Tan.ApplCalcBrf9-ch01sec01

Student:		
-		

$$-\frac{5}{6} < -\frac{11}{12}$$

1. True False

2. Suppose and are real numbers other than zero and that . State whether the inequality is true or false.

$$\frac{1}{a}<\frac{1}{b}$$

True False

3. Determine whether the statement below is true for all real numbers b.

$$|b + 8| = |b| + 8$$

True False

4. If
$$a > b$$
, then $a - c < b - c$.

True False

5. A manufacturer of a certain commodity has estimated that her profit in thousands of dollars is given by the expression

$$-4x^2 + 28x - 6$$

where x (in thousands) is the number of units produced.

What production range will enable the manufacturer to realize a profit of at least \$18,000 on the commodity?

- A. Between 4,000 and 9,000 units.
- B. Between 4,000 and 6,000 units.
- C. Between 1,000 and 6,000 units.
- D. Between 1,000 and 8,000 units.
- E. Between 1,000 and 9,000 units.

6. Rationalize the numerator of the expression.

$$\sqrt{\frac{3y}{x}}$$

$$\frac{3}{\sqrt{xy^2}}$$

$$\frac{3y}{\sqrt{xy^2}}$$

$$\frac{3y}{\sqrt{xy}}$$

$$\frac{3y}{\sqrt{3xy}}$$

$$\frac{3y}{\sqrt{3xy^2}}$$

7. Rationalize the denominator of the expression.

$$\frac{y}{\sqrt{5x}}$$

$$\frac{\sqrt{5xy}}{5x}$$

- A. $\frac{y\sqrt{x}}{5x}$
- B. $\frac{y\sqrt{5x}}{5x}$
- C. $\frac{y\sqrt{5x}}{5x^2}$
- D. $\frac{y\sqrt{5}}{5x}$
- E.

$$\frac{1}{2} \approx 3.162$$

8. Use the fact that

to evaluate the expression without using a calculator.

$$10^{\frac{1}{4}} \approx 1.778$$

9. Use the fact that

to evaluate the expression without using a calculator.

$$10^{\,1.25}$$

A.

0.01778

B.

178

C.

17.78

D.

1,778

E.

10. Simplify the expression. (Assume that r, s, and t are positive.)

$$\sqrt[3]{8r^6}\sqrt{s^4t^6}$$

$$2r^2s^6t^6$$

B.
$$2r^2s^2t^3$$

D.
$$8r^2s^4t^4$$

11. Evaluate the expression.

$$\left[\left(-\frac{1}{4}\right)^3\right]^{-2}$$

B.
$$-1,024$$

12. Determine whether the statement is true or false.

$$\frac{4^{3/2}}{2^6} = \frac{1}{2}$$

13. Determine whether the statement is true or false.

$$-\frac{7}{8} > -\frac{15}{16}$$

- A. True B. False

14. Show the interval [6, 8) on a number line.

A.

B.

C.

D.

E.

- 15. Evaluate the expression.
- $|3\sqrt{2}-2|+|8-3\sqrt{2}|$
 - $3\sqrt{2}$
- A. $6\sqrt{2}$
- В.
- C. −6√2
- D. -б
- E.
- 16. Evaluate the expression.
- $|\sqrt{3} 1| + |8 + \sqrt{3}|$
 - $7 + 2\sqrt{3}$
- A. $2\sqrt{3}$
- B. 9+2√3
- C. $-2\sqrt{3}$
- D. $7 2\sqrt{3}$
- E.

- 17. Suppose and are real numbers other than zero and that . State whether the inequality is true or false.
- $\frac{1}{a} > \frac{1}{b}$
- A. False
- B. True
- 18. Evaluate the expression.
- $\frac{81^{\frac{3}{8}}81^{\frac{1}{2}}}{81^{\frac{5}{8}}}$
 - $\frac{1}{27}$
- A.
- B. 1
- C. 3 D. 9
- $\frac{1}{3}$
- E.

- 19. Rewrite the expression using positive exponents only.
- $\sqrt{x^{-1}}\cdot \sqrt{4x^{-7}}$
 - 2x'
- A. 4*x*⁸
- B. <u>2</u>
- C. $\frac{4}{x^4}$
- D. $\frac{2}{x^4}$
- E.

