1$$

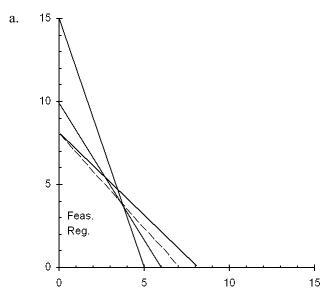
PTS: 1 TOP: Simultaneous equations

2. Solve the following system of simultaneous equations.

$$6X + 4Y = 40$$
$$2X + 3Y = 20$$

$$X = 4, Y = 4$$

PTS: 1 TOP: Simultaneous equations


3. Consider the following linear programming problem

Max
$$8X + 7Y$$

s.t.
$$15X + 5Y \le 75$$

 $10X + 6Y \le 60$
 $X + Y \le 8$
 $X, Y \ge 0$

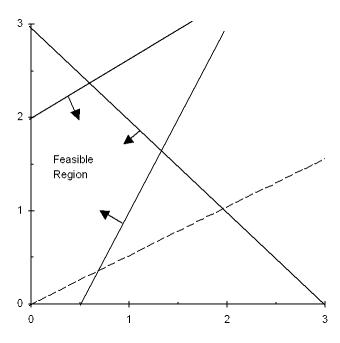
- a. Use a graph to show each constraint and the feasible region.
- b. Identify the optimal solution point on your graph. What are the values of X and Y at the optimal solution?
- c. What is the optimal value of the objective function?

ANS:

b. The optimal solution occurs at the intersection of constraints 2 and 3. The point is X = 3, Y = 5.

c. The value of the objective function is 59.

PTS: 1 TOP: Graphical solution

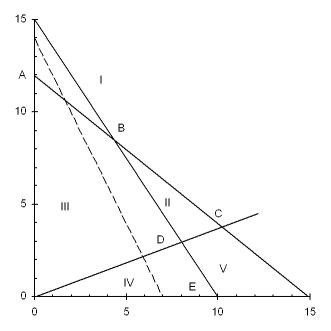

4. For the following linear programming problem, determine the optimal solution by the graphical solution method

Max
$$-X + 2Y$$

s.t.
$$6X - 2Y \le 3$$

 $-2X + 3Y \le 6$
 $X + Y \le 3$
 $X, Y \ge 0$

ANS:


$$X = 0.6$$
 and $Y = 2.4$

PTS: 1

TOP: Graphical solution

5. Use this graph to answer the questions.

Max
$$20X + 10Y$$

s.t.
$$12X + 15Y \leq 180$$

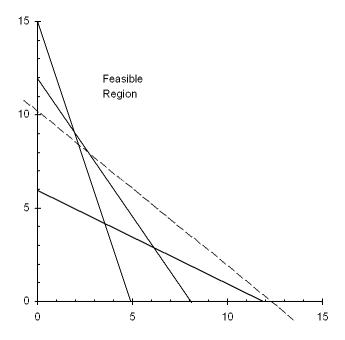
$$15X + 10Y \leq 150$$

$$3X - 8Y \leq 0$$

$$X, Y \geq 0$$

- a. Which area (I, II, III, IV, or V) forms the feasible region?
- b. Which point (A, B, C, D, or E) is optimal?
- c. Which constraints are binding?
- d. Which slack variables are zero?

- a. Area III is the feasible region
- b. Point D is optimal
- c. Constraints 2 and 3 are binding
- d. S_2 and S_3 are equal to 0


