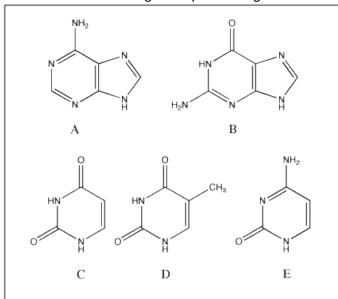
https://selldocx.com/products/test-bank-biochemistry-an-integrative-approach-1e-tansey

Tansey Test Bank, Chapter 2: Nucleic Acids

Section: 2.1

MULTIPLE CHOICE
1. Nucleotides play a central role in living organisms because
A) they mediate transport of energy within the cell
B) they are involved in oxidation-reduction reactions
C) they are involved in intracellular signaling
D) they function as building blocks for nucleic acids
E) all of the above
Answer: E
Difficulty: Easy
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
2. What group is attached to the pyrimidine ring in thymine and is not present in uracil?
A) ribose
B) −CH ₃
C) –NH ₂
D) deoxyribose
E) none of the above
Answer: B
Difficulty: Moderate
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
3. Nucleotides contain one or more phosphate groups that are usually attached to the
A) C-3' or C-5' atoms
B) C-3 or C-3' atoms
C) C-5 or N-3 atoms
D) C-1' or N-3 atoms
E) none of the above
Answer: A
Difficulty: Moderate
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
4. Inside our cells, free nucleotides are almost always associated with
A) proteins
B) cholesterol
C) Cl ⁻ counterions
D) fatty acids
E) Mg ²⁺ counterions
Answer: E
Difficulty: Moderate

Learning Objective: Analyze the structures of nucleic acids at the chemical level.


5. Nucleoside triphosphates are useful for energy transfer because the phosphoanhydride bonds are relatively A) stable B) high energy C) biocompatible D) large E) low energy Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C Difficulty: Moderate
A) stable B) high energy C) biocompatible D) large E) low energy Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
B) high energy C) biocompatible D) large E) low energy Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
C) biocompatible D) large E) low energy Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
D) large E) low energy Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
E) low energy Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
Answer: B Difficulty: Easy Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level. MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
MULTIPLE CHOICE 6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
6. Nucleoside triphosphates carry energy in the form of A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
A) glycosidic bonds B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
B) phosphoester bonds C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
C) phosphoanhydride bonds D) hydrogen bonds E) amide linkages Answer: C
D) hydrogen bonds E) amide linkages Answer: C
E) amide linkages Answer: C
Answer: C
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
7. Which of the following nucleotides contain energy rich bonds?
A) ATP
B) TTP
C) GTP
D) CTP E) all of the above
Answer: E
Difficulty: Easy
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
8. Which of the following molecules does <i>not</i> contain an energy-rich phosphoanhydride bond?
A) ADP
B) GDP
C) AMP
D) CDP E) all of the above

Answer: C Difficulty: Easy Section: 2.1

Learning Objective: Analyze the structures of nucleic acids at the chemical level.

SHORT ANSWER

9. Which of the following bases pairs with guanine?

Answer: E Difficulty: Easy Section: 2.1

Learning Objective: Analyze the structures of nucleic acids at the chemical level.

MULTIPLE CHOICE

10. Knowledge about the tautomeric forms of the bases of nucleic acids is needed

A) to understand H-bonding between the complementary bases

- B) to understand how the bases are linked to ribose
- C) to understand how bases are linked to deoxyribose
- D) to understand the ability of nucleotides to act as energy carriers
- E) to distinguish the 5' end of a DNA strand from the 3' end

Answer: A
Difficulty: Easy
Section: 2.1

Learning Objective: Analyze the structures of nucleic acids at the chemical level.