20. Simplify the expression. (Assume x and y are positive.)

$$\sqrt{81x^{10}y^{-6}}$$

- A.
- C.
- E.
- 21. Determine whether the statement below is true for positive real numbers a.

$$|a + 8| = |a| + 8$$

- A. True B. False

22. Rationalize the denominator of the expression.

$$\sqrt{\frac{3x}{y}}$$

$$\sqrt{3(x+y)}$$

- A. $\frac{\sqrt{3xy}}{x}$
- B. $3\frac{\sqrt{xy}}{y}$
- C. $\frac{\sqrt{3(x-y)}}{y}$
- D. $\frac{\sqrt{3xy}}{y}$
- E.

23. Rationalize the numerator of the expression.

$$\frac{\sqrt[7]{x^5z^5}}{6y}$$

$$\frac{xyz}{6\sqrt[7]{x^2yz^2}}$$

A.

$$7xz$$
 $6y\sqrt[7]{x^2z^2}$

B.

$$\frac{xyz}{6\sqrt[7]{x^2z^2}}$$

C.

$$\frac{xz}{6v\sqrt[7]{x^5z^5}}$$

D.

$$\frac{xz}{6y\sqrt[7]{x^2z^2}}$$

E.

24. Find the maximum profit P (in dollars) given that

$$8(P-2,300) \le 6(P+2,000)$$

A. \$ 15,650

B. \$ 7,600

C. \$ 15,200

D. \$ 16,100

E. \$ 22,800

25. Find the minimum profit P (in dollars) given that

$$5(P-2,700) \ge 3(P-1,800)$$

.

4,450

- A. \$
- 4,550
- B. \$
- 4,050
- C. \$
 - 3, 850
- D. \$
- 4,250
- E. \$

26. A salesman's monthly commission is 15% on all sales over \$11,000. If his goal is to make a commission of at least \$2,400/month, what minimum monthly sales figures must he attain?

- A. \$ 13,400
- B. \$ 12,200
- C. \$ 15,800
- D. \$ 24,600
- E. \$ 27,000

27. Simplify the expression.

$$\frac{5x^9y^3}{4xy^6}$$

$$\frac{5x^9}{4y^3}$$

A.

$$\frac{5x^8}{4y^4}$$

В.

$$\frac{5x^8}{4y^3}$$

C.

$$\frac{5y^3}{4x^8}$$

D.

$$\frac{4x^8}{5v^3}$$

E.

28. The diameter x (in inches) of a batch of ball bearings manufactured by PAR Manufacturing satisfies the inequality

$$|x - 0.45| \le 0.02$$

What is the smallest diameter a ball bearing in the batch can have?

- A. 0.4 inches
- B. 0.46 inches
- C. 0.47 inches
- D. 0.43 inches
- E. 0.45 inches

29. Evaluate the expression.

$$\frac{|-12+10|}{|10-8|}$$

- A. 1
- B. 9
- C. 6
- D. 8
- E. 4
- 30. Determine whether the statement is true or false.

If
$$a < b$$
, then $a - c > b - c$.

- A. True
- B. False
- 31. Find the values of x that satisfy the inequalities.

$$x - 3 \le 3 \qquad x + 7 > 1$$

$$(-\infty, -6] \cup (6, \infty)$$

B.
$$(-\infty, -6) \cup [6, \infty)$$

E.

- 32. Find the values of x that satisfy the inequalities.
- x 6 > 3

$$x + 4 \le 3$$

and

$$(-1, 9]$$

A.
$$(-\infty, -1) \cup [9, \infty)$$

$$B.\\ (-\infty,-1] \cup (9,\infty)$$

E.

33. Evaluate the expression.

$$\sqrt[3]{7^6}$$

$$\frac{1}{49}$$

A.

49

B.

2,187

D. 7

E.

34. Simplify the expression.

$$\frac{x^{\frac{8}{3}}}{x^{-2}}$$

 x^3

В.

$$x^{-\frac{14}{3}}$$

C.

$$x^{-\frac{3}{14}}$$

D.

$$x^{\frac{14}{3}}$$

E.

$$\frac{1}{3} \approx 1.732$$

35. Use the fact that the

to evaluate the expression without using a calculator.

$$\frac{5}{2}$$

Round the answer to the nearest thousandth.

A. 15.588

B. 43.075

C. 5.196

D. 46.765

E. 24.994

36. Evaluate the expression.

$$\left[\left(-\frac{1}{2} \right)^2 \right]^{-3}$$

$$10^{\frac{1}{2}} \approx 3.162$$

37. Use the fact that

to evaluate the expression without using a calculator.