PTS: 1 TOP: Graphical solution

6. Find the complete optimal solution to this linear programming problem.

Min
$$5X + 6Y$$

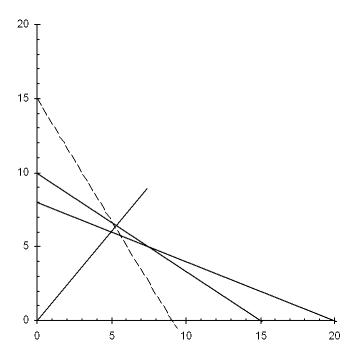
s.t.
$$3X + Y \ge 15$$

 $X + 2Y \ge 12$
 $3X + 2Y \ge 24$
 $X, Y \ge 0$

The complete optimal solution is

$$X = 6$$
, $Y = 3$, $Z = 48$, $S_1 = 6$, $S_2 = 0$, $S_3 = 0$

PTS: 1


TOP: Graphical solution

7. And the complete optimal solution to this linear programming problem.

Max
$$5X + 3Y$$

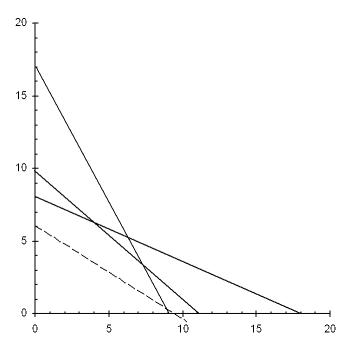
s.t.
$$2X + 3Y \le 30$$

 $2X + 5Y \le 40$
 $6X - 5Y \le 0$
 $X, Y \ge 0$

The complete optimal solution is

$$X = 15, Y = 0, Z = 75, S_1 = 0, S_2 = 10, S_3 = 90$$

PTS: 1


TOP: Graphical solution

8. Find the complete optimal solution to this linear programming problem.

Max
$$2X + 3Y$$

s.t.
$$4X + 9Y \le 72$$

 $10X + 11Y \le 110$
 $17X + 9Y \le 153$
 $X, Y \ge 0$

The complete optimal solution is

$$X = 4.304, Y = 6.087, Z = 26.87, S_1 = 0, S_2 = 0, S_3 = 25.043$$

PTS: 1

TOP: Graphical solution

9. Find the complete optimal solution to this linear programming problem.

Min
$$3X + 3Y$$

s.t.
$$12X + 4Y \ge 48$$

$$10X + 5Y \ge 50$$

$$4X + 8Y \ge 32$$

$$X, Y \ge 0$$

The complete optimal solution is

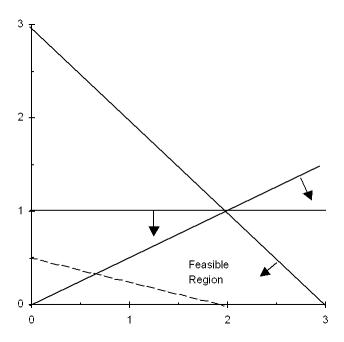
$$X = 4$$
, $Y = 2$, $Z = 18$, $S_1 = 8$, $S_2 = 0$, $S_3 = 0$

PTS: 1

TOP: Graphical solution

10. For the following linear programming problem, determine the optimal solution by the graphical solution method. Are any of the constraints redundant? If yes, then identify the constraint that is redundant.

Max
$$X + 2Y$$


s.t.
$$X + Y \le 3$$

 $X - 2Y \ge 0$

$$Y \leq 1$$

$$X, Y \geq 0$$

ANS:

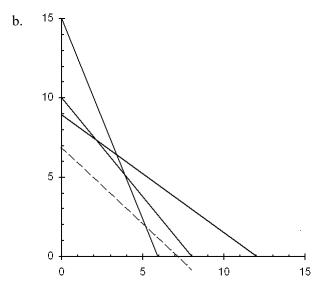
X = 2, and Y = 1 Yes, there is a redundant constraint; $Y \le 1$

PTS: 1 TOP: Graphical solution

11. Maxwell Manufacturing makes two models of felt tip marking pens. Requirements for each lot of pens are given below.

	Fliptop Model	Tiptop Model	Available
Plastic	3	4	36
Ink Assembly	5	4	40
Molding Time	5	2	30

The profit for either model is \$1000 per lot.


- a. What is the linear programming model for this problem?
- b. Find the optimal solution.
- c. Will there be excess capacity in any resource?

ANS:

a. Let F = the number of lots of Fliptip pens to produce Let T = the number of lots of Tiptop pens to produce

Max
$$1000F + 1000T$$

s.t. $3F + 4T \le 36$

$$\begin{array}{rcl} 5F + 4T & \leq & 40 \\ 5F + 2T & \leq & 30 \\ F , T & \geq & 0 \end{array}$$

The complete optimal solution is

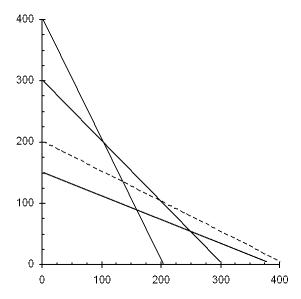
$$F = 2$$
, $T = 7.5$, $Z = 9500$, $S_1 = 0$, $S_2 = 0$, $S_3 = 5$

c. There is an excess of 5 units of molding time available.

PTS: 1 TOP: Modeling and graphical solution

12. The Sanders Garden Shop mixes two types of grass seed into a blend. Each type of grass has been rated (per pound) according to its shade tolerance, ability to stand up to traffic, and drought resistance, as shown in the table. Type A seed costs \$1 and Type B seed costs \$2. If the blend needs to score at least 300 points for shade tolerance, 400 points for traffic resistance, and 750 points for drought resistance, how many pounds of each seed should be in the blend? Which targets will be exceeded? How much will the blend cost?