MULTIPLE CHOICE

11. RNA occurs primarily as single-stranded molecules that can give rise to _____ structures.

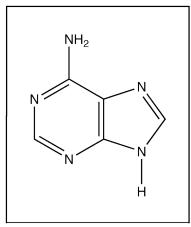
- A) diploid
- B) stem-loop
- C) parallel
- D) tautomeric
- E) haploid Answer: B

Difficulty: Easy

Section: 2.1

Learning Objective: Analyze the structures of nucleic acids at the chemical level.

SHORT ANSWER


12. Which of the following bases is not present in RNA?

Answer: D
Difficulty: Easy
Section: 2.1

Learning Objective: Analyze the structures of nucleic acids at the chemical level.

SHORT ANSWER

13. This is the structure of adenine.

a. Is adenine a purine or a pyrimidine?

b. Which base does adenine base-pair (H-bond) with in DNA?

c. What is the name of the molecule that is composed of adenine to the C-1' of ribose?

d. Indicate on the drawing through which atom adenine is connected to ribose or deoxyribose.

e. Indicate on the drawing which groups on adenine are involved base-pairing or H-bonding with its complementary base.

Answer: a. purine

b. thymine

c. adenosine

d. see diagram

e. see diagram

Difficulty: Difficult

Section: 2.1

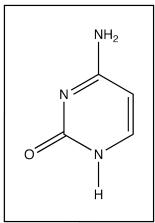
Learning objective: Analyze the structures of nucleic acids at the chemical level.

SHORT ANSWER

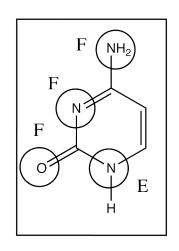
14. Describe the structure of a DNA molecule by listing six characteristics.

Answer: 1. DNA forms a double helix.

- 2. The two strands run antiparallel.
- 3. The sugar is deoxyribose.
- 4. The sugar-phosphate groups are on the outside of the helix.
- 5. The bases are in the center of the helix.
- 6. The bases are planar, and their plane is orientated perpendicular to the axis of the helix.
- 6. There are four bases: adenine, guanine, cytosine, and thymine.
- 7. The strands are held together by H-bonding between complementary bases: adenine-thymine and guanine-cytosine.
- 8. The helix has a minor and a major groove on its surface.


Difficulty: Difficult

Section: 2.1


Learning objective: Analyze the structures of nucleic acids at the chemical level.

SHORT ANSWER

15. This is the structure of cytosine.

- a. What are the names of the other three bases that are found in
- b. Is cytosine a purine or a pyrimidine?
- c. Give the name and the one letter abbreviation of the base cytosine base-pairs (H-bonds) with in DNA.
- d. What is the name of the molecule composed of cytosine linked
- e. Indicate on the drawing through which atom cytosine is connected to ribose or deoxyribose
- f. Indicate on the drawing which groups on cytosine are involved in pairing (H-bonding) with its complementary base.

DNA?

to

base-

Answer: a. adenine, guanine, and thymine b. pyrimidine c. guanine, G d. cytidine e. see diagram f. see diagram Difficulty: Difficult Section: 2.1 Learning objective: Analyze the structures of nucleic acids at the chemical level.	
TEXT ENTRY 16. The pyrimidine found in both DNA and RNA is The pyrimidine found only in DNA is, a the pyrimidine found only in RNA is Answer 1: cytosine Answer 2: thymine Answer 3: uracil Difficulty: Moderate Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level.	und
DROPDOWN 17. The link between a purine and ribose is made from the of the purine ring to the of the ribose. Dropdown 1: N-1, N-3, N-7, N-9 Dropdown 2: C-1', C-2', C-3', C-4', C-5' Difficulty: Moderate Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level.	
DROPDOWN 18. The link between a pyrimidine and ribose is made from the of the pyrimidine ring to the of the ribose. Dropdown 1: N-1, N-3 Dropdown 2: C-1', C-2', C-3', C-4', C-5' Difficulty: Moderate Section: 2.1 Learning Objective: Analyze the structures of nucleic acids at the chemical level.	f
MULTIPLE CHOICE 19. In DNA, the ribose derivative lacks an on C A) alcohol; 2 B) alcohol; 3 C) amine; 2 D) amine; 3 E) none of the above Answer: A Difficulty: Moderate Section: 2.1	

Learning Objective: Analyze the structures of nucleic acids at the chemical level.