38. Evaluate the expression.

$$\left| \sqrt{2} - 1 \right| + \left| 7 - \sqrt{2} \right|$$

39. Evaluate the expression.

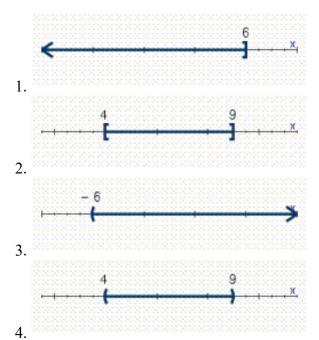
$$\frac{16^{-\frac{3}{8}}16^{\frac{1}{4}}}{16^{-\frac{1}{8}}}$$

$11(P-2,500) \le 9(P+2,400)$
\$
41. A salesman's monthly commission is 15% on all sales over \$15,000. If his goal is to make a commission of at least \$3,300/month, what minimum monthly sales figures must be attain?
\$
42. The diameter x (in inches) of a batch of ball bearings manufactured by PAR Manufacturing satisfies the inequality
$ x - 0.1 \le 0.04$
What is the largest diameter a ball bearing in the batch can have? Give your answer to two decimal places, if necessary.
inches
43. Evaluate the expression.
$\frac{ -18+16 }{ 13-11 }$

40. Find the maximum profit P (in dollars) given that

$$2^{\frac{1}{2}} \approx 1.414$$

44. Use the fact that the


to evaluate the expression without using a calculator.

$$2^{\frac{7}{2}}$$

Round the answer to the nearest thousandth, if necessary.

45. Match each interval with the corresponding number line.

Choose the correct letter for each question.

46. Match each pair of inequalities with the corresponding values of x.

Choose the correct letter for each question.

1.
$$(-2, 8]$$

2. $[-2, 8]$
3. $(-\infty, -2] \cup (8, \infty)$
4. $x-3 \le 5 \text{ and } x+5 \le 3$
 $x-3 \ge 5 \text{ and } x+5 \le 3$
 $x-3 \ge 5 \text{ and } x+5 \le 3$
 $x-3 \le 5 \text{ and } x+5 \le 3$
 $x-3 \le 5 \text{ and } x+5 \le 3$

47. Simplify the expression. (Assume that r, s, and t are positive.)

$$\sqrt[3]{64r^{6}}\,\sqrt{s^{8}t^{4}}$$

48. Rationalize the numerator of the expression.

$$\sqrt[3]{\frac{2y}{x}}$$

49. Rewrite the expression using positive exponents only.

$$\sqrt{x^{-1}}\cdot\sqrt{9x^{-9}}$$

50. Simplify the expression. (Assume x and y are positive.)

$$\sqrt{36x^{12}y^{-10}}$$

51. Rationalize the denominator of the expression.

$$\sqrt{\frac{13x}{y}}$$

52. Rationalize the numerator of the expression.

$$\frac{\sqrt[7]{x^5z^2}}{9y}$$

53. Simplify the expression.

$$\frac{3x^9y^3}{4xy^9}$$

54. Evaluate the expression.

55. Simplify the expression.

$$\frac{x^{\frac{4}{3}}}{x^{-2}}$$

56. A manufacturer of a certain commodity has estimated that her profit in thousands of dollars is given by the expression

$$-4x^2 + 28x - 10$$

where x (in thousands) is the number of units produced.

What production range will enable the manufacturer to realize a profit of at least \$14,000 on the commodity?

Between _____ and ____ units.

57. Determine whether the statement is *true* or *false*.

$$\frac{4^{\frac{3}{2}}}{2^{6}} = \frac{1}{2}$$

Tan.ApplCalcBrf9-ch01sec01 Key

$$-\frac{5}{6} < -\frac{11}{12}$$

1.

FALSE

a b a < b

2. Suppose and are real numbers other than zero and that . State whether the inequality is true or false.

$$\frac{1}{a} < \frac{1}{b}$$

FALSE

3. Determine whether the statement below is true for all real numbers b.

$$|b| + 8| = |b| + 8$$

FALSE

4. If a > b, then a - c < b - c.

FALSE

5. A manufacturer of a certain commodity has estimated that her profit in thousands of dollars is given by the expression

$$-4x^2 + 28x - 6$$

where x (in thousands) is the number of units produced.