	Type A	Type B
Shade Tolerance	1	1
Traffic Resistance	2	1
Drought Resistance	2	5


ANS:

Let A = the pounds of Type A seed in the blend

Let B =the pounds of Type B seed in the blend

Min
$$1A + 2B$$

s.t.
$$1A + 1B \ge 300$$

 $2A + 1B \ge 400$
 $2A + 5B \ge 750$
 $A, B \ge 0$

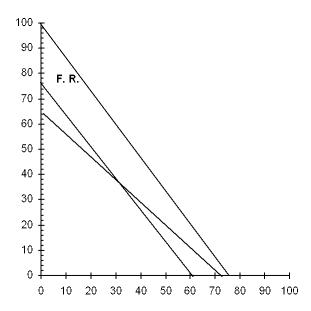
The optimal solution is at A = 250, B = 50. Constraint 2 has a surplus value of 150. The cost is 350.

PTS: 1 TOP: Modeling and graphical solution

13. Muir Manufacturing produces two popular grades of commercial carpeting among its many other products. In the coming production period, Muir needs to decide how many rolls of each grade should be produced in order to maximize profit. Each roll of Grade X carpet uses 50 units of synthetic fiber, requires 25 hours of production time, and needs 20 units of foam backing. Each roll of Grade Y carpet uses 40 units of synthetic fiber, requires 28 hours of production time, and needs 15 units of foam backing.

The profit per roll of Grade X carpet is \$200 and the profit per roll of Grade Y carpet is \$160. In the coming production period, Muir has 3000 units of synthetic fiber available for use. Workers have been scheduled to provide at least 1800 hours of production time (overtime is a possibility). The company has 1500 units of foam backing available for use.

Develop and solve a linear programming model for this problem.


ANS:

Let X = the number of rolls of Grade X carpet to make

Let Y = the number of rolls of Grade Y carpet to make

Max
$$200X + 160Y$$

s.t.
$$50X + 40Y \le 3000$$

 $25X + 28Y \ge 1800$
 $20X + 15Y \le 1500$
 $X, Y \ge 0$

The complete optimal solution is

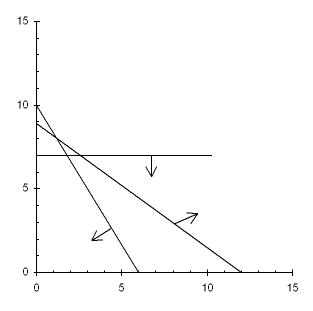
$$X = 30, Y = 37.5, Z = 12000, S_1 = 0, S_2 = 0, S_3 = 337.5$$

PTS: 1

TOP: Modeling and graphical solution

14. Does the following linear programming problem exhibit infeasibility, unboundedness, or alternate optimal solutions? Explain.

Min
$$1X + 1Y$$


s.t.
$$5X + 3Y \le 30$$

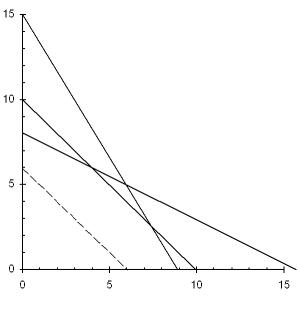
 $3X + 4Y \ge 36$

$$Y \leq 7$$

$$X, Y \geq 0$$

ANS:

The problem is infeasible.


PTS: 1 TOP: Special cases

15. Does the following linear programming problem exhibit infeasibility, unboundedness, or alternate optimal solutions? Explain.

Min
$$3X + 3Y$$

s.t. $1X + 2Y \le 16$
 $1X + 1Y \le 10$
 $5X + 3Y \le 45$
 $X, Y \ge 0$

ANS:

The problem has alternate optimal solutions.

PTS: 1 TOP: Special cases

16. A businessman is considering opening a small specialized trucking firm. To make the firm profitable, it is estimated that it must have a daily trucking capacity of at least 84,000 cu. ft. Two types of trucks are appropriate for the specialized operation. Their characteristics and costs are summarized in the table below. Note that truck 2 requires 3 drivers for long haul trips. There are 41 potential drivers available and there are facilities for at most 40 trucks. The businessman's objective is to minimize the total cost outlay for trucks.

		Capacity	Drivers
Truck	Cost	(Cu. ft.)	Needed
Small	\$18,000	2,400	1
Large	\$45,000	6,000	3

Solve the problem graphically and note there are alternate optimal solutions. Which optimal solution:

- a. uses only one type of truck?
- b. utilizes the minimum total number of trucks?

c. uses the same number of small and large trucks?

ANS:

- a. 35 small, 0 large
- b. 5 small, 12 large
- c. 10 small, 10 large

PTS: 1 TOP: Alternative optimal solutions