MULTIPLE CHOICE
20. What type of bond is made between nucleotides?
A) ester
B) phosphoester
C) phosphodiester
D) glycosidic
E) none of the above
Answer: C
Difficulty: Easy
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
21. The most common base pairs in DNA are and
A) A-T; A-G
B) G-C; C-A
C) T-A; A-U
D) C-G; T-A
E) G-U; A-T
Answer: D
Difficulty: Moderate
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
22. An A-T base pair consists of H-bond(s); a C-G base pair consists of H-bond(s).
A) 1; 2
B) 2; 1
C) 2; 2
D) 3; 2
E) 2; 3
Answer: E
Difficulty: Easy
Section: 2.1
Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE
23. Which of the following correctly describes the B-DNA double helix?
A) antiparallel strands
B) right-handed helix
C) base pairs are located in the center of the helix
D) one helical rotation has a rise of 3.4 nm
E) all of the above
Answer: E
Difficulty: Difficult
Section: 2.1

Learning Objective: Analyze the structures of nucleic acids at the chemical level.
MULTIPLE CHOICE 24. The DNA strand that serves as the template for the synthesis of RNA is often called the A) coding strand B) noncoding strand C) messenger strand D) transfer strand E) transcription strand Answer: B Difficulty: Easy Section: 2.2 Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
25. The replication of DNA is made possible by the presence of strands in the double helix of DNA. A) antiparallel B) hydrogen-bonded C) complementary D) genomic E) none of the above Answer: C
Difficulty: Easy
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
26. In living organisms, genetic information is most often stored in the form of A) ribonucleic acid B) deoxyribonucleic acid C) proteins D) enzymes E) deoxynucleotides Answer: B Difficulty: Easy
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
27. Genomic DNA is, resulting in the production of A) transcribed; mRNA B) translated; tRNA C) transcribed; protein

D) translated; protein E) translated; rRNA

Answer: A

Difficulty: Moderate

Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

28. An *E. coli* has _____ replication fork(s) on its single chromosome; humans have _____ replication fork(s) on each chromosome.

A) 1; 1

B) 1; 2

C) 2; 2

D) 2; many

E) many; many

Answer: D Difficulty: Easy Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

29. Which strand of DNA is replicated exclusively in a discontinuous fashion?

- A) forward strand
- B) reverse strand
- C) leading strand
- D) lagging strand
- E) the strand that is read in a 5' to 3' direction

Answer: D
Difficulty: Easy
Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

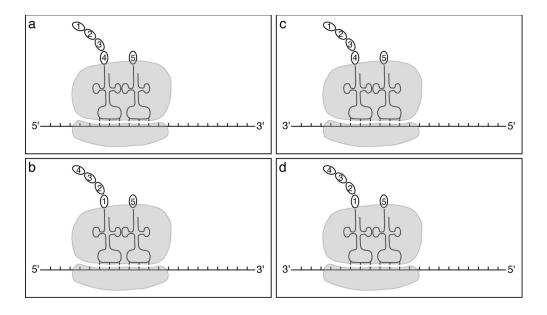
30. Which of the following best describes a new strand of DNA relative to the template strand used to synthesize it?