What production range will enable the manufacturer to realize a profit of at least \$18,000 on the commodity?

- A. Between 4,000 and 9,000 units.
- B. Between 4,000 and 6,000 units.
- **C.** Between 1,000 and 6,000 units.
- D. Between 1,000 and 8,000 units.
- E. Between 1,000 and 9,000 units.

6. Rationalize the numerator of the expression.

$$\sqrt{\frac{3y}{x}}$$

$$\frac{3}{\sqrt{xy^2}}$$

B.
$$\frac{3y}{\sqrt{xy}}$$

C.
$$\frac{3y}{\sqrt{3xy}}$$

$$\frac{D.}{\sqrt{3xy^2}}$$

7. Rationalize the denominator of the expression.

$$\frac{y}{\sqrt{5x}}$$

$$\frac{\sqrt{5xy}}{5x}$$

A.
$$\frac{y\sqrt{x}}{5x}$$

B.
$$\frac{y\sqrt{5x}}{5x}$$

$$\frac{C.}{\frac{y\sqrt{5x}}{5x^2}}$$

D.
$$\frac{y\sqrt{5}}{5x}$$

E.

$$\frac{1}{2} \approx 3.162$$

8. Use the fact that

to evaluate the expression without using a calculator.

A. 3.162

B. 31.62 <u>C.</u> 3,162 D. 31,620 E. 316,200

$$10^{\frac{1}{4}} \approx 1.778$$

9. Use the fact that

to evaluate the expression without using a calculator.

$$10^{\,1.25}$$

1.778

A.

0.01778

В.

178

C.

17.78

E.

1,778

10. Simplify the expression. (Assume that r, s, and t are positive.)

$$\sqrt[3]{8r^6}\sqrt{s^4t^6}$$

$$2r^2s^6t^4$$

A.
$$8r^2s^2t^3$$

B.
$$2r^2s^2t^3$$

$$\frac{\mathbf{C.}}{2r^3s^6t^3}$$

D.
$$8r^2s^4t^4$$

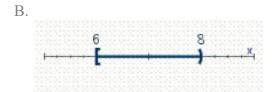
11. Evaluate the expression.

$$\left[\left(-\frac{1}{4}\right)^3\right]^{-2}$$

12. Determine whether the statement is true or false.

$$\frac{4^{3/2}}{2^6} = \frac{1}{2}$$

13. Determine whether the statement is true or false.


$$-\frac{7}{8} > -\frac{15}{16}$$

A. True B. False

14. Show the interval [6, 8) on a number line.

A.

E.

- 15. Evaluate the expression.
- $|3\sqrt{2}-2|+|8-3\sqrt{2}|$
 - $3\sqrt{2}$
- б
- <u>C.</u> -6√2
- D.
- E.
- 16. Evaluate the expression.
- $\left| \sqrt{3} 1 \right| + \left| 8 + \sqrt{3} \right|$
 - $7 + 2\sqrt{3}$
- $9 + 2\sqrt{3}$
- C. −2 √3
- D. $7 2\sqrt{3}$
- E.

- 17. Suppose and are real numbers other than zero and that . State whether the inequality is true or false.
- $\frac{1}{a} > \frac{1}{b}$
- A. False B. True
- 18. Evaluate the expression.

$$\frac{81^{\frac{3}{8}}81^{\frac{1}{2}}}{81^{\frac{5}{8}}}$$

- $\frac{1}{27}$
- A.
- B. 1
- <u>C.</u> 3 D. 9
- ى. <u>ج</u> <u>1</u>
- E.

19. Rewrite the expression using positive exponents only.

$\sqrt{x^{-1}}\cdot \sqrt{4x^{-7}}$

- 2x'
- A. 4*x*⁸
- B. <u>2</u>
- C. $\frac{4}{x^4}$
- D. $\frac{2}{x^4}$

<u>E.</u>

20. Simplify the expression. (Assume x and y are positive.)

$$\sqrt{81x^{10}y^{-6}}$$

$$9\frac{x^5}{v^3}$$

A. 81 $\frac{x^5}{x^3}$

Β. 81*x*⁵ν³

C. $9\frac{y^3}{x^5}$

D. $9x^{5}y^{3}$

E.