- A) an exact duplicate of the template
- B) a negative copy of the template
- C) a palindromic copy of the template
- D) an exact copy of the template but with the 3' and 5' ends reversed
- E) none of the above

Answer: B

Difficulty: Moderate

Section: 2.2


Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

31. In most organisms, replication proceeds in a manner from the
A) bidirectional; replication origin
B) bidirectional; theta site
C) bidirectional; lagging strand
D) unidirectional; chromosome ends
E) none of the above
Answer: A
Difficulty: Easy
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of
DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
32. Genomic DNA that encodes proteins undergoes the process of to produce
A) transcription; mRNA
B) transcription; tRNA
C) translation; rRNA
D) translation; proteins
E) transcription; proteins
Answer: A
Difficulty: Moderate
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of
DNA into RNA, regulation of transcription, and translation of RNA into proteins.
TEXT ENTRY
33. Prokaryotes contain nucleotide sequences known as that contain related genes with related
functions.
Answer: operons
Difficulty: Easy
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of
DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
34. All cellular RNAs are transcribed from
A) DNA templates
B) RNA templates
C) either DNA or RNA templates, but not both in the same organism
D) a combination of DNA and RNA templates
E) none of the above
Answer: A
Difficulty: Easy
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of
DNA into RNA, regulation of transcription, and translation of RNA into proteins.

35. The term rRNA refers to RNA. A) ribosomal
B) retroviral
C) recombinant
D) rho factor
Answer: A
Difficulty: Easy
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of
DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
36. Polypeptide synthesis proceeds from the to the
A) entrance site; exit site
B) 50S subunit; 30S subunit
C) C-terminus; N-terminus
D) N-terminus; C-terminus
E) peptidyl site; aminoacyl site
Answer: D
Difficulty: Moderate
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.
MULTIPLE CHOICE
37. Which of the following is a function of the ribosome?
I. bind mRNA and allow codon recognition
II. mediate the binding of proteins necessary for initiation, elongation, and termination
III. catalyze synthesis of peptide bonds
IV. translocate such that multiple codons can be read
A) I only
B) I, II
C) I, IV
D) II only
E) I, II, III, IV
Answer: E
Difficulty: Moderate
Section: 2.2
Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of
DNA into RNA regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

38. Which diagram correctly depicts a ribosome engaged in translation?

- A) a
- B) b
- C) c
- D) d

Answer: A

Difficulty: Difficult Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

39. Transfer RNA molecules are involved in . .

- A) transcription
- B) translation
- C) replication
- D) reverse transcription
- E) post-translational processing

Answer: B
Difficulty: Easy
Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

SHORT ANSWER

- 40. There are three types of RNA that are directly involved in translation.
- a. Name these three types of RNA
- b. Briefly describe the function of each of these types of RNA.

Answer: a. mRNA, tRNA, rRNA

b. mRNA moves genetic information from the nucleus to the ribosomes in the cytoplasm. tRNA decodes the genetic message; it matches sequences of three nucleotides to amino acids. rRNA is involved in the catalysis of amide bond formation.

Difficulty: Difficult Section: 2.2

Learning objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

TEXT ENTRY

41. In bacteria, riboflavin can inhibit its own synthesis by binding to an mRNA element termed a _____.

Answer: riboswitch Difficulty: Moderate

Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

42. RNA interference is a mechanism of post-transcriptional RNA-dependent ______.

- A) chromatin-remodeling
- B) gene silencing
- C) histone methylation
- D) coactivation
- E) apoptosis Answer: B Difficulty: Easy

Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

43. Which of the following would likely result in the formation of RNAi?

- A) injection of antisense RNA from a human into human cells
- B) injection of sense RNA into *C. elegans*
- C) injection of antisense RNA from yeast into a human
- D) all of the above
- E) none of the above

Answer: E

Difficulty: Difficult Section: 2.2

Learning Objective: Illustrate when and how nucleic acids function in replication of DNA, transcription of DNA into RNA, regulation of transcription, and translation of RNA into proteins.

MULTIPLE CHOICE

44. Incorporation of which of the following would result in chain termination during sequencing of DNA?

- A) dATP
- B) dCTP
- C) ddTTP
- D) dGTP
- E) none of the above

Answer: C Difficulty: Easy Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

45. The results of DNA sequencing are obtained by first separating different-sized pieces of DNA using ______ followed by detection of the particular dideoxynucleotide using _____.