21. Determine whether the statement below is true for positive real numbers a.

$$|a + 8| = |a| + 8$$

A. True B. False

22. Rationalize the denominator of the expression.

$$\sqrt{\frac{3x}{y}}$$

- $\frac{\sqrt{3(x+y)}}{y}$
- A. $\frac{\sqrt{3xy}}{x}$
- B. $3\frac{\sqrt{xy}}{y}$
- C. $\frac{\sqrt{3(x-y)}}{y}$
- D. $\frac{\sqrt{3xy}}{y}$
- <u>E.</u>

23. Rationalize the numerator of the expression.

$$\frac{\sqrt[7]{x^5z^5}}{6v}$$

$$\frac{xyz}{6\sqrt[7]{x^2yz^2}}$$

A.

$$\frac{7xz}{6y\sqrt[7]{x^2z^2}}$$

В.

$$\frac{xyz}{6\sqrt[7]{x^2z^2}}$$

C.

$$\frac{xz}{6v\sqrt[7]{x^5z^5}}$$

D.

$$\frac{xz}{6y\sqrt[7]{x^2z^2}}$$

<u>E.</u>

24. Find the maximum profit P (in dollars) given that

$$8(P-2,300) \le 6(P+2,000)$$

A. \$ 15,650

B. \$ 7,600

<u>C.</u> \$ 15,200

D. \$ 16,100

E. \$ 22,800

25. Find the minimum profit P (in dollars) given that

$$5(P-2,700) \ge 3(P-1,800)$$

.

- 4,450
- A. \$
- 4,550
- B. \$
- 4,050
- <u>C.</u> \$
 - 3,850
- D. \$
- 4,250
- E. \$
- 26. A salesman's monthly commission is 15% on all sales over \$11,000. If his goal is to make a commission of at least \$2,400/month, what minimum monthly sales figures must he attain?
- A. \$ 13,400
- B. \$ 12,200
- C. \$ 15,800
- D. \$ 24,600
- **E.** \$ 27,000

27. Simplify the expression.

$$\frac{5x^9y^3}{4xy^6}$$

$$\frac{5x^9}{4v^3}$$

B.
$$\frac{5x^8}{4y^3}$$

$$\frac{C.}{\frac{5y^3}{4x^8}}$$

D.
$$\frac{4x^8}{5y^3}$$

E.

28. The diameter x (in inches) of a batch of ball bearings manufactured by PAR Manufacturing satisfies the inequality

$$|x - 0.45| \le 0.02$$

What is the smallest diameter a ball bearing in the batch can have?

- A. 0.4 inches
- B. 0.46 inches
- C. 0.47 inches
- **<u>D.</u>** 0.43 inches
- \overline{E} . 0.45 inches

29. Evaluate the expression.

$$\frac{|-12+10|}{|10-8|}$$

- <u>**A.**</u> 1 B. 9
- C. 6
- D. 8
- E. **4**
- 30. Determine whether the statement is true or false.

If a < b, then a - c > b - c.

- A. True
- **B.** False
- 31. Find the values of x that satisfy the inequalities.

$$x - 3 \le 3 \qquad x + 7 > 1$$

$$(-\infty, -6] \cup (6, \infty)$$

- A. [-6, 6)
- $^{\mathrm{B.}}_{\phantom{\mathrm{B.}}}(-\infty,-6)\cup[\,6,\infty)$
- C. (-∞, 6]
- D. (-6, 6]

<u>E.</u>

- 32. Find the values of x that satisfy the inequalities.
- x 6 > 3

$$x + 4 \le 3$$

and

- (-1, 9]

$$^{\mathrm{A.}}\left(-\infty,-1\right) \cup\left[9,\infty\right)$$

$$^{\mathrm{B.}}\left(-\infty,-1\right] \cup\left(9,\infty\right)$$

E.

33. Evaluate the expression.

$$\sqrt[3]{7^6}$$

- A. 49
- C. 2,187
- D. 7
- E.

34. Simplify the expression.

$$\frac{x^{\frac{8}{3}}}{x^{-2}}$$

В.

C.
$$x^{-\frac{3}{14}}$$

D.
$$x^{\frac{14}{3}}$$

<u>E.</u>

$$3^{\frac{1}{2}} \approx 1.732$$

35. Use the fact that the

to evaluate the expression without using a calculator.

Round the answer to the nearest thousandth.