- A) HPLC; NMR
- B) HPLC; absorbance spectroscopy
- C) electrophoresis; fluorescence spectroscopy
- D) electrophoresis; X-ray crystallography
- E) none of the above

Answer: C

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

46. The most commonly used technique for making large numbers of copies of DNA is _____.

- A) polymerase chain reaction
- B) dideoxy sequencing
- C) restriction digestion
- D) genetic engineering
- E) site-directed mutagenesis

Answer: A
Difficulty: Easy
Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

47. Because of the high temperature _____ step during a PCR reaction, the DNA polymerase from _____ is used.

A) primer extension; E. coli

B) strand separation; *Thermus aquaticus* C) primer annealing; *Thermus aquaticus* D) primer extension; bacteriophage λ

E) strand separation; E. coli

Answer: B

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

48. What reagents are required to perform PCR?

A) DNA fragment, primers flanking the region of interest, dNTPs, DNA polymerase

- B) DNA fragment, primers flanking the region of interest, dNTPs, ddNTPs, DNA polymerase
- C) DNA fragment, one primer, dNTPs, DNA polymerase, DNA ligase
- D) DNA fragment, one primer, dNTPs, DNA polymerase, DNA endonuclease
- E) DNA fragment, primers flanking the region of interest, dNTPs, DNA endonuclease

Answer: A

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

49. Which of the following represents the correct order of steps in a PCR reaction beginning with double-stranded DNA?

- A) primer annealing, strand separation, primer extension
- B) strand separation, primer extension, primer annealing
- C) strand separation, primer annealing, primer extension
- D) primer extension, primer annealing, strand separation
- E) primer annealing, primer extension, strand separation

Answer: C

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

50. EcoRI recognizes the sequ	ence 5'-G↓AATTC-3' (t	he arrow indicates the poin	t of cleavage).	Treatment
of the following oligonucleoti	de with EcoRI would p	roduce two oligonucleotide	s with sizes of	
nucleotides containing	ends.			

5'-AAGTCGATACAGAATTCGTACCTAG-3'

- A) 12 and 13; blunt
- B) 12 and 8; blunt
- C) 11 and 8; sticky
- D) 12 and 13; sticky
- E) 9 and 13; sticky

Answer: D

Difficulty: Difficult Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

- 51. What term describes a small, circular molecule of DNA that can be used to transfer genetic material from one organism to another?
- A) plasmid
- B) bacteriophage
- C) clone

D) tRNA E) splice Answer: A Difficulty: Easy Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

52. What term describes the production of multiple identical organisms from a single ancestor?

- A) transcription
- B) cloning
- C) sequencing
- D) phenotyping
- E) ligation Answer: B Difficulty: Easy Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

MULTIPLE CHOICE

53. What enzyme is required to form a new phosphodiester bond when inserting DNA into a plasmid?

- A) DNA polymerase
- B) endonuclease
- C) exonuclease
- D) ligase
- E) clonase Answer: D Difficulty: Easy Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

MULTIPLE CHOICE

54. What technique involves addition of primers that do not exactly match the sequence of a gene, thus allowing for introduction of a mutation?

- A) cloning
- B) transformation
- C) site-directed mutagenesis
- D) selection
- E) none of the above

Answer: C Difficulty: Easy Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

MULTIPLE CHOICE
55. Double-stranded DNA molecules can be cleaved at specific recognition sites by
A) RNA polymerase
B) DNA ligase
C) DNA polymerase
D) reverse transcriptase
E) Type II restriction endonucleases
Answer: E
Difficulty: Moderate
Section: 2.3
Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical
studies.
MULTIPLE CHOICE
56. DNA sequencing using the Sanger method requires .
A) template, primer, DNA polymerase, mRNA, dNTPs, ddNTPs
B) template, primer, DNA polymerase, dNTPs, ddNTPs
C) template, primer, DNA polymerase, rRNA, dNTPs, ddNTPs
D) template, primer, DNA polymerase, mRNA, dNTPs
E) none of the above
Answer: B
Difficulty: Moderate
Section: 2.3
Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical
studies.
MULTIPLE CHOICE
57. In Sanger dideoxy DNA sequencing, DNA polymerase I is used to add nucleotides to the end of
the growing polynucleotide chain.
A) sticky
B) blunt
C) 3'
D) 5'
E) dideoxy-nucleotide-containing
Answer: C
Difficulty: Moderate
Section: 2.3
Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical
studies.
MULTIPLE CHOICE
MULTIPLE CHOICE E. D.N.A. sequencing by the chain termination method uses D.N.A. nelymerase I to make a semplementary
58. DNA sequencing by the chain-termination method uses DNA polymerase I to make a complementary
copy of the target or template DNA molecule. A reaction with a 20 bp template and dideoxyadenosine nucleotides as terminators results in the production of a 5 bp fragment. Based on this result, we can
conclude that the template contains
A) a cytosine at position 5
B) a thymine at position 5
C) a cytosine at position 16
-11

D) a thymine at position 16

E) a uracil at position 5

Answer: D

Difficulty: Difficult Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

59. Mutations leading to changes that can be inherited by the next generation have to be introduced at the _____ level.

A) DNA

B) rRNA

C) protein

D) mRNA

E) tRNA Answer: A

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

60. In molecular cloning, transformed organisms must be identified. One common method for accomplishing this involves the inclusion of in the plasmid.

A) a restriction site

B) a nuclease gene

C) a deletion

D) an origin of replication

E) an antibiotic resistance gene

Answer: E

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.

MULTIPLE CHOICE

61. To perform PCR, which of the following describes the reagents that must be included in the reaction mixture?

- A) DNA fragment, primers flanking the region of interest, dNTPs, DNA polymerase
- B) DNA fragment, primers flanking the region of interest, dNTPs, ddNTPS, DNA polymerase
- C) DNA fragment, one primer, dNTPs, DNA polymerase, DNA ligase
- D) DNA fragment, primers flanking the region of interest, dNTPs, DNA ligase
- E) none of the above

Answer: A

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

Λ	ЛI	п	T	ID	1 F	: r	н	0	ICE
ı١	ИΝ	J		ır	LE		п	u	

- 62. Which of the following statements about PCR is (are) true?
- A) Small amounts of DNA can be easily amplified to millions of copies.
- B) PCR is often used in forensics laboratories.
- C) PCR reaction products can be used in molecular cloning.
- D) PCR is used in clinical laboratories.
- E) All of the above

Answer: E

Difficulty: Difficult Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

MULTIPLE CHOICE

63. DNA polymerase from *Thermus aquaticus* is used in PCR because _____.

- A) it is a soluble protein
- B) the genes from *Thermus aquaticus* are readily distinguished from those of "normal" organisms
- C) the enzyme is readily deactivated by heat, effectively halting the reaction
- D) it is stable at high temperatures
- E) it is not infectious

Answer: D
Difficulty: Easy
Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

MULTIPLE CHOICE

64. A gene knockout is .

- A) a gene that has been inactivated or removed from an organism
- B) a dominant gene that knocks out expression of other genes
- C) a gene inserted in place of another gene
- D) a gene present on a YAC
- E) none of the above

Answer: A

Difficulty: Moderate

Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical studies.

- 65. Recombinant DNA technology can be used for _____.
- A) constructing mutant proteins
- B) the industrial production of useful proteins
- C) producing transgenic organisms
- D) correcting genetic defects

E) all of the above

Answer: E
Difficulty: Easy
Section: 2.3

Learning Objective: Describe how alterations to nucleic acids in the cell can facilitate biochemical

studies.