A. 15.588 B. 43.075

C. 5.196

D. 46.765

E. 24.994

36. Evaluate the expression.

$$\left[\left(-\frac{1}{2}\right)^2\right]^{-3}$$

<u>64</u>

$$10^{\frac{1}{2}} \approx 3.162$$

37. Use the fact that

to evaluate the expression without using a calculator.

10^{3.5}

<u>3,162</u>

38. Evaluate the expression.

$$|\sqrt{2} - 1| + |7 - \sqrt{2}|$$

<u>6</u>

39. Evaluate the expression.

$$\frac{16^{-\frac{3}{8}}16^{\frac{1}{4}}}{16^{-\frac{1}{8}}}$$

1

40. Find the maximum profit P (in dollars) given that

$$11(P-2,500) \le 9(P+2,400)$$

.

41. A salesman's monthly commission is 15% on all sales over \$15,000. If his goal is to make a commission of at least \$3,300/month, what minimum monthly sales figures must be attain?

42. The diameter x (in inches) of a batch of ball bearings manufactured by PAR Manufacturing satisfies the inequality

 $|x - 0.1| \le 0.04$

What is the largest diameter a ball bearing in the batch can have? Give your answer to two decimal places, if necessary.

inches

0.14

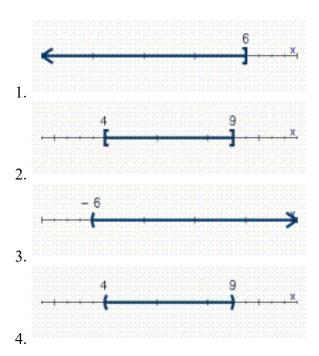
43. Evaluate the expression.

1

$$2^{\frac{1}{2}} \approx 1.414$$

44. Use the fact that the

to evaluate the expression without using a calculator.


$$2^{\frac{7}{2}}$$

Round the answer to the nearest thousandth, if necessary.

11.312

45. Match each interval with the corresponding number line.

Choose the correct letter for each question.

$$(-\infty, 6] \ \underline{1}$$

46. Match each pair of inequalities with the corresponding values of x.

Choose the correct letter for each question.

1.
$$(-2, 8]$$

2. $[-2, 8]$
3. $(-\infty, -2] \cup (8, \infty)$
4. $x-3 \le 5$ and $x+5 \le 3$ $x-3 \ge 5$ and $x+5 \le 3$ $x-3 \ge 5$ and $x+5 \le 3$ $x-3 \ge 5$ and $x+5 \ge 3$ $x-3 \le 5$ and $x+5 \ge 3$

47. Simplify the expression. (Assume that r, s, and t are positive.)

$$\sqrt[3]{64r^6} \sqrt{s^8t^4}$$

$$4r^2s^4t^2$$

48. Rationalize the numerator of the expression.

$$\sqrt[3]{\frac{2y}{x}}$$

$$\frac{2y}{\sqrt[3]{4xy^2}}$$

49. Rewrite the expression using positive exponents only.

$$\sqrt{x^{-1}}\cdot\sqrt{9x^{-9}}$$

$$\frac{3}{x^5}$$

50. Simplify the expression. (Assume x and y are positive.)

$$\sqrt{36x^{12}y^{-10}}$$

$$\frac{6x^6}{v^5}$$

51. Rationalize the denominator of the expression.

$$\sqrt{\frac{13x}{y}}$$

$$\frac{\sqrt{13xy}}{y}$$

52. Rationalize the numerator of the expression.

$$\frac{\sqrt[7]{x^5z^2}}{9y}$$

$$\frac{xz}{9y\sqrt[7]{x^2z^5}}$$

53. Simplify the expression.

$$\frac{3x^9y^3}{4xy^9}$$

$$\frac{3x^8}{4y^6}$$

54. Evaluate the expression.

55. Simplify the expression.

$$\frac{x^{\frac{4}{3}}}{x^{-2}}$$

$$x^{\frac{10}{3}}$$

56. A manufacturer of a certain commodity has estimated that her profit in thousands of dollars is given by the expression

$$-4x^2 + 28x - 10$$

where x (in thousands) is the number of units produced.

What production range will enable the manufacturer to realize a profit of at least \$14,000 on the commodity?

Between _____ and ____ units.

57. Determine whether the statement is *true* or *false*.

$$\frac{4^{\frac{3}{2}}}{2^{6}} = \frac{1}{2}$$

false